
Fast Computation of Entropic Profiles for the

Detection of Conservation in Genomes

Matteo Comin and Morris Antonello

Department of Information Engineering, University of Padova,
Via Gradenigo 6/A, Padova, Italy

comin@dei.unipd.it

Abstract. The information theory has been used for quite some time in
the area of computational biology. In this paper we discuss and improve
the function Entropic Profile, introduced by Vinga and Almeida in [23].
The Entropic Profiler is a function of the genomic location that captures
the importance of that region with respect to the whole genome. We pro-
vide a linear time linear space algorithm called Fast Entropic Profile, as
opposed to the original quadratic implementation. Moreover we propose
an alternative normalization that can be also efficiently implemented. We
show that Fast EP is suitable for large genomes and for the discovery of
motifs with unbounded length.

Keywords: patterndiscovery, information theory, computationalbiology.

1 Introduction

The concept of information theory was originally introduced by Claude E. Shan-
non as a tool to systematically analyze data flow in general communication sys-
tems [20]. The theory has been extended and subsequently applied to many fields
including DNA sequence analysis [24]. Methods of Information theory focusing
on DNA sequence compression have found differences between coding and non-
coding sequences [17] and they have been applied also for classification [3,4]. In
[12] the authors applied the mutual information to discover SNPs that are sig-
nificantly associated with diseases. Also compression based classification relying
on mutual information can be successfully applied to phylogeny [2]. Moreover
the identification of splicing mutations can benefit from the use of Informa-
tion Theory[18]. In [11] sequence motifs are modeled based on the maximum
entropy principle. Such models can be utilized to discriminate between signals
and decoys. In [5] an entropic segmentation method is discussed to detect bor-
ders between coding and noncoding DNA. These are just a few examples of the
computational biology applications inspired by information theory.

In this paper we discuss and improve the function Entropic Profile, introduced
by Vinga and Almeida in [23]. The concept of Entropic Profiler was introduce
to analyze DNA sequences. The Entropic Profiler is a function of the genomic
location that captures the importance of that region with respect to the whole
genome. This score is based on the Shannon entropies of the words distribution.
This method proved useful for the identification of conserved genomic regions.

A. Ngom et al. (Eds.): PRIB 2013, LNBI 7986, pp. 277–288, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 M. Comin and M. Antonello

Other types of sequence profile have also been previously explored like Se-
quence Logos [19], that provide the information content per position. This
method, however, requires the alignment of a set of sequences and thus it is
not suited for a single sequence. Moreover this approach does not comply to the
alignment-free paradigm like [8].

One of the most important requirements is the development of efficient meth-
ods for the analysis of whole genomes that can scale gracefully with the size of
input. In this paper we study the use of Suffix Tree for the computation of the
Entropic Profiler. We show that the same function can be evaluated in linear
time and space as opposed to the quadratic implementation of EP [23]. This
will allow the use of longer genomes and the discovery of motifs with unbounded
length, removing the limitations of the current implementation. Moreover we
propose an alternative normalization that can be also efficiently implemented
within the Suffix Tree structure. The resulting implementation will be named
Fast Entropic Profile (FastEP). We show that FastEP proved useful for the de-
tection of conserved signals.

1.1 Entropic Profiler

Although DNA is a flexible three-dimensional molecule interacting in a dynamic
environment, its digital information can be represented by a one dimensional
character string of G’s, A’s, T’s and C’s. Following this standard assumption,
two of its most striking features are the extent to which repeated L-tuples oc-
cur and the variety of repeated structures it contains. These topics have been
discussed extensively and various mechanisms try to explain the functional and
evolutionary role of repeats. The degree of predictability and randomness of a
substring is described by its entropy [23]. Entropic Profiles (EP) are plots esti-
mated by this local entropy formulation, defined for each position/symbol, from
the complete sequence of DNA. The original definition is based on the distribu-
tion of words that end at a particular location i. Let s be the input genome of
length |s| = n, we define s[i, i + k − 1] as the word of length k that starts at
position i. Let c[i, i+k−1] be the number of time the word s[i, i+k−1] appears
in the genome s. The function local entropy for position i is defined as:

gL,φ(i) =
1 + 1/n

∑L
k=1 4

kφkc[i− k + 1, i]
∑L

k=0 φ
k

(1)

where φ is a normalization parameter. This function can be interpreted as a lin-
ear combination of suffix counts up to a given length L, with different weights.
It computes, for each location of the sequence, the information about the abun-
dance of the corresponding L-tuple suffix inside the entire sequence. For ease
of explanation we redefine the above formula to evaluate the statistic of words
starting at position i, instead of ending at position i.

