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Abstract. The notion of P-homomorphic signatures, introduced by Ahn
et al. (TCC 2012), generalizes various approaches for public computa-
tions on authenticated data. For a given predicate P anyone can derive a
signature for a message m′ from the signatures of a set of messages M ,
as long as P(M,m′) = 1. This definition hence comprises notions and
constructions for concrete predicates P such as homomorphic signatures
and redactable signatures.

In our work we address the question of how to combine Pi-
homomorphic schemes for different predicates P1,P2, . . . to create a
richer and more flexible class of supported predicates. One approach
is to statically combine schemes for predicates into new schemes for log-
ical formulas over the predicates, such as a scheme for AND (P1 ∧ P2).
The other approach for more flexibility is to derive schemes which allow
the signer to dynamically decide which predicate to use when signing a
message, instead of supporting only a single, fixed predicate.

We present two main results. One is to show that one can indeed de-
vise solutions for the static combination for AND, and for dynamically
adjustable solutions for choosing the predicate on the fly. Moreover, our
constructions are practical and add only a negligible overhead. The other
main result is an impossibility result for static combinations. Namely, we
prove that, in contrast to the case of AND, many other formulas like the
logical OR (P1 ∨ P2) and the NOT (¬P) do not admit generic com-
binations through so-called canonical constructions. This implies that
one cannot rely on general constructions in these cases, but must use
other methods instead, like finding new predicate-specific solutions from
scratch.

1 Introduction

The notion of P-homomorphic signatures has been put forward by Ahn et al. [1]
as a generalization of several concurrent approaches to compute on authenti-
cated data. The predicate P takes as input a set of messages M and deter-
mines the admissible messages m′ which can be derived from M , and for which
a signature can be publicly computed from the signatures for the messages
in M . Examples covered by such signatures include homomorphic signatures
[14,19,13,6,16,18,3,8,7,15,11] where m′ is the sum of all messages in M , transi-
tive signatures [20,5,23,26,25,10] where m′ describes a path in a graph given by
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M , and redactable signatures [19,24,21,2,17,12,22,9] where m′ is a substring of
the single message M .

Ahn et al. [1] proposed two general security notions for P-homomorphic signa-
tures. The first one is unforgeability and says that one should not be able to forge
signatures for fresh messages which have not been signed before, and which are
not publicly derivable. The other notion is called context hiding and provides
strong privacy. It says that a derived signature for an admissible message m′

and freshly created signatures for m′ have statistically close distributions. This
guarantees for instance that the original message in case of redactable signatures
remains hidden. The context hiding notion has been subsequently refined in [4].

P-Homomorphic Signatures with Adjustable Predicates. While the abstract no-
tion of P-homomorphic signatures is very handy for arguing about the security
of solutions, any construction so far, even the ones in [1,4], are for a specific
fixed predicate P, such as quoting substrings of a message. What is currently
unknown is how to adjust solutions for fixed predicates in the following sense:

– One desirable option may be the possibility to combine a set of given homo-
morphic schemes for predicates P1,P2, . . . into one for a new P-homomorphic
signature scheme. Here, P may be a simple combination such as P1 ∧ P2

or P1 ∨ P2, or describe even more complex functions. An example are two
redactable schemes, one allowing for redaction only at the front of the mes-
sage (P1), and the other one enabling redaction only at the end (P2). Then
a P1 ∨ P2-homomorphic scheme would be a scheme for quoting substrings,
by first pruning at the front and then truncating in another step at the end.
Note that the problem here is to present a general transformation which
supports a rich set of combinations from, say, basic predicates P1,P2, . . . ,
instead of having to build schemes for P from scratch.

– Another desirable feature, which is not offered by the previous ability to
combine predicates, is that signer can decide “on the fly” for each signature
which predicate P the signature should support. Here, the set of admissible
predicates is only bound by the universe P of predicates for which such
signature schemes have been devised yet. This would allow to make the set
of admissible message derivates depend on the message itself, e.g., supporting
selective redaction for different messages.

We call general constructions with the first property statically adjustable because
the combined predicate P is fixed at the time of key generation. The latter
schemes are called dynamically adjustable. Both approaches have their merits
and display their full power only in combination. One can first derive (statically)
adjustable schemes for a larger universe P , and then use this universe for the
dynamically adjustable scheme.

Constructing Schemes with Statically Adjustable Predicates. We first investigate
simple static combinations such as P1∧P2, P1∨P2, and ¬P. Having solutions for
these cases would immediately allow arbitrarily complex combinations of predi-
cates. Our first result is to confirm for the logical AND that the “componentwise”
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solution works: sign each message with the schemes for predicates P1,P2 individ-
ually, and derive signatures by applying the corresponding algorithms for each
component.

Our main result is to show that the logical OR, P1 ∨ P2, in general does not
admit canonical constructions. Such canonical constructions can combine given
signatures of the individual schemes into one for the P1 ∨ P2 predicate, and can
vice versa split any signature for the OR into parts for the individual schemes.
Our AND construction is of this type. Our negative result for the OR holds for
(almost) arbitrary predicates P1,P2, essentially only excluding trivial examples
like P1∨P1. Note that we cannot hope to show a similar result for non-canonical
solutions, as for some cases we know constructions from scratch for P1∨P2 (e.g.,
for quotable substrings).

