NEON Implementation of an Attribute-Based
Encryption Scheme

Ana Helena Sanchez and Francisco Rodriguez-Henriquez*

Computer Science Department, CINVESTAV-IPN

asanchez@computacion.cs.cinvestav.mx, francisco@cs.cinvestav.mx

Abstract. In 2011, Waters presented a ciphertext-policy attribute-
based encryption protocol that uses bilinear pairings to provide con-
trol access mechanisms, where the set of user’s attributes is specified by
means of a linear secret sharing scheme. Some of the applications foreseen
for this protocol lie in the context of mobile devices such a smartphones
and tablets, which in a majority of instances are powered by an ARM pro-
cessor supporting the NEON vector set of instructions. In this paper we
present the design of a software cryptographic library that implements
a 127-bit security level attribute-based encryption scheme over mobile
devices equipped with a 1.4GHz Exynos 4 Cortex-A9 processor and a
developing board that hosts a 1.7 GHz Exynos 5 Cortex-A15 processor.
For the latter platform and taking advantage of the inherent parallelism
of the NEON vector instructions, our library computes a single optimal
pairing over a Barreto-Naehrig curve approximately 2 times faster than
the best timings previously reported on ARM platforms at this level of
security. Further, using a 6-attribute access formula our library is able
to encrypt/decrypt a text/ciphertext in less than 7.5mS and 15.67mS,
respectively.

Keywords: Atribute based-encryption, pairing-based protocols,
Barreto-Naehrig curves, elliptic curve scalar multiplication, ARM
processor.

1 Introduction

It was long assumed that the task of computing a single bilinear pairing was
rather expensive, so much so that when assessing the complexity of a given
protocol, a designer could safely ignore the computational cost of all the other
cryptographic components included in it. Nevertheless, in the last few years we
have witnessed a dramatic reduction in the timing required to calculate a single
pairing, which has had the side effect that the computation of the other ancil-
lary functions associated to pairing-based protocols have acquired a renewed im-
portance. Some examples of these auxiliary blocks include, fixed/variable point

* A portion of this work was performed while the author was visiting University of
Waterloo.

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 322 2013.
(© Springer-Verlag Berlin Heidelberg 2013

NEON Implementation of an Attribute-Based Encryption Scheme 323

scalar multiplication for elliptic curves defined over finite fields and their ex-
tensions, the projection of arbitrary strings to a random point in those ellip-
tic curves, exponentiation in field extensions, etc. Furthermore, as pointed out
in [I5], several pairing-based protocols admit further optimizations, such as the
computation of fixed-argument pairings and products of pairings.

Unfortunately as of today, very few works have analyzed in detail the complex-
ity and overall computational weight of non-pairing cryptographic operations in
a given protocol. This lack of research in the implementation of pairing-based
protocols is especially acute for mobile platforms such as the ones using ARM
processors.

An important number of major IT players such as Apple, Samsung, Sony, to
name just a few, have adopted the ARM Cortex family of processors for powering
their tablets, smartphones and other mobile devices. A majority of those devices
support the vector set of instructions NEON. In spite of their ever increasing
popularity, it is only until recently that some research works have studied the
implementation of cryptographic primitives over ARM processor platforms.

Among the research papers reporting pairing implementations in the ARM
Cortex family of processors are [I] and [10]. In [I], authors propose the idea
that affine coordinates could be more attractive than the projective ones when
implementing pairings in constrained devices, whereas the software library of [10]
reports the current record in the computation of a single asymmetric pairing at
the 128, 224 and 320-bit security levels. As for the implementation of pairing-
based protocols on mobile devices, the only work that we are aware of is [2],
where the authors described the design of an attribute-based encryption scheme
able to preserve the confidentiality of the medical electronic records generated
within a hospital environment.