fL,φ(i) =
1 + 1/n

∑L
k=1 4

kφkc[i, i+ k − 1]
∑L

k=0 φ
k

(2)

Fast Computation of Entropic Profiles 279

Fig. 1. Truncated suffix tree, L=3, and side links of the word ATTACAC

Note that the function gL,φ(i) is equivalent to compute fL,φ(n − i) for the re-
verse of s. This function is then normalized to allow the comparison of different
parameter combinations. EP values are normalized as a z-score: EPL,φ(i) =
fL,φ(i)−mL,φ

sL,φ
, where the mean is mL,φ = 1

n

∑n
i=1 fL,φ(i) and the standard devia-

tion sL,φ =
√

1
n−1

∑n
i=1 (fL,φ(i)−mL,φ)

2
.

We will discuss an alternative normalization in section 3. The original imple-
mentation of the entropic profiler is based on a truncated suffix trie, see Figure 1.
A standard trie, storing the collection of n suffixes of the entire DNA sequence,
has the following properties:

– the number of nodes is O(n2).
– the height is equal to the length of the longest string, that is the length of

the whole sequence, n.
– word matching for a pattern of length L takes O(L) time.
– constructing the entire trie takes O(n2) time.

The counters at each node represent the number of occurrences of the corre-
sponding word. This allows the main EP function to be worked out by simply
word matching. All nodes at the same depth are connected by side links in or-
der to speed up the normalization, otherwise the computation of mL,φ and sL,φ

would involve the repeated calculation of the main EP function for all positions.
There are two problems with this implementation. The first issue is that it

is space inefficient. Specifically, there may be a lot of nodes that have only one
child, and the existence of such nodes is a waste. The second problem is that
the Entropic Profiler can be computed only for small L. In fact in [23] the
function EP can explored only for motif shorter than 15 bases, and thus the trie
is truncated at depth 15. These observations have prompted the idea to consider
instead of a trie its compressed version also known as Suffix Tree.

1.2 Preliminaries on Suffix Trees

The Suffix Tree is one of the most studied data structures and it is funda-
mental for string processing. It stores a string in such a way that enables the
implementation of efficient searches. Traditionally the suffix tree has been used
in very different fields, spanning from data compression [26,3] to clustering [10]
and classification [9,8]. The use of suffix tree has become very popular in the
field of bioinformatics allowing a number of string operations, like detection of

280 M. Comin and M. Antonello

repeats [14], local alignment [16], the discovery of regulatory elements [6,7] and
extensible patterns [1]. The optimal construction of suffix tree has already been
addressed by [22,15], that provided algorithms in linear time and space. Figure
2 shows an example of suffix tree for the string s = TCGGCGGCAAC. We can
observe that each suffix of the string s is present in the tree as a labeled path
from the root to a leaf.

2 Fast Entropic Profiler

This section we describe how the entropic profiler can be efficiently computed
using the suffix tree. Let assume that we have already computed the suffix tree of
the input string s using the algorithm of Ukkonen [22]. We extend this structure
so that every node v contains a variable count(v) that stores the number of times
that the word represented by v appears in s. With a simple O(n) traversal of
the tree we can compute the variable count(v) of each internal node v, where
count(l) = 1 if l is a leaf.

The goal is to find an efficient way to compute the main EP function 2 for
every possible substring and parameter combination. If the substring taken into
consideration is encoded by the suffix tree, there are two main cases: it may be
spelled out by the concatenation of the edge-labels on the path from the root to
a node or not. In the latter case the substring ends between two nodes.

The function fL,φ(i) for each sequence belonging to the former case can be
preprocessed and stored in a variable entropy(v), for each node v. Now assume
that the node v represents the string s[i, i+L− 1] then the variable entropy(v)

will contain
∑L

k=1 4
kφkc[i, i+ k − 1], the main sum of fL,φ(i). Once entropy(v)

is available we can calculate fL,φ(i) in constant time. The following preprocessing
is a preorder traversal of the tree that computes the value of entropy(v) for all
nodes. Let assume that par(v) is the parent node of v, and that h(v) is the
length of the string spelled out by the concatenation of the node-labels on the
path from the root to that node. In other words h(v) is the length of the string
represented by the node v.