We actually present a more general result, saying that one cannot find canon-
ical constructions for any predicate combination f(P1,P2, . . . ) if one is able to
efficiently find a derivable message m′ under f(P1,P2, . . . ) and from a message
set M , such that m′ is not derivable under one of the predicates individually.
This excludes the AND case, because any derivable message m′ in P1 ∧P2 must
be also valid according to both in P1 and P2. Yet, this notion includes the OR
case if m′ can be derived under one predicate, and therefore the OR, but not un-
der the other predicate. It also covers the NOT case straightforwardly, because
if m′ is derivable under f(P1) = ¬P1, then it is clearly not derivable under P1.
The impossibility result holds even if the canonical construction depends on f
and the predicates. Put differently, it seems that the only general and non-trivial
solutions for statically adjustable predicates are the ones for logical ANDs.

Constructing Schemes with Dynamically Adjustable Predicates. Does the neg-
ative result for statically adjustable parameters also rule out solutions for the
dynamic case? Not necessarily, because in this case we assume that the signer
adaptively chooses the predicate P from the universe P for which constructions
are already known. Indeed we show that the “certify-then-sign” construction
provides a solution in this case: use a regular signature scheme to certify a pub-
lic key for the P-homomorphic scheme for the chosen predicate P ∈ P and sign
the message under the secret key for P. Some care must be taken, though, be-
cause in order to preserve context hiding the key pair for the P-homomorphic
scheme must remain fixed throughout the life time.

2 Preliminaries

We recall the definition and security notions of P-homomorphic signatures, as
given in [1,4], and adopt them slightly for our adjustable setting.

2.1 Adjustable P-homomorphic Signature Schemes

We assume a fixed but public universe P of predicates P1,P2, . . . , each pred-
icate associated with a publicly known Pi-homomorphic signature scheme. A
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predicate Pi : 2
M ×M → {0, 1} indicates whether a set of messages M allows

to derive another message m′ from the message space M or not. We give the
signer and the verifier the predicate P in question as additional input. In case
of a single fixed predicate P, as for the statically adjustable setting, where the
universe P is a singleton, this is an invariant for the scheme and could be ig-
nored by both algorithms. In fact, in this case the notion basically coincides
with the definition of a P-homomorphic scheme, the only difference being the
predicate given to the signers and verifier as additional input. In this sense the
definition of schemes with statically adjustable predicates is a rehash of the no-
tion of P-homomorphic signatures. We stress that we do not suggest to change
the terminology for P-homomorphic schemes. The reader should bear in mind,
however, that schemes with statically adjustable predicates in this paper implic-
itly assume a construction from selected P-homomorphic schemes underneath.
In light of this it matches the dynamic counterpart where predicates are chosen
adaptively for each signature.

We simplify the notation below, and write Verify(pk,M,Σ,P) as shorthand for∧
m∈M Verify(pk,m, σm,P) with Σ = {σm}m∈M . Similarly, we sometimes write

Σ ← Sign(sk,M,P) for Σ = {Sign(sk,m,P) |m ∈M }.
Definition 1 (Adjustable P-homomorphic Signature Scheme). A (stat-
ically or dynamically) adjustable P-homomorphic signature scheme is a tuple of
PPT algorithms (KeyGen, Sign, SignDer,Verify) such that:

– (sk, pk) ← KeyGen(1λ) maps the security parameter λ ∈ N, given in unary,
to a key pair.

– σ ← Sign(sk,m,P) on input the secret key sk, a message m ∈ M, and a
predicate P ∈ P returns a signature σ to m and P.

– σ′ ← SignDer(pk,M,Σ,m′,P) takes as input the public key pk, a set of mes-
sages M ⊆ M along with signatures Σ = {σm}m∈M , a message m′ ∈ M,
and the predicate P ∈ P to be applied, and outputs a signature σ′ (or a
special symbol ⊥ indicating failure).

– b ← Verify(pk,m, σ,P), given the public key pk, a signature σ, a message
m ∈ M, and a predicate P ∈ P, returns 1 if the signature is valid for the
given message, and 0 if not.

We assume the usual correctness condition, namely, that for any λ ∈ N, any
(sk, pk)← KeyGen(1λ), any (m,M,m′) ∈M×2M×M and any P ∈ P we have:

– if σ ← Sign(sk,m,P), then Verify(pk,m, σ,P) = 1 with probability 1; and
– for any Σ = {σm}m∈M , if Verify(pk,M,Σ,P) = 1 and P(M,m′) = 1, then

for any σ′ ← SignDer(pk,M,Σ,m′,P) we have Verify(pk,m′, σ′,P) = 1 with
probability 1.