In this work we present the design of a software library that implements Wa-
ters’ attribute-based encryption scheme [I6], over a set of mobile device platforms
equipped with the latest models of the ARM Cortex family of processors and
the vectorized set of instructions NEON. Our library was specifically tailored
for computing optimal pairings over Barreto-Naehrig curves at the 127-bit secu-
rity level. When executed on a developing board that hosts a 1.7 GHz Exynos
5 Cortex-A15 processor, our software computes a single optimal pairing in ap-
proximately 5.84M clock cycles, which is about two times less than the estimated
cycling count reported in [I0] for a single pairing computation over a TT 1.2GHz
OMAP 4460 Cortex-A9 processor.

Our library also implements single/multi-pairing computations with fixed/-
variable input points, as well as other auxiliary functions associated with most
pairing-based protocols such as scalar multiplication and the projection of
arbitrary strings to elliptic curve points defined over extension finite fields,
among others. In particular, when executed on the Cortex-A15 processor
mentioned above and when using an access formula composed of six attributes,
our library computes the encryption/decryption primitives of Waters’

324 A. Helena Sanchez and F. Rodriguez-Henriquez

attributed-based encryption protocol in less than 12.75M clock cycles and 26.64M
clock cycles, roughly equivalent to 7.5mS and 15.67mS, respectivelyﬂ

2 Mathematical Background

Let p be a prime, and let E be an elliptic curve defined over the finite field [Fp,.
Let r be a prime with r | #E(FF,) and ged(r,p) = 1. The embedding degree k
is defined as the smallest positive integer such that r | (p¥ — 1). In this paper,
only the Barreto-Naehrig (BN) pairing-friendly family of elliptic curves [4] was
considered for pairing implementation. All BN curves have embedding degree
k = 12 and they are defined by the equation E : y? = 23 + b,b € 7, where the
characteristic p of the prime field, the group order r, an the trace of Frobenius
t are parametrized as,

p(z) = 362% + 362° + 2422 4 62 + 1; W
r(z) = 362* + 362° + 182 + 62 + 1;
t(z) =627 +1,

where z € Z, is an arbitrary integer known as the BN parameter, such that
p(z) and r(z) are prime numbers. BN curves admit a sextic degree twist curve,
defined as E(F,2) : Y2 = X3 4 b/¢, where € € F: is neither a square nor a cube
in]Fp'z.

Let 7 : (x,y) — (aP,yP) be the p-th power Frobenius endomorphism. The
trace of the Frobenius is defined as t = p +1 — #E(F,). Let Gy = {P € EJr] :
n(P) = P} = E(F,)[r], where G, is the 1-eigenspace of 7 acting on E[r]. Let
¥ : E — F be the associated twisting isomorphism. Let Q € E(IF‘pz) be a point
of order 7; then Q = ¥(Q) ¢ E(F,). The group Gy = (Q) is the p-eigenspace of 7
acting on E[r]. Let G denote the order-r subgroup of]F;m. The bilinear pairing
studied in this paper is defined as the non-degenerate map dopt : G2 X G1 — G,
corresponding to the optimal ate pairing given as:

dopt - G2 X G1 = G (2)
(Q, P) = [fs.Q(P) - {(s)q.x@)(P) -

12_1y/p
Uy @rn(@)m (@ (PN~

where fs g is a Miller function of length s = 6z + 2, which is a rational function
in Fp(F) with divisor div(fs r) = s[R] — [sR] — (s — 1)[O], while £g, ¢, is the
line equation given by the point addition of Q1 € G5 and Q2 € Go. Algorithm[I]
computes the optimal pairing as defined in Eq. (2]).

" An open source code of our software library is available at
http://sandia.cs.cinvestav.mx/index.php?n=Site.NEONabe

 http://sandia.cs.cinvestav.mx/index.php?n=Site.NEONabe

NEON Implementation of an Attribute-Based Encryption Scheme 325

Algorithm 1. Optimal ate pairing

Require: P € G, Q € G2 7 else if s; = —1 then
Ensure: g = dopt (Q, P) 8: f—f Al oP), T+ T-Q
1: Write s = 6242 a53=22;é,3i € {-1,0,1} 9: end if
10: end for)
2T+ Q, f+1 11: Q1 + 7(Q), Q2 + 7°(Q)
3: fori=1—2—0 do 120 f « f Lr(P), T « T+ Q1, f +
4: f 2 lpp(P), T« 2T folr,—qy(P), T+ T —Q2
5: if s; = 1 then 13: g « f(p12—1)/7‘
6: ffArqP), T+ T+Q 14: return g