Preprocess(T,v)

A suffix tree T and a node v are given.
begin [visit]
if v is the root then

entropy(v) = 0
else

entropy(v) = entropy(par(v)) + count(v)
∑h(v)

k=h(par(v))+1 [4
kφk]

end if
for all child w of v do

begin [recursive traversal]
Preprocess(T,w);

end for

Fast Computation of Entropic Profiles 281

Fig. 2. Suffix tree of the string TCGGCGGCAAC. Every copy of the terminal symbol
$ is removed from the edge labels. The nodes are labeled with the corresponding values
of entropy|count, where for simplicity 4φ = 1.

Let’s consider the string TCGGCGGCAAC and the suffix tree in Figure 2.
The main sum for the function f4,φ(2) is

∑4
k=1 4

kφkc[2, 2 + k − 1]. For ease
of explanation we write c[s[i, j]] instead of c[i, j]. This sum can be expanded
in: 4φc[C] + (4φ)2c[CG] + (4φ)3c[CGG] + (4φ)4c[CGGC]. Now the information
contained in the suffix tree allows us to simplify this sum. We can note that
every time we see CG it is always followed by a GC, thus c(CG) = c(CGG) =
c(CGGC), that is also count(v), where v represent the word CGGC. Finally if
we consider that entropy(C) = 4φc[C] that is also the node par(v). Thus the
previous sum can be simplified in : 4φc[C] + ((4φ)2 + (4φ)3 + (4φ)4)c[CGGC] =

entropy(par(CGGC)) + count(CGGC)
∑4

2 [4
kφk]. This is equivalent to the for-

mula used in the preprocessing, where part of the summation is simplified thanks
to the suffix tree. Using the properties of the geometric series we can observe

that
∑h(v)

k=h(par(v))+1 [4
kφk] is equivalent to [(4φ)h(par(v))+1−(4φ)h(v)+1]/[1−4φ].

Thus each visit takes time O(1), and the total time spent in this preprocessing
is O(n), linear the number of nodes.

After this preprocessing, the EP function can be retrieved efficiently for all
words represented by some node in the tree T . The following algorithm computes
the EP function of any word s[i, i+ L− 1] of length L using as input the suffix
tree T .

FastEP (Input: T, i, L, φ; Output:fL,φ(i))

Search the input word s[i, i+ L− 1] in the suffix tree T .
if it is represented by the node v then

the algorithm returns the preprocessed value of the variable entropy(v)
of the internal node v.

end if

282 M. Comin and M. Antonello

if the search ends within an edge, between the two nodes u and v then
the algorithm returns the preprocesses value of entropy(u)

plus the correction factor count(v)
∑L

k=h(u)+1 4
kφk.

end if

In summary if the query word is represented in the suffix tree by a node v it is
enough to return entropy(v), otherwise we need to add a correction factor that
is proportional to the number of times the word as a whole appears, and thus
using count(v). Again from the output of this procedure we can compute in con-
stant time the Entropic Profile function (formula 2). Thus FastEP after a linear
time linear space preprocessing can evaluate a certain position or equivalently
a specific pattern in constant time. The original implementation requires O(n2)
time and space to answer the same query.

3 Fast Entropic Profiler Normalization

The aim of this section is to provide an alternative normalization of EP such
that, in order to be computed, it does not require to process all positions of s
and for all L. Algebraic considerations [23] allow the mean mL,φ to be rewritten
as:

mL,φ =
(φ− 1)(m2 +

∑L
i=1 C

2[k])

m2(φL+1 − 1)
(3)

where C2[k] stands for the sum of the squared counts of all distinct words of size
k in the whole sequence. Similarly, the standard deviation sL,φ becomes:

sL,φ =

√
√
√
√
√
√

1

m− 1

⎛

⎜
⎝

S[L]
(

φL+1−1
φ−1

)2 −m2
L,φ ·m

⎞

⎟
⎠ (4)

where the recursive function S[L], depending on the number of distinct word of
length L, is fairly intricate. Even if L-tuples are less than the length of the whole
sequence n, this kind of normalization takes still O(n3) time and O(n2) space.

There are several alternatives to the above normalization. In this paper we
propose to define FastEP, FastEPL,φ(i) as :

FastEPL,φ(i) =
fL,φ(i)

max0≤j<n[fL,φ(j)]
(5)

where the function max0≤j<n[fL,φ(j)] returns the maximum value of fL,φ over
all words of size L. Similarly to the original normalization this formulation allows
to compare the entropic profile scores for words of different length. In fact FastEP
assumes values in the range [0, 1].

