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Abstract. Proteins are known to interact with each other by forming protein
complexes and in order to perform specific biological functions. Many commu-
nity detection methods have been devised for the discovery of protein complexes
in protein interaction networks. One common problem in current agglomerative
community detection approaches is that vertices with just one neighbor are often
classified as separate clusters, which does not make sense for complex identifi-
cation. Also, a major limitation of agglomerative techniques is that their compu-
tational efficiency do not scale well to large protein interaction networks (PINs).
In this paper, we propose a new agglomerative algorithm, FAC-PIN, based on a
local premetric of relative vertex-to-vertex clustering value and which addresses
the above two issues. Our proposed FAC-PIN method is applied to eight PINs
from different species, and the identified complexes are validated using exper-
imentally verified complexes. The preliminary computational results show that
FAC-PIN can discover protein complexes from PINs more accurately and faster
than the HC-PIN and CNM algorithms, the current state-of-the-art agglomerative
approaches to complex prediction.

1 Introduction

Proteins are known to interact with each other by forming complexes. Each such com-
plex performs an independent and discrete biological function through the interactions
of its member proteins [9]. Single proteins may also participate in more than one com-
plex. Protein complexes correspond to modules, which are dense subgraphs within
PINs, and hence, they can be discovered by appropriate graph clustering approaches.
Generally speaking, modules in PINs refer to highly connected subgraphs which have
more internal edges than external edges. Many definitions of modules have been pro-
posed in literature [16], and consequently different community detection algorithms
have been proposed based on these different definitions.

Module detection in PINs is a computationally hard task and conventional clus-
tering algorithms are not well suited for this task [15, 20]. Efficient, accurate, robust,
and scalable methods are therefore required for mining large PINs. There are generally
three classes of modules detection approaches: 1) those based on finding cliques, which
are fully connected subnetworks [11, 17]; 2) those based on detecting dense subnet-
works [1, 2], not necessarily cliques; and 3) those based on uncovering the hierarchical
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organization of modules within PINs [8,12]. Clique techniques are not quite scalable to
large PINs and the identified modules are too strict in the biological sense of modules
since proteins participating in a complex may not all interact with each other. Current
density-based algorithms commonly misclassify proteins with low degree into small
clusters which could be merged to core protein clusters [13]. Moreover, many biolog-
ically meaningful modules are ignored due to their low topological connectivity [13].
Hierarchical clustering methods based on global metric over nodes or edges, such as
betweenness centralities, are very time-consuming, and thus do not scale well to large
PINs. The few hierarchical approaches based on local metric also have the common
problem of classifying vertices with degree one in separate clusters, which does not
make sense biologically.

In this paper, we propose a fast agglomerative clustering technique, FAC-PIN, which
addresses the limitations discussed above for hierarchical algorithms. FAC-PIN is based
on a local premetric of relative vertex clustering value for clustering PINs in a hierar-
chical manner.

The rest of the paper is organized as follow. In Section 2, we discuss a few hierarchi-
cal algorithms to which FAC-PIN is based. Section 3 introduces our proposed method.
Computational experiments and discussions of results are given in Section 5 before we
conclude with possible directions of research.

2 Related Works

Many hierarchical clustering approaches (both agglomerative and divisive techniques)
have been introduced in literature, since the original publication of Girvan and Newman
in [7] for clustering networks. See the excellent survey on graph clustering algorithms in
[5]. Thus, we will present only the few methods that are directly related to our proposed
agglomerative approach.

