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Abstract. Digital terrain models (DTM) are basic products required
for a number of applications and decision making processes. Nowadays,
high spatial-resolution DTMs are primarily produced through airborne
laser scanners (ALS). However, the ALS does not directly deliver DTMs
but a dense cloud of 3-d points that embeds both terrain elevation and
height of natural and human-made features. Such a point cloud is gener-
ally rasterized and referred to as the digital surface model (DSM). The
discrimination of aboveground objects from terrain, also termed ground
filtering, is a basic processing step that has proved especially difficult for
large areas of complex terrain characteristics. This paper presents the
development of a multiscale erosion operator for removing aboveground
features in the DSM, thus producing a surface that is close to the DTM.
Such an approximation was used to separate ground from non-ground
points in the original point-cloud and the discrimination accuracy was
assessed using publicly available data. Results indicated an improvement
over a previously published method.

Keywords: Remote sensing, LiDAR, Ground filtering, multiscale Her-
mite transform.

1 Introduction

The small-footprint, discrete-return light detection and ranging system (LiDAR)
has become one of the most important means to produce high-resolution DTM
data. This has been due in part to a number of advantages over competing
aerial photogrammetric techniques, such as independence of sun light, higher
vertical accuracy, less missing data by occlusion, low redundancy and because
it does not rely on existence of textured surfaces and discontinuities for a suc-
cessful point matching [1]. The discrete return LiDAR system is based on the
accurate measurement of the elapsed time between emitted and backscattered
laser pulses. The emitted pulse is typically short-time and unimodal, whereas
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the backscattered may spread over longer times exhibiting multiple modes called
returns. Returns are associated to distinct layers the laser interacted with. For
each return, the 3-d position is determined and its intensity recorded. Hence the
raw LiDAR data consists of a dense cloud of 3-d points with associated return
intensity. Each point provides the location where the laser hit the Earth’s surface
during the scanning process, whereas the intensity is a digital representation of
the fraction of pulse energy reflected at that location.

The z-coordinate of points correspond to terrain elevation with respect to a
horizontal datum, typically the mean see level, plus the height of non-terrain fea-
tures in some instances. In order to produce a DTM by interpolation of ground
points, a discrimination of ground from non-ground points must be carried out
first. This discrimination process is referred to as ground filtering and is gen-
erally considered a preprocessing for generating not only the DTM, but also
the height of non-ground components [2, 1]. Further classification of non-terrain
points into meaningful features, such as trees, buildings, roads, and so on, is also
common task that is needed for detailed analysis and quantification of landscape
characteristics.

Methods to ground filtering can be grouped into two big categories, namely
point-based and raster-based methods. Methods in the first category classify di-
rectly the point cloud whereas methods in the second category first rasterize the
point cloud onto a regular grid through an interpolation method. Each approach
has advantages and disadvantages. In general, rasterizing the data first allows
to take advantage of digital image processing algorithms which run much faster
than point-based operations, whereas point-based processing tends to be more
accurate [2]. A recent review of methods and critical issues of the ground filter-
ing problem is provided in [3]. Interestingly, the need for processing at multiple
scales/resolutions has been increasingly recognized by several studies [4–6]. This
has let to the adoption of multiresolution image decomposition techniques in
raster-based approaches by some authors [4, 7]. These algorithms tend to be
very efficient, less sensitive to parameter selection, less sensitive to point density
and are able to remove large non-ground features, such as bridges and complex
buildings.

The method presented in this paper falls in the raster-based category and
is based on an wavelet-like transform termed the multiscale hermite transform
(MHT), which is an overcomplete signal decomposition based on scaled and
rotated Gaussian derivatives [8]. The original filtering method was introduced
in [7] and, based on an extensive accuracy assessment, was ranked among the
top three out of nine algorithms tested. Furthermore, its performance has been
demonstrated in several real applications [9–11]. The rationale of the method
is as follows. A DSM is first generated through a point-to-raster conversion of
the point cloud. Then the DSM is decomposed using the MHT expansion with
transform coefficients processed through the so-called erosion operator, so that
when applying the inverse transform, the re-synthesized surface corresponds to
an eroded version of the DSM. The resulting surface is then used to gener-
ate a ground/non-ground mask by comparing the original DSM with its eroded
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version. The overall process is illustrated in Figure 1, but major improvement
presented in this paper corresponds to the “Multiscale Erosion Operation” step.
A more complete description of the overall algorithm is to appear in [12].
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Fig. 1. Flow diagram of ground filtering method. Adapted from [12]

The rest of the paper is organized as follows. Section 2 provides a summary of
the theoretical background around the MHT. Then, in Section 3 the multiscale
erosion operator is defined and illustrated. Next, in Section 4 some filtering
tests are described and results of the accuracy assessment presented. Conclusions
drawn from the study are presented in Section 5.