2.2 Unforgeability

For any predicate P and set M of messages it is convenient to consider the set of
messages which can be derived (recursively) from M through P . Hence, similar
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to [1], we define P(M) = {m′ ∈M | P(M,m′) = 1} for any M ⊆M, as well as
P0(M) = M and Pi(M) = P(Pi−1(M)) for i > 0. Let P∗(M) =

⋃
i∈N0

Pi(M).
We sometimes switch between the set P∗(M) and its predicate analogue, with
P∗(M,m′) = 1 iff m′ ∈ P∗(M). Unless mentioned differently, we assume that
any predicate can be evaluated efficiently.

We also presume, without further mentioning it, that predicates aremonotone,
that is, P(M ′) ⊆ P(M) if M ′ ⊆M . It follows inductively that P∗(M ′) ⊆ P∗(M)
in this case as well. This is necessary to ensure that, below in the unforgeability
game, the set of messages for which a signature can be trivially derived from
known signatures for M , does not shrink by asking for more signatures.1 An
alternative is to consider below all subsetsM ′ ⊆M and declare that any message
which is in P(M ′) to be a message for which a signature is trivial to derive from
the signatures for messages in M ′.

We again consider both the static and the dynamic case simultaneously, with
the understanding that the predicate is fixed in the static case via P = {P}.
Definition 2 (Unforgeability). A (statically or dynamically) adjustable P-
homomorphic signature scheme (KeyGen, Sign, SignDer,Verify) is called unforge-
able, if any PPT adversary A has a negligible advantage in the following game:

1. The challenger C generates the key pair (sk, pk)← KeyGen(1λ) and gives pk
to the adversary A. The challenger initializes two empty sets T and Q.

2. A interleaves adaptively the following queries:
– Signing queries: A chooses a message m ∈ M and a predicate P ∈ P,

upon which C returns a unique handle h to A, runs σ ← Sign(sk,m,P),
and stores (h,m, σ,P) in T .

– Derivation queries: A chooses a set of handles h = {hi}i, a message m′ ∈
M and a predicate P. The challenger C retrieves the tuples (hi,mi, σi,Pi)
from T and returns ⊥ if one of these tuples does not exist, Pi 	= P for
some i, or P(M,m′) = 0. Otherwise, the challenger returns a unique
handle h′ to A, runs σ′ ← SignDer(pk,M, {σm}m∈M ,m′,P) for M =
{mi}i and stores (h′,m′, σ′,P) in T .

– Reveal queries: If A chooses a handle h then C returns ⊥ if there does
not exist a tuple of the form (h,m, σ,P) in T . Otherwise, it returns σ to
A and adds (m,σ,P) to the set Q.

3. A outputs a pair (m,σ,P) and wins if the following conditions hold:
– Verify(pk,m, σ,P) = 1, and
– m /∈ P∗(MP), where MP = {m ∈ M | (m, ∗,P) ∈ Q}, the set of messages

in the query set Q for the same predicate P.

Note that the condition on m /∈ P∗(MP) can be relaxed by considering the set M
of messages which have been signed under some predicate (and not only those
which have been signed under the same predicate P as in the forgery attempt).
In the static case both cases coincide, of course.

1 Interestingly, this is not stipulated explicitly in previous works [1,4]. Still, the pred-
icates for the constructions there satisfy this property. It is, nonetheless, generally
required for a reasonable definition in order to avoid trivial examples of schemes
which are formally unforgeable, but intuitively insecure.
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2.3 Context Hiding

The original definition of Ahn et al. [1] requires a strong privacy requirement,
basically saying that a derived signature (from previously signed messages M),
and a fresh signature for the new message m′ are statistically close. It follows
that a derived signature does not leak any information about the starting mes-
sages M , and thus implies other common privacy notions for, say, redactable
signature schemes [9]. Still, the notion has been strengthened in [4] to adaptive
context hiding and complete context hiding, basically saying that derived sig-
natures (for messages with any valid signatures) and fresh signatures are close.
The generalization to valid signatures as input, instead of only signed messages,
allows to cover previously excluded cases like rerandomizable signatures.

While the notion of adaptive context hiding is game-based, the notion of com-
plete context hiding is defined through statistically close distributions of signa-
tures. It is convenient for us here to present the latter definition also through
a game, but considering unbounded adversaries (as opposed to efficient adver-
saries for adaptive context hiding). Otherwise the notions are identical. Our
game-based definition of complete context hiding can be seen easily to be equiv-
alent to the distributional approach in [4].

Definition 3 ((Complete and Adaptive) Context Hiding). A
(statically or dynamically) adjustable P-homomorphic signature scheme
(KeyGen, Sign, SignDer,Verify) is called completely (resp. adaptively) context
hiding, if any unbounded (resp. PPT) adversary A has a negligible advantage
in the following game:

1. The challenger C generates the key pair (sk, pk) ← KeyGen(1λ) and gives
(sk, pk) to the adversary A.

2. The adversary selects a set M of messages, and set {σm}m∈M of signatures,
a predicate P ∈ P, and a message m′ and hands it to the challenger. If
P(M,m′) = 0 or if Verify(pk,M, {σm}m∈M ,P) = 0 then the challenger im-
mediately returns ⊥. Else it picks a random bit b ← {0, 1} and computes a
derived siganture σ′ ← SignDer(pk,M, {σm}m∈M ,m′,P) if b = 0, and a fresh
signature σ′ ← Sign(sk,m′,P) in case b = 1. It returns σ′ to the adversary.