An effective agglomerative technique for clustering large networks was first pro-
posed by Girvan and Newman in [7]. The Girvan and Newman (GN) algorithm first
computes the edge-betweenness centrality value of each edge; this is a global metric
over the edges and is defined as the number of shortest paths containing a given edge.
Then, GN subsequently sort and then remove edges with large betweenness values in
an iterative manner and in order to detect the communities; since such edges corre-
spond to bridges connecting two modules whereas low-betweenness edges are internal
to modules. To increase the computational speed of GN, Clauset et al. [4] made a simple
but non-trivial modification in the computation of the value of the modularity function
used in GN. Luo et al. [13] defined the concept of the degree of a subnetwork S as
the number the of edges containing one endpoint inside S and the other endpoint out-
side S. The degree of subnetworks was used along with the edge-betweenness values
to devise an agglomerative method for module discovery. Li et al. [12] developed a fast
agglomerative approach for community detection based on a global centrality measure,
the vertex clustering coefficient; which is defined as the ratio of the number of edges
between the neighbors of a given vertex v and the total number of possible edges in that
neighborhood, it measures the degree of completeness of the subnetwork defined by v
and its neighbors [6]. Radicchi et al. [16] designed an agglomerative technique based
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on the clustering coefficient of an edge; the edge clustering coefficient extends the ver-
tex clustering coefficient and is a global measure defined as the number of triangles to
which a given edge e = (u, v) belongs to, divided by the number of triangles that might
potentially include (u, v). That is:

C(3)
u,v =

Z
(3)
u,v

min{(ku − 1), (kv − 1)} , (1)

where, ka is the degree of a vertex a, Z(3)
u,v is the number of triangles containing edge

(u, v), and min{(ku − 1), (kv − 1)} is the maximal possible number of triangles con-

taining (u, v). This coefficient has been further generalized to higher-order cycles, C(k)
u,v ,

such as squares for k = 4, C(4)
u,v . Edges contained in few or no triangles have low clus-

tering coefficients, and hence, correspond to bridges connecting two clusters. The edge
clustering coefficient assumes the existence of cycles of length k in a network; which
is problematic since a network can have many cycles of different lengths and the length
distribution is unknown (e.g., there may be very few or very many short-length cycles).
For this reason, Wang et al. [19] defined a local metric over the edges, the edge clus-
tering value, which is not based on cycles but on the common neighbors of the two
endpoints of edge (u, v). The edge clustering value is defined as:

ECV (u, v) =
|Nu ∩Nv|2
|Nu| × |Nv| , (2)

where, Na is the set of neighbors of a vertex a and its cardinality is defined as |Na|.
Here, endpoints vertices of an edge (u, v) with a larger clustering value are more likely
to be in the same cluster. Using the edge clustering value, Wang et al. [19] devised
an agglomerative technique, the HC-PIN algorithm, for discovering modules of a PIN
and which is faster and more accurate than current hierarchical algorithms for network
clustering.

In the following section, we introduce a new measure, the relative vertex-to-vertex
clustering value, which is a premetric combining the ideas behind the vertex clustering
coefficient, the edge clustering coefficient, and the edge clustering value. Our analysis
of this measure will be based on the weak sense definition of a community (i.e., a
module); that is: a subgraph S is a community in a weak sense if the sum of all degrees
within S (i.e., sum of its internal edges) is larger than the sum of all degrees toward the
rest of the network (i.e., sum of its external edges) [16].

3 Relative Vertex-to-Vertex Clustering Value

The edge clustering value, ECV (u, v), used in HC-PIN [19], is a similarity metric
between the two vertices u and v of an edge (u, v) and which, roughly speaking, tells
how likely u and v lie in the same module (i.e., cluster). This is also true with the
edge clustering coefficient, C(3)

u,v , of [16]. However, in complex networks following the
power law (i.e., scale-free networks), it is reasonable to assume that the likelihood of
a vertex u to lie in the same module as v (or, to lie in the module containing v), is not



4 M.S. Rahman and A. Ngom

equal to the likelihood of v to lie in the module containing u. This assumption stems
from the principle of preferential attachment in scale-free networks which states that a
new node u is likely to attach to a high-degree node v than to a low degree node. This
is not reciprocal, and hence, clearly suggesting that the likelihood is not symmetric
and that it is larger for u to be in a cluster with v than for v to be in cluster with u
(if we assume that v is a high-degree node). The similarity metrics ECV (u, v) and
C

(3)
u,v treat equally both endpoints of edges (u, v) irrespective of their degrees. Also,

another issue is that both ECV (u, v) and C
(3)
u,v require vertices u and v be connected

by an edge. This requirement is quite restrictive and we aim to extend to the case in
which pair (u, v) is not an edge while still being able to decide if both vertices are
in the same cluster. Finally, as stated earlier in previous section, current hierarchical
approaches have the common problem of classifying low-degree vertices (peripheral to
dense subnetwork modules) into separate clusters rather than merging them with their
neighboring modules. In the following paragraph, we present a new measure which
aims to address these issues.