2 Background

The MHT can be defined for one, two and higher dimensions and for both con-
tinuous and discrete signals, here we summarize the theory for two-dimensional,
discrete signals, and refer the interested reader to the original source [8] for other
forms. For simplicity, exposition starts with the single-scale case and then extend
the result to multiple scales.

2.1 Single-Scale Discrete Hermite Transform

The discrete Hermite transform (DHT) of a signal z(x, y) defined on a discrete
domain can be expressed as a convolution of the input signal with a bank of 1-d
filters along each dimension and followed by a subsampling with a rate factor of
two. This is expressed in mathematical terms as follows:

zn,m(p, q) =
∑

x,y

z(x, y)bn(x − 2p)bm(y − 2q) (1)
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where

bn(x) = 2−N
√
Cn

N

n∑

j=0

(−1)n−jCj
nC

x+N/2+j−n
N−n (2)

for x = −N/2, . . . , N/2 and by bn(x) = 0, for all other values of x, represent the
bank of 1-d filters for n = 0, . . . , N . The set of such filters is referred to as the
binomial family. Since the binomial family is the discrete counterpart of Gaussian
derivatives, a transform coefficient zn,m(p, q) approximates (up to a normalizing
factor) the partial derivative of order n with respect to x and of order m with
respect to y of a Gaussian-smoothed version of the input signal z at the location
(p, q). The degree of smoothness of the Gaussian kernel is controlled through the
scale parameter s = N/4.

Conversely, the full set of transform coefficients allows recovering the input
signal through the inversion procedure summarized in the following equation:

z(x, y) =

N∑

n,m=0

∑

p,q

zn,m(p, q)b̃n(2p− x)b̃m(2q − y) (3)

where the interpolation filters b̃(x) = 2b(−x), for n = 0, 2, . . . , N , are binomial
filters reflected around the origin.

In general, the DHT expansion compacts most of the signal information in the
first few coefficients. Hence, a near perfect reconstruction can be obtained with
a truncated expansion. Further compaction of the information can be achieved
through local orientation of the coordinate axis along the strongest signal vari-
ation. More specifically, the expansion coefficients can be defined with respect
to a coordinate system (u, v), that has been rotated by an angle θ with respect
to the original coordinate system (x, y). Since different orientation angles are
chosen for different sampling points, this operation is referred to a local spatial
rotation. Figure 2 shows an example of original versus rotated coefficients.

2.2 Local Spatial Rotation

Let z
(θ)
n,m denote the rotated coefficients at a generic sampling location, where

location is purposely omitted in the notation for simplicity. This can be com-
puted as linear combinations of the original (un-rotated) coefficients through the
following mathematical relation:

z
(θ)
n−m,m√
Cm

n

=

n∑

k=0

a
(θ,n)
m,k

zk,n−k√
Ck

n

(4)

The recovery of the original coefficients from the rotated ones is performed

through rotation by a negative angle. The angle functions a
(θ,n)
m,k correspond

to the generalized binomial filters (GBF), a family of discrete sequences with
parameters n and θ, which are given by

a
(θ,n)
m,k = skc−kΔm{Ck−m

n−mc2k−msn−2k+m} (5)
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(a) (b)

Fig. 2. Example of DHT coefficients up to fourth order (a) and corresponding ro-
tated coefficients (b). In both cases, the order of derivation with respect to x- and
y-coordinates grows from left to right and from top to bottom, respectively.

for m, k = 0, . . . , n, and c = cos θ and s = sin θ. The first few GBFs can be

expressed using the matrix notation A(θ,n) = [a
(θ,n)
m,k ]m,k=0,...,n, so that

(
s c
c −s

)
,

⎛

⎝
s2 2sc c2

sc c2 − s2 −sc
c2 −2sc s2

⎞

⎠ ,

⎛

⎜⎜⎝

s3 3s2c 3sc2 c3

s2c −s3 + 2sc2 −2s2c+ c3 −sc2

sc2 −2s2c+ c3 s3 − 2sc2 s2c
c3 −3sc2 3s2c −s3

⎞

⎟⎟⎠

correspond to the matrices for n = 1, 2 and 3, respectively.
In all the examples presented here, the rotation was set to the orientation of

the local gradient, that is:

θ = arctan
z0,1
z1,0

(6)

This selection of the angle makes the rotated coefficients z
(θ)
0,1 = 0, and

z
(θ)
1,0 =

√
z21,0 + z20,1 (7)

The latter corresponds (up to a constant factor) to the magnitude of the local
gradient. Other angles may be computed that involve higher order coefficients,
however the gradient angle generally achieves higher energy compaction of the
signal along the first coordinate. This is the case if the input signal embeds
strongly oriented features, such as the edges of buildings in a DSM (see Figure 2).
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2.3 Multiscale Discrete Hermite Transform

The multiscale discrete Hermite transform (MDHT) is implemented by recur-

sively replacing the zero-order (low-pass) coefficient of previous level, z
(k−1)
0,0 (x, y),

by its DHT expansion times a scaling factor, thus yielding a wavelet-like pyra-
midal decomposition.