Fast Computation of Entropic Profiles 283

3.1 Finding the Maximum Entropy fL,φ for all L Using a Branch
and Bound Approach

In the following we discuss a branch and bound strategy to efficiently recover
the values of max0≤j<n[fL,φ(j)] for all L, or simply maxL. Instead of naively
comparing each word of length L, the search for the maximum FastEP can be
restricted to some regions of the tree. Again for ease of explanation we will con-
sider only the sum

∑L
k=1 4

kφkc[i, i+ k − 1], as the main fL,φ(j) can be trivially
derived.

If L > 1, two definitions are needed to define which regions of the tree must
be taken into consideration and which can be pruned:

Definition 1. The minimum potential maximum mpmL defines a lower bound
to the maximum fL,φ(j) for all L:

mpmL = maxL−1 + 4LφL

Definition 2. The maximum potential maximum MPML(v), where L > 1 and
v is a node such that h(v) < L, is defined as:

MPML(v) = entropy(v) + [count(v)− 1] ∗
L∑

k=h(v)+1

4kφk

The maximum potential maximums, MPM bounds, are progressively computed
and they allow to prune the search space for the maximum EP. The maximum
potential maximum MPML(v) is associated to any node v. At each step they
define an upper bound to the maximum FastEP obtainable for a path starting
from the root and passing trough the node v. In fact, if a MPML(v) is less than
mpmL that region can be discarded and not considered. Otherwise if MPML(v)
is greater than mpmL we extend this path to the child of v as long as these
nodes have height not greater than L.

The following numerical example, which computes the values of maxL for
L from 1 to 2, clarifies these concepts. Let’s consider the example of Figure 2
where for simplicity we use 4φ = 1. For L = 1 it is enough to consider the most
frequent character, that is G or C, that produces max1 = entropy(C) = 4. If
L=2 it must be max2 ≥ max1 + 1 = 5, where the second term is the minimum
potential maximum mpm2 = 4 + 1 = 5. Now for L = 2 we have that:

A: MPM2(A) = 2 + 1 = 3 < mpm2 = 5 → NOT acceptable path;
C: MPM2(C) = 4 + 3 = 7 > mpm2 = 5 → acceptable path;
G: MPM2(G) = 4 + 3 = 7 > mpm2 = 5 → acceptable path;
T: MPM2(T) = 1 + 1 = 2 < mpm2 = 5 → NOT acceptable path;

Two nodes are left out because a priori the maximum for L = 2 cannot be found
traversing those nodes of the tree. Thus, after following every acceptable path,
the value max2 is worked out by simply comparing:

284 M. Comin and M. Antonello

CA: entropy(CC) = 4 + 1 = 5
CG: entropy(CG) = 4 + 2 = 6
GC,GG: entropy(GC) = entropy(GG) = 4 + 2 = 6 → max2 = 6

Note that at this step no more nodes are traversed, but since h(v) < L we just
take the path with the maximum value of counts. In summary we can observe
that to obtain maxL it requires maxL−1, thus overall maxL can be computed
in L steps. If L = n in the worse case we can traverse the entire suffix tree, that is
O(n) nodes. Thus overall the n values of maxL can be computed in O(n2) time
and O(n) space. There are some tricks that one can use in the implementation to
speedup further this process. We can note that if a node is part of an acceptable
path while calculating maxL it will be also traversed for maxL+1. Thus we
don’t need to traverse that part of the tree from the root, but we can just start
from the latest nodes visited for maxL. Another observation is that the value of
mpmL should be reset if the previous maximum ends in a leaf. For comparison
with the original approach, based on truncated tries, the normalization process
can take O(n3) time and O(n2) space, whereas our branch and bound strategy
requires O(n2) times and linear space.

3.2 Expected and Real Efficiency

The expected fraction of nodes in the tree that are pruned can be computed as
the following probability:

P (

L∑

k=1

4kφkc[i, i+ k − 1] < mpmL)

Given that c[i, i + k − 1] is a Binomial(n, pwk
), for large values of n it can be

approximated as a Normal(npwk
, npwk

(1− pwk
)). Also the sum can be approx-

imated with
L∑

k=1

4kφkc[i, i+ k − 1] → N (μ, σ2)

where μ =
∑L

k=1 4
kφknpwk

= n
∑L

k=1 φ
k and σ2 =

∑L
k=1 4

kφknpwk
(1− pwk

) =

n
∑L

k=1 φ
k(1− 1/4k).