3 Tower Extension Field Arithmetic

Efficient arithmetic over extension finite fields is a necessary requirement in
the development of high-performance pairing-based schemes. In this work, we
represent Fj 12 using the same tower extension employed in [3], namely, we first
construct a quadratic extension, which is followed by a quadratic and cubic
extensions of it and finally by a quadratic one, using the following irreducible
binomials,

— F,2 =F,[u]/(u?® — B), where 8 = —1

Fpas =F2[V]/(V? =€), where § =u+1

— Fpo =F2[V]/(V3 =€), where =u+1

]Fp12 =]Fp(s [VV]/(I/V2 - V) or Fp4 [T]/(T‘3 - V)

Furthermore, as in [3] we selected z = —(2%2 4 255 + 1), which using Eq. [II
yields a prime p = 3 mod 4. This allows for a faster arithmetic over F., since
the multiplication by the constant § reduces to a simple subtraction. For the
computation of the pairing final exponentiation, cyclotomic subgroup arithmetic
Gag(Fp2) [9] was extensively used.

Algorithm 2. Montgomery product

Require: prime p, p’, r = 2% and a, be Fp
Ensure: & = MontPr(a, b)
l:t«a-b
Pu+ (t+(t-p modr)-p)/r
if u > p then
return u —p
else
return u
end if

3.1 Field Multiplication Over F,

The single most important base field arithmetic operation is modular multipli-
cation, which is defined as ¢ = a - bmod p, with a,b,c € F,. Since in general
BN primes are not suitable for fast reductions, this operation was performed via
the Montgomery multiplication algorithm. The Montgomery product is defined

326 A. Helena Sanchez and F. Rodriguez-Henriquez

as, ¢ = a-b-r~ ' mod p, where a,b € F, are given as, @ = a-r mod p and
b = b-r mod p, respectively. This formulation allows trading the costly division
by p with divisions by r, where r = 2% with k — 1 < |p| < k. If required, the
modular product ¢, can be easily recovered using ¢ = & -r~! mod p. Algorithm [
shows the classical version of the Montgomery product, which expects as input
parameter an integer p’ that can be precomputed before hand using Bezout’s
identity for two co-prime integers, namely, r-r~! —p-p’ = 1.

In our library both, the Separated Operand Scanning (SOS) and the Coarsely
Integrated Operand Scanning (CIOS) multi-precision Montgomery product vari-
ants as described in [I3] were implemented. The SOS method computes first the
integer product t = a - b, followed by the Montgomery reduction step that calcu-
lates u such that u = (t+m-p)/r, where m = t-p’ (mod r). In this case r = 2%,
where w is the wordsize of the processor and n = [(|log2 p] + 1)/w]. The CIOS
method interleaves the calculations corresponding to the integer product with
the ones required for getting u. Since in both methods, the reduction is imple-
mented word by word, then the operation m = ¢ - p’ mod r can be performed
replacing p’ by pj, = p’ mod 2%, which redounds in a more efficient computation.
According to [I3], the CIOS variant is more efficient than the SOS one. Never-
theless, the later method allows lazy reduction, which was the reason why we
implemented both variants.

3.2 Extension Field Arithmetic Computational Cost

Let us denote by (a,m,s,i) and (&, 7, 3,7) the computational cost of the addi-
tion, multiplication, squaring and inversion operations over I, and Iz, respec-
tively. The field arithmetic procedures used in this work extensively exploits lazy
reduction, which closely resembles the approaches adopted in [310]. Let mpg, g
and 7g denote integer multiplication, integer squaring and reduction over F:,
respectively, where m = mpg + 7 and § = §g + 7g. The rationale behind the
costs given in Table [[] can be summarized as follows.