Let Na be the set of neighbors of vertex a in an undirected graph G = (V,E). We
define N+

a = Na ∪ {a} as the neighbor set of a augmented with a itself. Given two
vertices u and v, we define the clustering value of u relative to v as:

R(u ��� v) =
|N+

u ∩N+
v |

|N+
u | (3)

R(u ��� v) is a premetric that ranges from 0 to 1; that is, it is a measure which does
not satisfy the axiom of symmetry and the triangle inequality but satisfies the axioms of
self-similarity and minimality. A vertex u with a larger clustering value given another
vertex v is more likely to lie in the cluster containing v. In the following C(a) denotes
the cluster containing a given vertex a, and we assume that C(a) satisfies the weak sense
definition of a community [16] (we use the term ws-cluster, hereafter). The following
describe the properties of R(u ��� v).

Given an edge (u, v), R(u ��� v) is maximal (i.e. equals 1) if and only if |N+
u | =

|N+
u ∩N+

v |. There are two cases achieving the maximum given edge (u, v): (i) when u
has degree one; and (ii) when both u and v have the same degree and |N+

u | = |N+
v | that

is, they have the same neighbors. In either case, If sub-network C(v) (respectively, the
induced sub-network of G for subset N+

v ) is a ws-cluster then {u}∪C(v) (respectively,
{u} ∪N+

v ) is a also a ws-cluster.
Given an edge (u, v), R(u ��� v) is minimal when u is the highest degree vertex in

G and v has degree 1; that is, R(u ��� v) = 2
1+deg(u,G) and deg(u,G) is maximal. In

such case, R(v ��� u) is maximal (i.e. equals 1), and hence, C(u) ∪ {v} (respectively,
N+

u ∪ {v}) is a ws-cluster if C(u) (respectively, N+
u ) is a ws-cluster.

Given an edge (u, v), assume the degrees of vertices u and v in G are such that
deg(u,G) = deg(v,G) = d is maximal and that u and v do not share any other
neighbors. Then, we have R(u ��� v) = R(v ��� u) = 2

1+d ≤ 0.5 assuming
d ≥ 3. In this case, {u} ∪ C(v) (or N+

v ) is not a ws-cluster, and, {v} ∪ C(u) (or
N+

u ) is not a ws-cluster. Consider the induced subgraph of G on N+
u ∪ N+

v , we de-
fine the local betweenness value of edge (u, v) as the percentage of paths from vertices
in Nu � Nv to vertices in Nv � Nu going through edge (u, v). Given the number of
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common neighbors between u and v, |Nu∩Nv|, the local betweenness of edge (u, v) is
thus l(u, v) = 100 · 1

|Nu∩Nv|+1 . Given two connected high-degree vertices u and v, the
local edge betweenness value l(u, v) increases when |Nu ∩ Nv| decreases, and hence,
it corresponds to when both R(u ��� v) and R(v ��� u) values are small at the same
time. Edges with high local betweenness values are edges connecting two clusters, and
therefore, vertices u and v should not lie in the same cluster.

Finally, our relative vertex clustering values implements the ideas behind the edge
clustering coefficient, C(k)

u,v , of [16], since for a given vertex v and a neighbor u the
number of triangles given edge (u, v) is exactly |Nu ∩ Nv|; and u will be included
into C(v) whenever most of the neighbors of u (excluding v) are in Nu ∩ Nv. This
is also true even when (u, v) is not an edge; in such case, |Nu ∩ Nv| relates to the
number of squares containing vertices u and v. On the other hand, we break through the
limitations of [16] as in the edge clustering value, ECV (u, v) of [19], by not assuming
the existence of closed loops in a networks, such as triangles or high-order loops. The
relative vertex clustering value R(u ��� v) also improves ECV (u, v) since neighbors
u of v which have most of their neighbors forming a triangle with v are selected for
inclusion in C(v). Searching for vertices u which form a cluster with v is also more
efficient than searching for edges (u, v) that makes a cluster since the number of edges
is larger than the number of vertices in dense subgraphs.