In practice the expected efficiency depends on the distribution of words in the
string s, that will determine mpmL. For example Figure 3 reports the number of
nodes visited while computing maxL for all L for the string TCGGCGGCAAC.
Similar results are obtained also for longer random sequences (data not shown).
In general small values of φ drastically prune the tree.

4 Results

The Fast Entropic Profiler was tested in several DNA sequences, but in this
section we report the results for two genomes. Here we illustrate an example of

Fast Computation of Entropic Profiles 285

Fig. 3. Number of nodes visited for different values of φ while computing maxL for all
possible L for the string TCGGCGGCAAC

Fig. 4. Example of study of the E-Coli genome starting at position 78440 for various
values of L

study around a target position. We can select a window length to study a certain
range of values around the position. Also the length L can be chosen and in this
case we search for pattern of length from 6 to 12. Note that after computing
the values for L = 12 all other values for L < 12 can be computed in constant
time. Figure 4 shows the output results for the Escherichia coli K12 genome with
φ = 10, starting position 78440 and window length of 100.

The figure reports the values of FastEP for all positions in the range [78440-
78540]. For each position several values are reported varying the parameter L.
The most important peak is at position 78445 and the value of L that maximizes
this peak is L = 8. This highly rated motif is in fact GCTGGTGG, which
corresponds to a Chi site, a region that modulates the activity of RecBCD (an
enzyme involved in the chromosomal repair)[21]. It is important to notice that
this pattern can be discovered just by looking at the histogram, and by analyzing
the values L that maximize the score for this position, and without a previous
knowledge of the length of the motif under study.

286 M. Comin and M. Antonello

Fig. 5. Example of study of the H.Influenza genome starting at position 14165 for
various values of L

Table 1. Running times in second for EP and FastEP

FastEP
Size EP Single Run New Query New Parameters

1 Mbases 12 4 0,09 1,5
1 Kbases 0,346 0,066 0,021 0,032

In Figure 5 a similar results is shown for the H.Influenza genome. We study
the positions from 14165 to 14215 with φ = 10 for various values of L. The most
important peak is obtained at position 14202 for L = 9, that corresponds to the
pattern AAGTGCGGT. This well known pattern represents an uptake signal
sequence (USS+) involved in the horizontal gene transfer [13].

In a second series of experiments we test the time performance on a common
laptop with a 1.5GHz Centrino and 2Gb of Ram. Table 1 reports the average
times over 10 runs for two genomes of length 1kbases and 1Mbases. For all runs
we use L = 10, φ = 10 and a window of 100. In column “EP” is reported the time
for the original method. For FastEP three times are illustrated. The construc-
tion and query correspond to the column “Single Run”. A new query, e.g. a new
starting position or a shorter L, is represented by the column “New Query”. If a
larger L or a new value of φ are required the inner structure is updated in a time
reported in the last column. On a single run FastEP is always faster than the
original method. If multiple queries are required the advantage becomes immedi-
ately embarrassing. The small space requirements and the improved performance
will enable the study on large genomes.

Moreover in the original implementation the parameter L can not be greater
than 15, whereas FastEP does not have limitation and can search for longer
patterns.

Fast Computation of Entropic Profiles 287

5 Conclusions

To summarize we improve the original Entropic Profile with a faster and more
flexible implementation that can search for longer patterns in a genome. We
proposed a new normalization that can be efficiently computed within the inner
structure of FastEP. We provide some examples where FastEP is used for the
detection of conserved signals in a genome.

Acknowledgments. M. Comin was partially supported by the Ateneo Project
CPDA110239. S. Mazzocca implemented the software FastEP.

References

1. Apostolico, A., Comin, M., Parida, L.: Varun: Discovering Extensible Motifs under
Saturation Constraints. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 7(4), 752–762 (2010)

2. Apostolico, A., Comin, M., Parida, L.: Mining, compressing and classifying with
extensible motifs. Algorithms for Molecular Biology 1, 4 (2006)

3. Apostolico, A., Comin, M., Parida, L.: Bridging Lossy and Lossless Compression
by Motif Pattern Discovery. In: Ahlswede, R., Bäumer, L., Cai, N., Aydinian, H.,
Blinovsky, V., Deppe, C., Mashurian, H. (eds.) General Theory of Information
Transfer and Combinatorics. LNCS, vol. 4123, pp. 793–813. Springer, Heidelberg
(2006)

4. Apostolico, A., Comin, M., Parida, L.: Motifs in Ziv-Lempel-Welch Clef. In: Pro-
ceedings of IEEE DCC Data Compression Conference, pp. 72–81. Computer Soci-
ety Press (2004)