3. Eventually the adversary outputs a bit b∗ ∈ {0, 1} and wins if b∗ = b. The
advantage of A is defined to be Adv(A) = ∣

∣Prob[ b∗ = b]− 1
2

∣
∣.

Some remarks are in place. First note that the adversary can ask the challenger
only once. A standard hybrid argument shows that this remains true for multiple
(polynomially many) queries for which the challenger re-uses the same bit b. For
both cases, the static and the dynamic one, the advantage grows by a factor
proportional to the number of queries.

Secondly, note that in the dynamically adjustable case we do not aim to hide
the predicate P which has been used to compute the signature. In a stronger
requirement one could demand that the actual predicate remains hidden, either
among all predicates from the universe, or among the predicates for which the
public derivation algorithm would succeed. The former would require a super-
polynomial set P (else the privacy attacker could probe the derivation algorithms
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for all predicates). The latter would mean a trade-off between privacy, usability,
and the signer’s intention for restricting the class of admissible public opera-
tions: if the signature would hide the corresponding predicate among multiple
possibilities, then signatures for a different predicate than the original choice
may be derivable. This would imply that the signer loses some control about the
(in)ability to derive further signatures. Hence, we do not pursue such stronger
requirements here.

3 Statically Adjustable Computations

In this section we investigate statically adjustable constructions for the basic
operations AND, OR, and NOT. As explained in the introduction, we can give
a general solution for AND, but cannot hope to give (general) transformations
for the other two cases.

Below we consider combinations for arbitrary functions f over a fixed2 number
q of predicates P1,P2, . . . ,Pq. We assume that such a function f(P1,P2, . . . ,Pq)
over the predicates itself constitutes a predicate and defines a set of derivable
messages from M in a straightforward way, by evaluating the predicates for
(M,m′) and plugging the results into the formula. If viewed as sets, our basic
examples for OR, AND, and NOT can then be written as f∨(P1,P2)(M) =
P1(M)∪P2(M), and f∧(P1,P2)(M) = P1(M)∩P2(M), as well as f¬(P1)(M) =
M\ P1(M).

Note that one could more generally also define f(P1,P2, . . . ,Pq) for divisible
message sets M = (M1,M2, . . . ,Mq) by evaluating f(M,m′) as a logical formula
over P1(M1,m

′), . . . ,Pq(Mq,m
′), i.e., assigning only the i-th part Mi of M to

the i-th predicate, instead of using the same set M for all predicates. This can be
captured in our notion with a single M by having the predicates Pi first project
M onto Mi and then evaluating the actual predicate on (Mi,m

′). For sake of
readability we use the simpler notion with identical M .

We also assume that the message spaces Mi of all schemes are identical.
This can always be achieved by setting M =

⋂q
i=1Mi. Note that, if message

spaces are not identical this in principle allows to distinguish, say, in case of OR
which predicate can be used to create a signature for some message. Since this
would violate the idea of privacy immediately, we restrict ourselves to the case
of identical message spaces.

3.1 Statically Adjustable Computations for AND

We first confirm that the solution to sign each message component-wise under
a set of public keys yields a secure solution for the AND. Instead of considering
only two predicates we allow to combine any fixed number q of predicates.

2 Note that, in general, the number of combined predicates is specific for the scheme
and must not depend on the security parameter, i.e., the design of the scheme does
not change with the security parameter. In this sense the number q of predicates is
constant in the security parameter.
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Construction 1 (AND-Construction). Let (KeyGeni, Signi, SignDeri,Verifyi)
be Pi-homomorphic signature schemes for predicates P1, . . . ,Pq. Then the fol-
lowing scheme (KeyGen, Sign, SignDer,Verify) is a P-homomorphic signature
scheme for P = P1 ∧ . . . ∧ Pq:

– KeyGen(1λ) runs (ski, pki)← KeyGeni(1
λ) for all i = 1, 2, . . . , q, and outputs

sk = (sk1, . . . , skq) and pk = (pk1, . . . , pkq).
– Sign(sk,m,P) computes σi ← Signi(ski,m,Pi) for all i and returns σ =

(σ1, . . . , σq).
– SignDer(pk,M,Σ,m′,P) first checks that Pi(M,m′) = 1 for all i, and then

creates σ′
i ← SignDeri(pki,M,Σi,m

′,Pi) where Σi is the set of projections
on the i-th component for each signature tuple in Σ = {σm}m∈M . It returns
σ′ = (σ′

1, . . . , σ
′
q).

– Verify(pk,M,Σ,P) returns 1 if and only if Verifyi(pki,M,Σi,Pi) = 1 for all
i (where again Σi is the set of projections on the i-th component for each
signature in Σ).

Correctness follows easily from the correctness of the underlying Pi-
homomorphic schemes.

Proposition 1. For any constant q and any unforgeable and completely
(resp. adaptively) context-hiding Pi-homomorphic schemes, Construction 1
(AND-Construction) is unforgeable and completely (resp. adaptively) context-
hiding.