In summary, the values R(u ��� v) and R(v ��� u) for edge (u, v) can be used as
a quick test for deciding whether u (respectively, v) should be merged with the cluster
C(v) (respectively, C(u)) such that {u} ∪ C(v) (respectively, {v} ∪ C(u)) remains a
ws-cluster.

4 The FAC-PIN Algorithm

Our proposed fast agglomerative clustering algorithm for protein interaction networks,
FAC-PIN in Algorithm 1, goes as follows. Given a PIN G = (V,E), we initially con-
sider each vertex as a singleton cluster, and sort the vertices v ∈ V in decreasing or-
der of their degrees deg(v,G) in G. Then, in an iterative manner, we select the next
highest-degree vertex v from the sorted list, and compute the values R(u ��� v) and
R(v ��� u) for each neighbor u of v, and then decide depending on these two values
and a threshold α, 0 ≤ α ≤ 1, whether u should be included in C(v) or not.

In the FAC-PIN algorithm, a neighbor u of vertex v is added to the current C(v)
when the majority of the neighbors of u are in Nu ∩ Nv, that is when: 1) R(u ���
v) = 1, in which case either u has degree 1, or u and v have the same degree and
the same set of neighbors; 2) R(u ��� v) > R(v ��� u) > α, in which case u have
smaller degree than v and most of the neighbors of u are in the intersection; and 3)
R(u ��� v) = R(v ��� u) and the size of the intersection is larger than the total set of
neighbors of u and v which are not in the intersection.

Computational Complexity of FAC-PIN: Let n = |V | be the number vertices, m = |E|
be the number of edges, and d̄ be the average degree of all vertices, that is d̄ =
1
n

∑
v∈V deg(v,G). The complexity of sorting the vertices by their degree is O(n)

by using the counting sort method, and the complexity of computing the partition after
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Algorithm 1. The FAC-PIN Algorithm
Input: G = (V,E): undirected PIN graph

α: threshold parameter
Output: Pk = {C1, . . . , Ck}: identified collection of modules
{Initialization phase}
for every vi ∈ V do

C(vi)← { {vi}, ∅ }; {each vertex is a singleton cluster}
end for
Sort all vertices to a priority-queue H in non-increasing order of their degrees;
{Community detection phase}
repeat

v ← H ; {select next highest-degree vertex in H}
for all u ∈ Nv not yet merged into a cluster do

if [R(u ��� v) = 1] Or [R(u ��� v) > R(v ��� u) > α] then
C(v)← C(v) ∪ { {u}, {(u, v)} };
C(u)← C(v);

else
if [R(u ��� v) = R(v ��� u)] And [deg(u,G)+deg(v,G)−1 ≤ |Nu ∩Nv |] then

C(v)← C(v) ∪ { {u}, {(u, v)} };
C(u)← C(v);

end if
end if

end for
until H = ∅
U ← V ;
i← 1;
{Compute the partition Pk}
while U �= ∅ do

v ← randomly select a vertex from U ;
Ci ← C(v);
U ← U � {u | C(u) = C(v)};
i← i+ 1;

end while
return Pk ← {C1, . . . , Ck};
Evaluate modularity Q(Pk) of partition Pk = {C1, . . . , Ck};

the community detection phase is also O(n). Let the maximum node degree in G be
dmax = maxv∈V deg(v,G). The complexity of computing R(u ��� v) given vertices
u and v in the ”for-loop” of FAC-PIN is O(dmax). The complexity of the ”for-loop” is
then O(d2max), and hence, the total complexity of the ”repeat-loop” (and thus of FAC-
PIN) is O(nd2max) � O(n3). Since PINs are power-law networks then the majority
of the proteins interact with only very few proteins, and thus the average degree d̄ is
generally small and can be considered a constant [19]; that is, we can use d̄ as the prin-
cipal variable for measuring the complexity of community detection methods. As such,
then the complexity of FAC-PIN is O(nd̄2) � O(nd2max) � O(n3). The complexity
of the HC-PIN algorithm of [19] is O(md̄2) and is larger than that of FAC-PIN since
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n ≪ m in PINs. We note that HC-PIN is currently the fastest hierarchical method
described in literature for clustering PINs, as far as we know.