5. Bernaola-Galván, P., Grosse, I., Carpena, P., Oliver, J., Román-Roldán, R., Stan-
ley, H.: Finding Borders between Coding and Noncoding DNA Regions by an En-
tropic Segmentation Method. Physical Review Letters 85(6), 1342–1345

6. Comin, M., Parida, L.: Subtle motif discovery for the detection of DNA regulatory
sites. In: Proceeding of Asia-Pacific Bioinformatics Conference, pp. 27–36 (2007)

7. Comin, M., Parida, L.: Detection of Subtle Variations as Consensus Motifs. Theo-
retical Computer Science 395(2-3), 158–170 (2008)

8. Comin, M., Verzotto, D.: Alignment-Free Phylogeny of Whole Genomes using Un-
derlying Subwords. BMC Algorithms for Molecular Biology 7, 34 (2012)

9. Comin, M., Verzotto, D.: Whole-Genome Phylogeny by Virtue of Unic Subwords.
In: Proceedings of 23rd International Workshop on Database and Expert Systems
Applications, BIOKDD, pp. 190–194 (2012)

10. Comin, M., Verzotto, D.: The Irredundant Class Method for Remote Homology
Detection of Protein Sequences. Journal of Computational Biology 18(12), 1819–
1829 (2011)

11. Gene, Y., Burge, C.: Maximum Entropy Modeling of Short Sequence Motifs with
Applications to RNA Splicing Signals. Journal of Computional Biology 11(2-3),
377–394 (2004)

12. Hagenauer, J., Dawy, Z., Gobel, B., Hanus, P., Mueller, J.: Genomic Analysis using
Methods from Information Theory. In: Information Theory Workshop, pp. 55–59
(2004)

288 M. Comin and M. Antonello

13. Karlin, S., Mrazek, J., Campbell, A.: Frequent oligonucleotides and peptides of the
Haemophilus influenzae genome. Nucleic Acids Res. 24, 4263–4272 (1996)

14. Kurtz, S., Choudhuri, J., Ohlebusch, E., Schleiermacher, C., Stoye, J., Giegerich,
R.: Reputer: The manifold applications of repeat analysis on a genome scale. Nu-
cleic Acids Res. 29(22), 4633–4642 (2001)

15. McCreight, E.M.: A space-economical suffix tree construction algorithm. Journal
of ACM 23, 262–272 (1976)

16. Meek, C., Patel, J., Kasetty, S.: Oasis: An online and accurate technique for local-
alignment searches on biological sequences. In: Proceedings of 29th International
Conference on Very Large Databases, pp. 910–921 (2003)

17. Menconi, G., Marangoni, R.: A compression-based approach for coding sequences
identification. I. Application to prokaryotic genomes. J. Comput Biol. 13(8), 1477–
1488 (2006)

18. Nalla, V., Rogan, P.: Automated Splicing Mutation Analysis by Information The-
ory. Human Mutaion 25, 334–342 (2005)

19. Schneider, T., Stormo, G., Gold, L., Ehrenfeucht, A.: Information content of bind-
ing sites on nucleotide sequences. Journal of Molecular Biology 188, 415–431 (1986)

20. Shannon, C.: A Mathematical Theory of Communication. Bell System Technical
Journal 27(3), 379–423 (1948)

21. Sourice, S., Biaudet, V., El Karoui, M., Ehrlich, S.D., Gruss, A.: Identification
of the Chi site of Haemophilus influenzae as several sequences related to the Es-
cherichia coli Chi site. Mol. Microbiol. 27, 1021–1029 (1998)

22. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

23. Vinga, S., Almeida, J.S.: Local Rényi entropic profiles of DNA sequences. BMC
Bioinformatics 8, 393 (2007)

24. Yockey, H.: Origin of life on earth and Shannon’s theory of communication. Com-
put. Chem. 24(1), 105–123 (2000)

25. Waterman, M.S.: An Introduction to Computational Biology: Maps, Sequences and
Genomes. Chapman Hall (1995)

26. Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE
Transactions on Information Theory 23(3), 337–343 (1977)

	Fast Computation of Entropic Profiles for the
Detection of Conservation in Genomes

	1 Introduction
	1.1 Entropic Profiler
	1.2 Preliminaries on Suffix Trees

	2 Fast Entropic Profiler
	3 Fast Entropic Profiler Normalization
	3.1 Finding the Maximum Entropy
	3.2 Expected and Real Efficiency

	4 Results
	5 Conclusions
	References