For concrete parameters our proof shows that the advantage of breaking unforge-
ability resp. context hiding for the AND scheme is bounded by the sum of the
advantages for the corresponding property over all Pi-homomorphic schemes.

Proof. We first show unforgeability, then context hiding.

Unforgeability Assume that there exists a successful adversary A against un-
forgeability (Definition 2) for the P-homomorphic signature scheme where P =
P1∧. . .∧Pq. For each i ∈ {1, 2, . . . , q}, we first construct an adversaryAi against
the unforgeability of the underlying Pi-homomorphic signature schemes:

– Ai initially receives pki from the challenger Ci for the game against the Pi-
homomorphic signature schemes.

– Ai creates an initially empty table T ′ and runs (skj , pkj)← KeyGenj(1
λ) for

all j = 1, 2, . . . , q, j 	= i to create the other keys.
– Ai invokes adversary A against the AND-scheme on pk = (pk1, . . . , pkq).
– For every signing query (m,P) from A, adversary Ai creates a signing query

for message m and the predicate Pi for its challenger and gets the handle h,
then computes σj ← Signj(skj ,m,Pj) for all j 	= i, and stores (j, h,m, σj ,Pj)
in T ′.

– For every derivation query ({h},m′,P) ofA, adversaryAi passes a derivation
query for the corresponding handles ({h},m′,Pi) to its challenger to receive
a handle h′. If h′ 	= ⊥ adversary Ai looks up all entries (j, h,m, σm,Pj) for
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j 	= i in T ′ for the queried handles in {h} to formM = {m}, internally checks
Pj(M,m′) = 1, and computes σ′

j ← SignDerj(pkj ,M, {σm}m∈M ,m′,Pj). If
no error occurs it returns h′ to A and stores (j, h′,m′, σ′

j ,Pj) in T ′ for all
j 	= i; else it returns ⊥.

– For every reveal requestAi runs a reveal request for the corresponding handle
h, combines the reply σi with the values σj from entries (j, h,m, σj ,Pj) in
T ′ to σ and sends it to A; in case of an error it simply returns ⊥.

– When A eventually outputs a tuple (m,σ,P), then Ai outputs the tuple
(m,σi,Pi) for the i-th component σi in σ.

Note that for each i adversary Ai perfectly simulates an attack of A on the P-
homomorphic scheme with the help of its challenger, such that A would output
a successful forgery with the same probability in the simulation as in the original
attack. By construction, we also have that the message setMP of queries (m, ∗,P)
in A’s queries in the simulation is identical to the set MPi

for queries (m, ∗,Pi)
of Ai to its challenger for each i. Hence, from m /∈ P∗(MP) it follows that
m /∈ P∗

i (MPi
) for some i ∈ {1, 2 . . . , q}. Furthermore, since verification succeeds

for all components, it also holds that Verifyi(pki,m, σ,Pi) = 1 for this i.
In other words, any successful forgery yields a successful forgery against (at

least) one of the underlying schemes. It follows that the probability of breaking
unforgeability for the AND scheme is bounded from above by the sum of the
probabilities to break each underlying scheme.

Context Hiding. Assume next that there exists a successful adversary A against
context hiding (Definition 3) for our P-homomorphic signature scheme with
P = P1 ∧ . . . ∧ Pq. As in the case of unforgeability we construct, for each
i ∈ {1, 2, . . . , q}, an adversary Ai against context hiding of the i-th scheme.
The advantage of A will be bounded from above by the sum over all advan-
tages of the Ai’s via a standard hybrid argument. Furthermore, each Ai will be
efficient if A is, such that the claim remains true for adaptive context hiding.

AdversaryAi receives a pair (ski, pki) from its challenger and creates the other
key pairs (skj , pkj) for j 	= i by running KeyGenj(1

λ). It hands sk = (sk1, . . . , skq)
and pk = (pk1, . . . , pkq) to adversary A and waits for the adversary to create a
challenge request M,Σ,m′. For each signature σm in Σ adversary Ai extracts
the i-th component and thereby forms the set Σi. It passes M,m′, and Σi to
its own challenger to receive a signature σ′

i (or an error message). It creates the
signatures σ′

j for j < i by running the signing algorithm on m′; for j > i it
runs the signature derivation algorithm on M,m′, Σj to create the remaining
signatures σ′

j . In all cases it checks the validity of the predicates and signatures.
If there is an error it returns ⊥ to the adversary A, and (σ′

1, . . . , σ
′
q) otherwise.

If A eventually outputs a bit b∗ then Ai, too, outputs this bit and stops.
For the analysis note that A1, given that its challenger uses b = 0, describes

the case that all signatures are derived via SignDer. It follows that the probability
of A correctly outputting 0 for derived signatures in the attack (and thus in the
perfect simulation throughA1) is exactly the probability that A1 returns 0, given
b = 0 in its challenge. Analogously, given b = 1 adversary Aq only creates fresh
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signatures via Sign in all components, hence given b = 1 the probability that Aq

returns 0 is exactly the same that A outputs 0 in the case that all signatures
are fresh. A standard hybrid argument now yields: Adv(A) = ∑q

i=1 Adv(Ai).
This proves context hiding. 
�

3.2 Statically Adjustable Computations for OR and NOT

Our impossibility result holds for canonical constructions which combine Pi-
homomorphic schemes in a general way, ruling out specific constructions which
ignore the underlying schemes and builds a new scheme from scratch. We require
four algorithms, one for synthesizing public keys of the individual schemes into
one for the combined scheme (PKComb), one for splitting keys (PKSplit), one for
combining signatures (SigComb), and one to divide signatures for the combined
scheme into signatures for the individual schemes (SigSplit). The latter is usually
necessary to reduce the security to the security of the individual schemes.