Mathematically, the MDHT with K + 1 pyramid levels is expressed through:

z(0)n,m(p, q) =
∑

x,y

z(x, y)bn(x− 2p)bm(y − 2q), for k = 0 (8)

and

z(k)n,m(p, q) =
∑

x,y

z
(k−1)
0,0 (x, y)cn(x− 2p)cm(y − 2q), for k = 1, . . . ,K (9)

for n,m = 0, . . . , N and cn(x) = (
√
3/2)nbn(x). Conversely, the reconstruction

of the original signal is carried out through successive reconstruction of low-pass
coefficients from the coefficients of the upper pyramid levels. This is expressed
as:

z
(k−1)
0,0 (p, q) =

6∑

n,m=0

∑

i,j

z(k)n,m(i, j)c̃n(2i− p)c̃m(2j − q), for k = K, . . . , 1 (10)

and

z(x, y) =
8∑

n,m=0

∑

p,q

z(0)n,m(p, q)b̃n(2p− x)b̃m(2q − y)) (11)

with c̃n(x) = (
√
3/2)−nb̃n(x).

It should be noted that the replaced low-pass coefficients are not part of
the MDHT expansion, but only used for the computation of the next coarser
level. In contrast, since the coarsest low-pass coefficient is not replaced, it has
to be considered part of the MDHT expansion. Also, the length of binomial
filters of the first pyramid level is N = 8, whereas that for higher levels is
N = 6. These filter length values ensure that the low-pass coefficients comprise
a scale-space representation in normalized spatial coordinates for a discrete scale
sequence. Such a representation is equivalent to filtering the original signal with
a sequence of low-pass binomial filters of length Nk = 8 × 4k, for k = 0, . . . ,K,
and then resample the output by a factor 2k. Because of this, the MDHT can
also be interpreted as an expansion of the Gaussian pyramid in terms of its
derivatives. Furthermore, the MDHT coefficients can also be rotated using the
same formulas as stated previously. In this case, the notation is extended to

z
(θ,k)
n,m , which accounts for the rotation angle.

3 The Multiscale Erosion Operator

The multiscale erosion operator is a processing of the coefficients that allows
to remove aboveground features in the transform domain. This can be seen as
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a local spatial shifting of the signal, a process that is performed only around
detected ground/non-ground transition pixels, so that the portion of the signal
in the vicinity of a ground/non-ground transition is replaced by a portion of the
signal located along neighbor ground points.

The local spatial shifting is based on a property of the binomial filters stating
that the members of a binomial filter family can reconstruct the members of a
binomial filter family at a shifted location and decreased filter length. Otherwise
stated:

bn(x−M/2;N −M)√
Cn

N−M

=

M∑

m=0

(−1)mCm
M

bn+m(x;N)√
Cn+m

N )
(12)

forM < N , where shifting occurs both in scale (N) and space (x). Since the DHT
is a linear transform, a similar relation can be obtained for the DHT coefficients
in 1-d. For 2-d and higher-dimensional signals, the spatial shifting operation can
be combined with the rotation operation, thus resulting in a directional spatial
shifting. In particular, for 2-d signals the spatial shifting along a direction defined
by an angle θ is expressed through:
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Fig. 3. These plots illustrate the effect of the shifting parameter (M) in reconstructed
surface profiles (circles and stars). The input profile (dots) corresponds to a sharp step
for the first and second case and to a smooth step for third case. The DHT of the input
was computed with N = 8 and the transform coefficients were processed with a scale-
space shifting of Eq. (13) for M = 2 and M = 4. Then, the profiles were reconstructed
from processed coefficients with the inverse DHT using the same filter length (N = 8)
for the first and third cases, but a decrease filter length (N −M) for the second case.
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z
(θ,N−M)
n,l (p−M/2, q)

√
Cn

N−M

=

M∑

m=0

(−1)mCm
M

z
(θ,N)
n+m,l(p, q)√

Cn+m
N

(13)

for n = 0, . . . , N−M and l = 0, . . . , N , where now the filter length is included in
the notation of the coefficients to make explicit the shifting in scale as well1. Fig-
ure 3 illustrates the effect of the shifting parameter M on a reconstructed profile
from its shifted transform coefficients. The shifting in scale can be ignored only
if the signal is smooth enough (bottom panel). However, for sharp transitions
the inverse transform requires to account for the scale shifting (middle panel),
or otherwise signal distortions may occur (upper panel) and this is accentuated
with increasing values of M.