5 Computational Experiments and Discussions

We have carried out several computational experiments on the PIN data of eight differ-
ent species using our proposed FAC-PIN algorithm. For each PIN, we performed the
following steps sequentially: (1) we arbitrarily set the threshold parameter, α in FAC-
PIN, to values 0.5, 0.25, 0.125, 0.0625 and 0.03125, (2) applied FAC-PIN to the given
PIN, with each of these values, (3) evaluated the modularity (i.e., the goodness) of the
resulting partition Pk for a value α, and finally (4) we reported the partition result for
the value α (among all given values) which gives the best modularity value. The PINs
and the modularity evaluation functions are discussed below.

PIN Data: The PINs data of eight different species were obtained from the PINALOG
site1 and the BioGRID database2. The eight species given along with their number
of proteins and interactions in parenthesis are: E. coli (2817, 13841), D. melanogaster
(Fruit fly, 8366, 25611), A. thaliana (Flowering plant, 2651, 5236), M. musculus (House
mouse, 2888, 4372), H. sapiens (Human, 8994, 34935), R. norvegicus (Street rat, 1148,
1307), C. elegans (Round worm, 4303, 7747), and S. cerevisiae (Bakers yeast, 5672,
49830). In all these PINs, the number of edges is much larger than the number of
vertices.

Modularity Functions: Given a clustering result (i.e. a partition) Pk = {C1, . . . , Ck}
with k clusters, we used the popular modularity function introduced by Newman and
Girvan [4], defined as

Q(Pk) =

k∑

i=1

(eii − a2i ), (4)

where, eii is the fraction of edges with both end vertices in the same community i, and
ai is the fraction of edges with at least one end vertex in community i. Larger values of
Q correspond to more distinct community structures in PINs. Though Q is widely used,
it is known to have serious limitations which has been discussed at length in [5]. The
second partition scoring function we used has been introduced in [10] and is defined as

w- log -v(Pk) =

k∑

i=1

(eii − log ai). (5)

Function w- log -v allows for more diverse cluster sizes than function Q, and smaller
values corresponds to better modularity structures.

1 http://www.sbg.bio.ic.ac.uk/˜pinalog/downloads.html
2 thebiogrid.org

http://www.sbg.bio.ic.ac.uk/~pinalog/downloads.html
thebiogrid.org
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Computational Results: As said above, we applied FAC-PIN many times on a given
PIN data but with a different threshold value α in each run, then evaluated the resulting
partition for that value α, and then retained the best partition Pk obtained for the PIN
among all values α. The best partition is that which has the best modularity value. In or-
der to study and compare the performance of FAC-PIN, we downloaded the CNM code
from http://cs.unm.edu/˜aaron/research/fastmodularity.htm [4]
and implemented the HC-PIN algorithm [19]. The HC-PIN and CNM methods were
applied on the same PIN data as the FAC-PIN approach. For HC-PIN, we set the two
parameters λ and s as in [19] (CNM has no parameters). The modularity results of the
three methods are given in Tables 1 and 2, and their running times are shown in Table 3.
The PINs are sorted in increasing order of their number of proteins (that is, Street rat’s
PIN being the smallest is on first column and Human’s PIN being the largest is on the
last column).

Table 1. Q results of FAC-PIN, CNM and HC-PIN
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FAC-PIN 0.7897 0.9422 0.1492 0.7644 0.7484 0.5110 0.6486 0.7827

CNM 0.5457 0.7861 0.0587 0.4781 0.4057 0.1412 0.3116 0.2858

HC-PIN 0.4502 0.7819 0.0023 0.5015 0.2928 0.0387 0.0086 0.0126

Table 2. w- log -v results of FAC-PIN, CNM and HC-PIN

Algorithms St
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FAC-PIN -2.252 -3.603 -0.262 -2.634 -2.094 -0.521 -1.517 -1.941