The cost of reductions over IF 2 is twice the cost of reduction over IF,,, i.e., 7 =
2rg. At afield extension Fa,d = 2'37,4,j € Z*; the product ¢ = a-b, a,b,c € Fa
can be computed with 3°67 integer multiplications and 2°3’ reductions modulo p
(Theorem 1 of [3]). Field inversion was based on the procedure described in [10].
In the case of the quadratic and twelfth field extensions F,. and Fj, field
squaring was computed using the complex method at a cost of 2 multiplications.
The inversion of an element A = ag+a,u € Fj2 was obtained through the identity
(ao+aru)™t = (ag — a1u)/(ad — Ba?}). In Fpa the squaring was implemented at a
cost of 35. This operation is required for computing squarings in the cyclotomic
group Gg, (F,2), having a cost of 3 squarings over Fpa. The asymmetric squaring
formula for cubic extensions of [5] was used in the field Fpe at a cost of 2/ + 33.
Inversion in Fp 6 has a computational complexity of 97 + 35+ [I1]. Notice that
my stands for a multiplication by the constant &.

NEON Implementation of an Attribute-Based Encryption Scheme 327

Table 1. Computational cost of the tower extension field arithmetic

Field Addition Multiplication Squaring Inversion

F,2 a=2a m = 3mp +§ = 2mp +i=2mpg+re+2m+
2rg +8a+mg 2rg + 3a 2a +1

F4 2a 35+ me +4a

Fpe 3a 6mp + 3re + 2m+35+2me+ 9np + 35e + e +
2me + 24a 9a 4me +10a + ¢

Fp12 6a 18me + 67 + 12mge + 67 + 25mE +9sE +}6fE+
Tme + 96a 6me + 63a 13me¢ +79a + 1

Gag (sz) 95 4+ 4m¢ + 30a 3a

3.3 Field Arithmetic Implementation Using NEON

The performance of a field arithmetic library is strongly influenced by the pro-
cessor micro-architecture features, the size of the operands and the algorithms
and programming techniques associated to them. In our case, the size of the
operands is of 254 bits, which conveniently allows the usage of lazy reduction.
The word size in the ARM processors is of 32 bits and the processors considered
in this work include the NEON vector set of instructions.

Algorithm 3. Computing double integer product with NEON

Require: a = (ag,a1), b = (bo, b1), ¢ = (co,c1) and d = (do, d1)
Ensure: F=a-b,G=c-d
1: F«0,G+0
2: fori=0—1 do
Cl < O, C2 +— 0
for j=0—1 do
(C1,S1) +— Fi+j + aj -b; + C1, (02,52) — GH—j +cj -di + Ca,
Fitj =51,Gitj =852
end for
Fiyn =C1, Gign = C2
end for
. return F,G

DO TDUEL

NEON is a 128-bit Single Instruction Multiple Data (SIMD) architecture ex-
tension for the ARM Cortex family of processors. NEON architecture has 32
registers of 64 bits (doubleword), which can be viewed as 16 registers of 128 bits
(quadword). Our library mostly made use of two intrinsic instructions:

uint64x2 t vmull u32 (uint32x2 t, uint32x2 t);
uint64x2 t vmlal u32 (uint64x2 t, uint32x2 t, uint32x2 t).

The first one performs two 32-bit integer multiplications storing the correspond-
ing result into two 64-bit registers. The second one performs a multiplication
that is accumulated with the addition of a 64-bit scalar. Algorithm [3 illustrates
the usage of NEON for computing the double integer product F = a-b, G = c-d.
This is the core operation for the SOS Montgomery multiplication variant. Each
field element a, b, ¢, d is represented with two 32-bit words. Figure [depicts the
NEON dataflow of this algorithm.