Of special interest is the case for N = 8,M = 2 and n = l = 0, for which the
above equation reduces to:

z
(θ,6)
0,0 (p− 1, q) = z

(θ,8)
0,0 (p, q)− z

(θ,8)
1,0 (p, q)√

2
+

z
(θ,8)
2,0 (p, q)√

28
(14)

which would correspond to the erosion operator developed in [7] if the scale
shifting and the third term in the left-hand side were neglected. In that study,
such an erosion operator was derived from an explicit model of a 1-d surface
profile in the continuous domain, and then extrapolated for the 2-d discrete
case. In contrast, the formula of Equation (13) represents a more general way as
it allows shifting the higher order coefficients as well, instead of simply setting
them to zeroes as in the previous work.

Additionally, in the original formulation, the terrain elevation underneath
non-ground features was assumed flat. This was convenient because the erosion
operator is essentially a local spatial shifting. In order to account for higher order
variations of terrain elevations at those sites, a truncated Taylor expansion is
also proposed in this study. Specifically, the following approximation was used
to estimate terrain elevations at transition points:

z(θ,N)
n,m (p, q) ≈ z(θ,N)

n,m (p−M/2, q) + c1z
(θ,N)
n+1,m(p−M/2, q) (15)

with the constant c1 = (M/4)
√
n+ 3, which accounts for the relation between

the transform coefficients and the signal derivatives. Hence, the new erosion
operator is implemented by plugging the local spatial shifting of Equation (13)
into Equation (15).

In all tests presented below the shifting parameter was set to M = 2 and the

Equation (15) applied to the coefficients z
(θ,k)
0,0 and z

(θ,k)
1,0 at detected ground/non-

ground transitions, while all other coefficients are set to zero. Such a processing
was inserted in the computation of the MDHT, so that erosion is carried on the
coarser layers. The processed coefficients are then used to synthesize a surface

1 It should be noted that the scale rather than a scale index is used here.
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that approximates the DTM, which in turn was used to classify the original point
cloud into ground and non-ground points. Further details on both the detection
of ground/non-ground transition points, as well as on the insertion of the erosion
operator in the MDHT, are provided in [7].

4 Ground Filtering Tests

Both the previously developed and the new erosion operators were applied to
the ISPRS datasets for two sites (www.commission3.isprs.org/wg3/). The first
site corresponds to an urban area (CSite2) exhibiting large and irregular shaped
buildings, as well as a road with bridge and small tunnel. The second site cor-
responds to a rural area (FSite5) with vegetation on steep slopes, quarry, vege-
tation on river banks and gaps. The original point cloud included elevation and
intensity from first and last returns; however, only first return was used in the
tests as it was generally the cleanest measurement.

Table 1. Selected filter parameters for each test site

Parameter CSite2 Fsite5

Maximum Feature Width [m] 100 50
Maximum Terrain Elevation Difference [m] 30 90
Maximum Terrain Slope [Deg] 25 55
Maximum Elevation Tolerance [m] 0.25 0.25
Cell Size [m] 1 2

The parameters used for the filtering of each dataset are provided in Table 1.
Cell sizes for point-to-raster conversions were roughly equivalent to the origi-
nal average point spacing. Further details on the interpolation of the data are
available in the reference [7]. Other parameters were interactively measured from
visualizations of the DSM as suggested in [12]. Nonetheless, although a very steep
slope of 88 degrees was measured for the forested area, a value of 55 degrees was
used instead in order to avoid leaving most non-ground features unfiltered.

The accuracy assessment of the filtering results was carried out for up to four
test insets per site, for which classification was available. Ground points from
the reference data were interpolated to generate a reference DTM that served
to compute the root mean square error (RMSE) of the estimated DTM (eroded
DSM) (Table 2(a)). The latter was also used to classify the original point cloud
and the overall classification accuracy (OCA) was computed for each sample set
(Table 2(b)).

In general, the new method showed lower RMSE for both sites, thus indicating
a superior method for estimating the DTM. In terms of classification accuracy,
the new method was still better than the old one in the average, yet there were a
few cases were the old method remained comparable or even superior to the new
method. In either case, results for the urban site showed significant commission

www.commission3.isprs.org/wg3/
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Fig. 4. This figure illustrates the surfaces derived for one of the test samples (samp24).
From left to right: Input DSM, reference DTM, synthesized DTM with the old erosion
method and synthesized DTM with the new erosion method.