CNM -1.699 -2.866 -0.192 -1.530 -1.819 -0.481 -1.233 -1.269

HC-PIN -1.558 -3.071 -0.019 -1.805 -1.809 -0.028 -0.072 -0.113

As we see in both Tables 1 and 2, FAC-PIN outperformed both the HC-PIN and
CNM methods in all given PINs. We note that as the size of the PINs increases, in terms
of either the number of proteins or the number of interactions, the difference between
the performances of FAC-PIN and HC-PIN (or CNM) also increase greatly. This is
also true in Table 3 showing the execution times, in seconds, of the three algorithms.
Clearly FAC-PIN is much faster than the other two methods, and again, the difference
in performance increases as either the number of proteins or the number of interactions
increases. All experiments were performed on an Intel machine (Core TM i7-2600,
3.400 GHz, CPU with 8 GB RAM).

http://cs.unm.edu/~aaron/research/fastmodularity.htm
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Table 3. Time results FAC-PIN, CNM and HC-PIN
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FAC-PIN 1.00 4.77 3.66 7.44 22.25 25.12 54.85 72.59
CNM 8.46 119.40 144.94 155.33 484.25 645.03 1428.98 1753.28
HC-PIN 2.78 14.68 55.02 13.99 34.52 663.50 234.69 372.31

6 Protein Complex Discovery

We validated our results by comparing the communities detected by FAC-PIN with a
list of protein complexes obtained from the MIPS database, which we consider as a gold
standard data. Our validations were done only for four species which we could down-
load corresponding complexes from MIPS. For Baker’s yeast’s PIN, we obtained com-
plexes from the MIPS Comprehensive Yeast Genome Database-CYGD3. For the PINs of
Street rat, House mouse, and Human, the corresponding complexes were downloaded
from the MIPS Comprehensive Resource of Mammalian Protein Complexes- CORUM
4. We could not find complexes for the remaining species in due time.

We proceeded similarly to Laarhoven et al. [10] and considered only the known
complexes (i.e., not those obtained by computational means) containing at least three
proteins. Since FAC-PIN generates non-overlapping communities, we considered only
complexes which are at the bottom of the MIPS hierarchy of complexes and subcom-
plexes. The unconfirmed complexes, that is those in category 550, were excluded.

The validation proceeds by determining the degree of overlap between the commu-
nities identified by FAC-PIN and the protein complexes; that is, we want to determine
how effectively a community matches a known complex. We used the overlapping score
function given in [2,3,10,19]. The overlapping score, O(C,K), between a community
C and a known complex K is defined as:

O(C,K) =
|C ∩K|2
|C| × |K| , (6)

A community C is considered to match a known complex K whenever O(C,K) ≥ τ ;
where, 0 < τ ≤ 1 is the matching threshold. We have a perfect match only when
O(C,K) = 1. Threshold value τ = 0.2 was used in [2, 3, 19] whereas [10] used
τ = 0.25. We used both values of τ in our complex validation. After computing the
overlapping scores between all pairs (C,K) of communities and known complexes
for a given PIN, we then determined the ability of FAC-PIN to correctly classify the
known complexes. The reason for doing this is that a given complex K1 may match
many communities but with different degrees of overlap, while another complex K2

may match with a single community only. Hence, we calculated the Specificity, the
Sensitivity, and the F -score, as our measures of accuracy; they are defined as follow:

3 ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/
4 http://mips.helmholtz-muenchen.de/genre/proj/corum/

ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/
http://mips.helmholtz-muenchen.de/genre/proj/corum/
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Sensitivity =
TP

TP + FN
(7)

Specificity =
TP

TP + FP
(8)

F -score =
2× specificity × sensitivity

specificity + sensitivity
(9)

where, TP (true positive) is the number of the identified communities C matched by
the known complexes K , FN (false negative) is the number of known complexes that
are not matched by the communities, and FP (false positive) is the total number of
the identified communities C minus TP. Table 4 shows the comparison results on the
protein complexes of the Specificity, the Sensitivity, and the F -score of FAC-PIN, HC-
PIN and CNM. The results are shown for the two values of threshold τ (discussed
above) and for the modularity scoring function Q. For HC-PIN, results are shown for
two values of its parameter λ ( [19] showed validation results with these two values of
λ).