328 A. Helena Sanchez and F. Rodriguez-Henriquez

uint64x2_t mulO,mull,mul2;
uint64x2_t mC;

uint32x2_t A

uint32x2_t BO

uint32x2_t Bl

uint64x2_t L |0..0f..£[0..0f..£ |

mulO=vmull (A,BO) |(C1$1)=aO*b0 |(C252)=c0*d0 | FO,GO

mC=vshrq n u64(mul0,32) | c1 | c2 |

mull=vmlal u32(mC,A,B1l) I(Clsl)=ao*bl+€1l(c252)=c0*d1+€2| F1,G1

mul2=vshrq n_u6d(mull,32) [c1 [c2 |r2,62
uint32x2 t A
mull=vandq_u64 (mull,L) | F1 | a1 |

mulO=vmlal u32(mull,A,6BO) |(Clsl)=al'b0+r1|(c2s2)=c1*d0+61| F1,G1

mC=vshrq_n_u64 (mul0,32) | c1l | c2 |

mull=vmlal u32(mul2,A,Bl) |M10=a1*b1+r2| M11=c1*d1+G2|

mull=vaddq_u64 (mull,mC) [c1s1)=mo+r2fczs2)mi+cz| F2,G2

mul2=vshrq n u64(mull,32)[c1 | c2 |F3

Fig. 1. NEON Implementation of Algorithm

Algorithm 4. NEON multiplication over F,.

Require: A =ag +aju, B =bg+ biu €]sz
Ensure: C = A -B ¢ Fpg

IS4 ap+ax

Pt bo+ b1

(do,d1) < mulengon (s, t, a0, bo)

d2 < mu1256(a1,b1)

do < do —dy — da

di < di — d2

: (01700) «— T‘edNEON(do,Ch)

: return C =co+ c1u

QRNID IO

Because of their ability to perform two multiplications at once, NEON instruc-
tions are very useful for accelerating arithmetic computations. However, data load-
ing and storing is in general costly since the NEON registers have to be fed by
storing data into consecutive 32-bit ARM registers. Hence, in order to take a real
advantage of NEON, load/store instructions should be avoided as much as possi-
ble, which is easier to accomplish if the arithmetic algorithms are specified with
little data dependency among the multiplier operands. In the case of IF)2 arith-
metic, two independent multiplications over F,, were implemented using NEON
as follows. Let us consider |p| = 254 bits and define the following three func-
tions: muly gon, mulexypon and redy gon. The first one performs two indepen-
dent multiplications in F,, using the CIOS method, ¢.e. given a, b, c,d, f,g € Fp,
define mulygon as (f,g) < mulygon(a,b,c,d) where f = a - b mod p and
g = c¢-d mod p. The second function mule ygon performs two integer multiplica-
tions: (F,G) <~ mulengon(a,b, c,d), with a,b,c,d € Fp, F =a-band G = c-d,

NEON Implementation of an Attribute-Based Encryption Scheme 329

Algorithm 5. NEON Squaring over F.

Require: A =ag + a1u €]Fp‘z
Ensure: C = A? €]Fpg

CcCo < ap — ai

P ca+aptar

: (c1,c0) « mulyeon (ao, a1, co,c2)
c1 +— 2¢

: return C =cg +ciu

where |G| = |F| = 508 bits. Finally, the third function redygon implements the
Montgomery reduction defined as (f, g) < redygon (F,G), where f,g € F,, and
|G| = |F| = 512 bits. Making use of the aforementioned functions, Algorithms []
and [Blcompute a multiplication and a squaring in F2, respectively. Notice that In
step 4 of Alg. [l the function mul256 stands for a single integer multiplication.