For sake of readability we follow the statistical indistinguishability approach
also used for (complete) context hiding, and require that the distributions of the
algorithms above for combining and splitting keys and signatures have identical
distributions as if running the actual algorithms of the combined scheme directly.
As our proof below shows our impossibility result can be extended to cover
computationally indistinguishable distributions.

Definition 4 (Canonical Construction). Let f be a functional pred-
icate over predicates P1, . . . ,Pq for a fixed number q of predicates.
A statically adjustable f(P1, . . . ,Pq)-homomorphic signature scheme
(KeyGen, Sign, SignDer,Verify) is a canonical construction out of Pi-
homomorphic signature schemes (KeyGeni, Signi, SignDeri,Verifyi) if there
exist PPT algorithms (PKComb,PKSplit, SigComb, SigSplit) such that:

Identical distribution of combined keys: The following random variables
are identically distributed:
– Let (pk, sk)← KeyGen(1λ) and output pk;
– Let (pki, ski)← KeyGeni(1

λ) for all i, pk← PKComb(pk1, . . . , pkq), out-
put pk,

Identical distribution of split keys: The following random variables are
identically distributed:
– Let (pk, sk)← KeyGen(1λ) and output (pk1, . . . , pkq)← PKSplit(pk);

– Let (pki, ski)← KeyGeni(1
λ) for all i, output (pk1, . . . , pkq),

Identical distribution of combined signatures: For any PPT algorithm F
the following pairs of random variables are identically distributed:
– Run M ← F(1λ). Compute (pk, sk) ← KeyGen(1λ) and output

Σ ← Sign(sk,M, f(P1, . . . ,Pq));
– Run M ← F(1λ). For all i, compute (pki, ski) ← KeyGeni(1

λ)
along with Σi ← Signi(ski,M,Pi). Synthesize the pub-
lic key via pk ← PKComb(pk1, . . . , pkq) and output Σ ←
SigComb(pk, pk1, . . . , pkq, Σ1, . . . , Σq,M).
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Splitting Signatures: For any PPT algorithm F ′ we have that for
(pki, ski) ← KeyGeni(1

λ) for all i, pk ← PKComb(pk1, . . . , pkq),

(M,m′) ← F ′(1λ) where m′ ∈ f(P1, . . . ,Pq)(M), Σi ←
Signi(ski,M,Pi), Σ ← SigComb(pk1, . . . , pkq, Σ1, . . . , Σq,M),
σ′ ← SignDer(pk,M,Σ,m′, f(P1, . . . , Pq)), the probability that
(σ′

1, . . . , σ
′
q) ← SigSplit(pk, pk1, . . . , pkq,m

′, σ′) does not contain some
valid component and thus Verifyi(pki,m

′, σ′
i) = 0 for all i, is negligible.

In other words, SigSplit returns at least one valid signature for one of the underly-
ing predicates with sufficiently high probability. Our AND-construction is canon-
ical in the above sense: PKComb and SigComb both concatenate their inputs
(and PKSplit divides the concatenated keys again), and SigSplit simply returns
the signature itself. Note that the definition allows PKComb,PKSplit, SigComb,
and SigSplit to depend on the given predicates Pi; the construction only follows
a canonical pattern.

In what follows, we need to exclude trivial examples like P1 ∨ P2 = P1 ∨ P1.
Hence, for the OR we assume below the existence of a message m′ which can
be derived from a set of messages M under one predicate, but not the other
predicate. This clearly prevents P1 = P2. More generally, and to include for in-
stance also the NOT case, we assume thatm′ can be derived under f(P1,P2, . . . )
but not under one of the predicates; the excluded predicate Pi can be arbitrary,
but the output distribution of m′ does not depend on this choice. The latter is
necessary to ensure that m′ does not contain any information about the pred-
icate’s index i. Furthermore, we assume that such pairs (M,m′) are efficiently
computable. We discuss an illuminating example after the definition.

Definition 5 (Efficiently Distinguishable Predicates). Let f be a func-
tional predicate over predicates P1, . . . ,Pq. Consider a statically adjustable
f(P1, . . . ,Pq)-homomorphic signature scheme (KeyGen, Sign, SignDer,Verify).
Then the predicates are called efficiently distinguishable with respect to f , if
there exists a PPT algorithm F such that for any i ∈ {1, 2, . . . , q} and for any
(M,m′) ← F(1λ, i), we have m′ ∈ (

f(P1, . . . ,Pq)(M) \ P∗
i (M)

)
. Moreover, for

any i, j ∈ {1, 2, . . . , q} the distribution of m′ (over the coin tosses of F) in the
output of F(1λ, i) resp. F(1λ, j) is identical.