Table 2. Root mean square error in meters of estimated DTM (a) and overall accuracy
of ground/non-ground classification (b) for each test site and method

(a)

Sample CSite2 Fsite5
Set Old New Old New

samp*1 4.12 4.07 4.44 3.96
samp*2 6.85 4.26 9.03 2.30
samp*3 10.41 8.86 7.03 5.11
samp*4 6.32 3.77 4.62 4.00

average 6.92 5.74 6.28 3.84

(b)

Sample CSite2 Fsite5
Set Old New Old New

samp*1 70 68 77 75
samp*2 77 81 69 86
samp*3 78 84 62 82
samp*4 65 74 85 79

average 73 77 73 81

errors along the eastern side due to the edge effect of the multiscale filtering and
the terrain elevation gradient towards the eastern direction, yet this was less
significant than in the tests reported in previous work. The reason for this was a
change from symmetric reflection to an anti-symmetric reflection of the boundary
cells. According to this condition, the extension of a sloppy terrain near the edge
will maintain its slope rather than change it with a symmetric reflection. For
the forested site, the major problem was the omission errors along the southern
side, where a sharp terrain shape was present.

5 Conclusions

This paper presented a filtering method based on a multiscale signal decom-
position termed the multiscale Hermite transform, which has been formulated
in the context of the scale-space theory for signal processing [8]. As the overall
filtering method had been extensively tested and applied elsewhere [7, 9–11],
the main focus of this work was on an extension of the erosion operator used in
that method. Such an extension used a truncated Taylor expansion and a local
spatial shifting operator in the transform domain for predicting terrain elevation
underneath non-ground features, such as buildings and trees. When compared
with the original method, it was found that synthesized DTM was more accurate
than for the previous method, which also led to a better discrimination of ground
points from the original point cloud. Although the synthesized DTM relied on
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coefficients of up to first order only, there were involved coefficients of up to
fourth order through the scale-space shifting operation, which was a major rea-
son for the reconstruction of more details. Future work should develop practical
ways for parameter selection and investigate the effects of incorporating even
higher order coefficients.

References

1. Pfeifer, N., Mandlburger, G.: 11. In: LiDAR Data Filtering and DTM Generation,
pp. 307–333. CRC Press, Boca Raton (2009)

2. Axelson, P.: Processing of laser scanner data - algorithms and applications. ISPRS
Journal of Photogrametry and Remote Sensing 54(2-3), 138–147 (1999)

3. Meng, X., Currit, N., Zhao, K.: Ground filtering algorithms for airborne lidar data:
A review of critical issues. Remote Sensing 2(3), 833–860 (2010)

4. Thuy, T., Tokunaga, M.: Filtering airborne laser scanner data: A wavelet-based
clustering method. Photogrammetric Engineering and Remote Sensing 70(11),
1267–1274 (2004)

5. Chen, Q., Gong, P., Baldocchi, D., Xie, G.: Filtering airborne laser scanning
data with morphological methods. Photogrammetric Engineering & Remote Sens-
ing 73(2), 175–185 (2007)

6. Evans, J.S., Hudak, A.T.: A multiscale curvature algorithm for classifying dis-
crete return lidar in forested environments. IEEE Transactions on Geoscience and
Remote Sensing 45(4), 1029–1038 (2007)

7. Silván-Cárdenas, J., Wang, L.: A multi-resolution approach for filtering LiDAR
altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing 61(1),
11–22 (2006)

8. Silván-Cárdenas, J., Escalante-Ramı́rez, B.: The multiscale Hermite transform for
local orientation analysis. IEEE Transactions on Image Processing 15(5), 1236–
1253 (2006)

9. Silván-Cárdenas, J., Wang, C.W.L., Rogerson, P., Feng, T., Kamphaus, B.: As-
sessing fine-spatial-resolution remote sensing for small-area population estimation.
International Journal of Remote Sensing 31(21), 5605–5634 (2010)

10. Silván-Cárdenas, J.L., Wang, L.: Extraction of buildings footprint from lidar al-
timetry data with the hermite transform. In: Mart́ınez-Trinidad, J.F., Carrasco-
Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS,
vol. 6718, pp. 314–321. Springer, Heidelberg (2011)

11. Silván-Cárdenas, J.L.: A segmentation method for tree crown detection and mod-
elling from lidar measurements. In: Carrasco-Ochoa, J.A., Mart́ınez-Trinidad, J.F.,
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