In Table 4, we see that FAC-PIN identifies communities whose average sizes (column
8) are closer to the average sizes of the known protein complexes (column 4), whereas
HC-PIN and CNM yield larger averages of cluster sizes. The consequence of this is that
smaller FAC-PIN communities produce higher accuracy (Specificity, Sensitivity or F -
score) in the great majority of cases. This is because, most of the known complexes are
small, and thus the accuracy increases as the size of a complex decreases. In particular,
we obtain a larger number of perfectly matched complexes to communities with FAC-
PIN than with HC-PIN or CNM.

7 Conclusion

In this paper, we devised a new agglomerative clustering approach, FAC-PIN algorithm,
for detecting the communities of a given PIN networks, and then compared our method
with two fast hierarchical techniques discussed in literature. Our approach is based on a
the use of new measure, the relative vertex clustering value which helps decide whether
a given vertex u should be included within the cluster of another vertex v depending
on how many of the neighbors of u form a triangle with u and v. Our approach is very
fast since we are examining only the vertices and in an efficient manner, unlike the two
compared algorithms which examine edges. Thus our method is appropriate for PINs,
which in general contain more interactions than proteins. More study needs to be done
and we plan to perform validations based (1) on random networks, in order to ana-
lyze the robustness of FAC-PIN, and (2) on gene ontology annotations. Comparisons
with other methods which are not necessarily hierarchical will also be important. Non-
agglomerative clustering methods based on the relative vertex clustering value will be
investigated. Finally, we plan to validate FAC-PIN through functional enrichment in or-
der to evaluate how well the identified communities match with know protein functions.
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Table 4. Comparison of the Specificity, Sensitivity and F -score FAC-PIN, CNM and HC-PIN

Computed results
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F
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Baker’s
yeast

1237 267 4.63 0.2 FAC-PIN 285 4.34 12 0.092 0.78 0.164

CNM 300 4.12 5 0.010 0.33 0.013
HC-PIN(λ = 0.5) 153 8.08 5 0.090 0.69 0.159
HC-PIN(λ = 1.0) 111 11.14 3 0.010 0.51 0.019

0.25 FAC-PIN 285 4.34 12 0.090 0.82 0.162
CNM 300 4.12 5 0.010 0.33 0.013

HC-PIN(λ = 0.5) 153 8.08 5 0.090 0.55 0.154
HC-PIN(λ = 1.0) 111 11.14 3 0.008 0.50 0.015

Human 2555 575 4.44 0.2 FAC-PIN 607 4.21 8 0.005 0.74 0.010
CNM 639 3.99 5 0.004 0.40 0.007

HC-PIN(λ = 0.5) 129 19.80 3 0.005 0.39 0.009
HC-PIN(λ = 1.0) 119 21.47 3 0.004 0.44 0.007

0.25 FAC-PIN 607 4.21 8 0.005 0.74 0.010
CNM 639 3.99 5 0.004 0.31 0.008

HC-PIN(λ = 0.5) 129 19.80 3 0.005 0.39 0.009
HC-PIN(λ = 1.0) 119 21.47 3 0.004 0.44 0.007

Street rat 557 328 1.69 0.2 FAC-PIN 389 1.42 7 0.250 0.43 0.316
CNM 475 1.17 3 0.109 0.36 0.248

HC-PIN(λ = 0.5) 117 4.76 1 0.160 0.33 0.214
HC-PIN(λ = 1.0) 117 4.76 1 0.160 0.33 0.214

0.25 FAC-PIN 389 1.42 7 0.170 0.29 0.214
CNM 475 1.17 2 0.150 0.27 0.192

HC-PIN(λ = 0.5) 117 4.76 1 0.110 0.22 0.143
HC-PIN(λ = 1.0) 117 4.76 1 0.110 0.22 0.143

House
mouse

935 460 2.03 0.2 FAC-PIN 568 1.64 13 0.230 0.59 0.327

CNM 605 1.54 6 0.120 0.56 0.198
HC-PIN(λ = 0.5) 241 3.87 3 0.180 0.48 0.265
HC-PIN(λ = 1.0) 151 6.19 3 0.110 0.50 0.182

0.25 FAC-PIN 568 1.64 13 0.212 0.55 0.306
CNM 605 1.54 6 0.120 0.56 0.198

HC-PIN(λ = 0.5) 241 3.87 3 0.153 0.41 0.222
HC-PIN(λ = 1.0) 151 6.19 3 0.110 0.50 0.182
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