Let us demonstrate the property for the introductory example of two redactable
signature schemes (with message space M = {0, 1}∗), one allowing to drop
message bits only at the front (predicate P1), and the other one only at the
end (P2). Consider the OR predicate P1 ∨ P2 describing a scheme for quotable
substrings. Then F can simply pick m′ = 0λ and for i = 1 output M = {0λ1},
and for i = 2 it returns M = {10λ} instead. Clearly, for i = 1 one can derive
m′ from M via P2 and therefore for the OR, but not via P1, because the ’1’ at
the end cannot be redacted through P1. The same argument holds vice versa
for i = 2, and the (trivial) distributions on m′ are identical for both i = 1 and
i = 2. Hence, this examples has efficiently distinguishable predicates.

The case of NOT is even simpler. Algorithm F simply needs to find some
M and some m′ which lies in (¬P(M)) \ P∗(M) = M \ P∗(M), i.e., if m′ is
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not derivable according to P∗(M). Finally note that constructions based only on
AND cannot be distinguishable, since (P1(M) ∩ P2(M)) \ P∗

i (M) = ∅ for any i.

Theorem 1. Let f be a functional predicate over predicates P1, . . . ,Pq for a
fixed number q of predicates. Assume further that the predicates are efficiently
distinguishable with respect to f . Then there is no adaptively context-hiding,
statically-adjustable f(P1, . . . ,Pq)-homomorphic signature scheme which is a
canonical construction out of unforgeable Pi-homomorphic signature schemes.

The proof idea is as follows. Essentially we show how to forge a signature for
one of the underlying schemes. For this we use the distinguishability of the
predicates to create a set of messages M and a message m′ which is derivable
by f(P1, . . . ,Pq)(M) but does not lie in P∗

i (M) for some i. Then we ask for
signatures for the messages in M , and derive a signature for m′ via the public
operation SignDer for the combined scheme and for f(P1, . . . ,Pq). Splitting up
the signature into its components via SigSplit we obtain (with sufficiently large
probability) a valid signature for m′ under the i-th scheme. But since m′ /∈
P∗
i (M) we thus create a valid forgery, contradicting the security of the underlying

scheme. In the course of the proof we use the context hiding property to show
that the “skewed” choice of M,m′ (with m′ /∈ P∗

i (M)) does not bias the success
probability of SigSplit for returning a valid signature component for the i-th
scheme significantly. The formal proof appears in the full version.

We stress that the impossibility result holds for the computational notion of
adaptive context hiding (with efficient distinguishers), which even strengthens
our result. As mentioned before, a slightly more involved argument allows to
extend the result also to algorithms PKComb,PKSplit, SigComb whose output is
only computationally indistinguishable from the one of the original algorithms
(instead of being identical). This requires some additional steps to prove that
gradually replacing the algorithms does not change the behavior of SigSplit in
the above proof significantly.

4 Dynamically Adjustable Computations

In the dynamic case we assume a polynomial universe P of predicates such that
there exists a Pi-homomorphic scheme for each Pi ∈ P . We furthermore assume
that given (a description of) Pi one can efficiently recover the corresponding
scheme, e.g., if the universe consists only of a fixed number of predicates. Vice
versa, we assume that Pi is identifiable from the scheme’s public key pki. This
in particular implies that the public keys for predicates must be unique. For
simplicity we assume an ordering on predicates in P and often identify the
predicate Pi and the scheme with its number i according to this order. We
simply call sets P as above efficient.

In the construction we need to assume that for a given predicate identifier i
there is a fixed yet (pseudo)random key pair (ski, pki)← KeyGeni(1

λ), generated
according to the key generation algorithm for the scheme for predicate Pi. This
key pair remains identical for all signature requests for Pi. For a polynomial
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universe P this can be in principle implemented by generating the keys (ski, pki)
when creating the scheme’s keys (sk, pk), and storing them in sk. In practice this
may indeed be admissible for a small number of predicates, a more applicable
approach may be to generate the keys on the fly via a pseudorandom function.
Namely, store a key κ of a pseudorandom function in sk, and to create the
key pair for predicate Pi, recover the (pseudo)random output ωi = PRF(κ,Pi)
and re-run KeyGeni(1

λ;ωi) for ωi to derive the same pair (ski, pki) as before.
For unforgeability it can be formally shown via standard techniques that this
solution is (quasi) as secure as generating fresh key pairs and maintaining a table
to look up previous keys; for context hiding, however, one requires an additional
assumption on the security of the underlying scheme to preserve privacy, as
discussed in the full version.

Similarly, the public keys pki and their (fixed) certificates certi may be pub-
lished at once, or may be attached to each signature upon creation. Below we
adopt the latter solution as it rather complies with our notion of (stateless)
P-homomorphic signatures. Hence, below we assume for simplicity that the ef-
ficient universe P stores all pairs (ski, pki) with once-created certificates certi at
the beginning in sk. For certification we use a regular signature scheme which
we can subsume as a special case under P-homomorphic schemes, without con-
sidering a SignDer algorithm nor context hiding. If we define P(M) = M for
this scheme, unforgeability for this “homomorphic” scheme corresponds to the
common notion of unforgeability for regular schemes.

Construction 2 (Certify-Then-Sign Construction). Let P be an efficient
set of predicates P1,P2, . . . ,Pq. Let (KeyGen0, Sign0,Verify0) be a regular signa-
ture scheme. Define the following dynamically adjustable P-homomorphic signa-
ture scheme (KeyGen, Sign, SignDer,Verify):

– KeyGen(1λ) generates (sk0, pk0) ← KeyGen0(1
λ), generates key pairs

(ski, pki) ← KeyGeni(1
λ) for all predicates Pi, and certificates certi ←

Sign0(sk0, pki) for all i. It returns sk = (sk0, {(ski, pki, certi)}i) and pk = pk0.
– Sign(sk,m,Pi) looks up (ski, pki, certi) for Pi in sk and computes σi ←

Signi(sk,m) and returns σ = (σi, pki, certi).
– SignDer(pk,M,Σ,m′,P′) checks that all signatures carry the same pki

and certi for predicate Pi, that P′ = Pi, that Pi(M,m′) = 1, that
Verifyi(pki,M,Σ) = 1, and, if all checks succeed, computes σ′

i ←
SignDeri(pki,M,Σ,m′) and returns σ′ = (σ′

i, pki, certi).
– Verify(pk,m, σ,P) checks that P corresponds to the public key in

(σi, pki, certi), that Verify0(pk, pki, certi) = 1, and that Verifyi(pki,m, σi) = 1.
Only if all checks succeed, it returns 1.

It is straightforward to verify that the above construction is correct in the sense
that genuine (fresh and derived) signatures are accepted by Verify. This follows
from the correctness properties of the regular scheme and of the Pi-homomorphic
ones.

Proposition 2. Assume that the signature scheme (KeyGen0, Sign0,Verify0) and
all Pi-homomorphic schemes are unforgeable according to Definition 2. Then the
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Certify-then-Sign Construction 2 is also unforgeable for the efficient universe
P = {P1, . . . ,Pq} for the fixed number q of predicates.

In terms of concrete security, the success probability of any adversary against the
construction is (for similar running time) bounded from above by the probability
of forging certificates, plus q times the maximal advantage against any of the
schemes from P .

Proof. Assume that there exists a successful forger A. Then this adversary is
able to forge with non-negligible probability a signature σ∗ = (σ, pk, cert) for
a message m such that, in particular, Verify0(pk0, pk, cert) = 1. Note that if
the probability that A succeeds and that pk does not match any of the keys
pki created by the signer for the predicates Pi, was non-negligible, then this
would straightforwardly contradict the unforgeability of the certification scheme.
Namely, construct an algorithm A0 against the certification scheme which, on
input pk0, creates the polynomial number of key pairs (ski, pki)← KeyGeni(1

n)
and asks for signatures certi for all pki from the signing oracle, and then emulates
the attack of A with the help of the secret keys. If A eventually outputs σ∗ =
(σ, pk, cert), then A0 returns pk, cert as the forgery attempt.

If the probability that A would succeed for a fresh pk with non-negligible
probability as defined above, then our efficient algorithm A0, which perfectly
simulates the actual attack, would then successfully forge a signature cert for
a new “message” pk with non-negligible probability. Since this would contra-
dict the unforgeability of the certification scheme, we can assume that this case
happens with negligible probability only. It follows that A must succeed with
non-negligible probability for a key pk = pki for some (unique) i, such that
Verifyi(pki,m, σ,Pi) = 1, and the message is not trivially derivable under the
corresponding predicate Pi from the signing queries for Pi.

Note that the specific choice pki may depend on the adversary’s randomness.
However, there must exist at least one predicate Pi (among the q schemes) such
thatA succeeds for this key fixed pki with non-negligible probability. We can now
derive an adversary Ai successfully forging signatures for this Pi-homomorphic
scheme. Adversary Ai receives from the challenger the public key pki and gets
access to a Signi-oracle. It generates (sk0, pk0) and all other key pairs (skj , pkj)
and signs all of them, including pki. The adversary Ai then runs A on pk0,
supplying all signatures requests for Pj 	= Pi with the help of the secret keys,
and using the external signing oracle for Pi. IfA finally returnsm and (σ, pk, cert)
then Ai returns m and σi.

Note that, if A has a non-negligible success probability for forging under the
key pki, then Ai has the same success probability. This follows as the signature
verifies under pki, and if the message m is not derivable from A’s queries for Pi,
then this is also true for Ai. This, however, would contradict the unforgeability
assumption about the Pi-homomorphic scheme. 
�

Proposition 3. Assume that all Pi-homomorphic schemes are completely
(resp. adaptively) context-hiding according to Definition 3. Then the Certify-
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then-Sign Construction 2 is also completely (resp. adaptively) context-hiding for
an efficient universe P = {P1,P2, . . . ,Pq} of a fixed number q of predicates.

The proof is similarly to the unforgeability case and omitted for space reasons.
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