4 Elliptic Curve Arithmetic

Elliptic curve points were represented using projective Jacobian coordinates,
where a BN elliptic curve E is given as Y2 = X3 + BZ®. A point (X7 : Y7 : Z1)
in E corresponds to the affine point (X1/2%,Y1/Z}), with Z; # 0. The point at
infinity O is represented as (1,1, 0), whereas the additive inverse of (X1 : Y7 : Z7)
is (X1 : 7Y1 : Zl)

Algorithm 6. Point doubling with Jacobian coordinates

Require: P = (X1 :Y1:2Z1) € Gy
Ensure: 2P = (X3 :Y3: Z3) € Gy

* (t1,ta) < mulngon (Y1, Y1,3X1, X1)
: (tz,t;;) +— mulNEON(4X1,t1,4t1,2t1)
1 (X3, Z3) + mulnpon (ta,t4,2Y1, Z1)
X3 + X3 — 2to

Y3 <—t4-(t2*X3)7t3

: return (X3 :Ys: Z3)

DU LN

Algorithm 7. Mixed point addition

Require: P= (X1 :Y1:Z1) and Q = (X2 :Y2:1) € Gy
Ensure: R=P+Q = (X3:Y3:Z3) € Gy
1: t1 212

t (t2,t3) « mulngon (Z1,t1, X2,t1)

ts +— ts — X1

! (ta,t7) < mulngpon (Y2, t2,ts,t5)
(ts,t9) + mulngon (t7,ts,t7, X1)

tg +— ta — Y1

(X3,Z3) + mulneon (te,te, Z1,ts)

X3 + X3 — (tg =+ 2t9)

. (Y3,t0) < mulnpon (te,te — X3, Y1,tg)
Y3« Ys —to

: return (X3 :Y3: Z3)

Co0XNOUR W

Point Doubling. Given P = (X; : Y7 : Z;), the point 2P = (X3 : Y3 : Z3)
can be calculated with 4 squarings and 3 multiplications according to the next
sequence of operations,

330 A. Helena Sanchez and F. Rodriguez-Henriquez

t1 <—Y12, to <—4X1 ~t1,t3 <—8t%, ty — 3)(127
X3(*t372t2,Y23%t4~(t27X3)7t3,Zg%2Y1~Zl

Mixed Point Addition. Let P = (X3 : Y1 : Z1) with Z; # 0 and Q = (X3 :
Y2 : 1), for P # £Q, the addition R = P+ Q = (X3 : Y3 : Z3) can be obtained
at a cost of 3 squarings and 8 multiplications according to the next sequence,

tl<—Z12,t2(—Zl't1,t3(—Xg't1,t4<—}/2~t2,t5<—t3—X1,
t6%t47Y1,t7<*t§,t8(*t7~t5,t9%X1~t7,
Xg%tgf(t8+2t9),yzg%t6~(t97X3)7Y1~t8, J3 < Z1 - ts

Taking advantage of the inherent parallelism of the above sequences, a NEON
implementation of the point addition and point doubling operations is shown in
Algorithms [@ and [respectively.

4.1 Efficient Techniques for Computing Scalar Multiplication

The elliptic curve scalar multiplication operation computes the multiple R =
[4)P, with ¢ € Z,, P,R € E(F,), which corresponds to the point resulting of
adding P to itself ¢ times. The average cost of computing [¢]|P by a random
n—bit scalar £ using the customary double-and-add method is of about, nD+ 7 A,
where A is the cost of a point addition, and D is the cost of a point doubling.

The customary method to speed up this operation reduces the Hamming
weight of the scalar ¢ by representing it in its non-adjacent form (NAF). The
technique can be easily extended to the w-NAF representation, namely, £ =
Z?:_Ol 0;28) 14;] < 2%~1 and at most one of any w consecutive digits is non-zero,
with ¢,,_1 # 0, where the length n is at most one bit larger than the bitsize of
the scalar n and the resulting Hamming weight is approximately 1/(w +1). The
estimated cost of the scalar multiplication reduces to, nD + wLA, plus the cost
of the precomputation of the multiples P; = [i]P, for i € [1,3,...,2¥~1 —1]. Due
to this exponential penalty, in most applications a rather conservative value of
w € [3,5] is selected.

When the point P is fixed, some form of the comb method is usually pre-
ferred. Given an w-window size and a known-point P, one can pre-compute for
all of the possible bit strings (ay—1,...,a0) the following 2* multiples of P:
[Gw_1,- -+, a2,a1,a0]P = @y 1200~ DIP 4+ a922?P + a12%P + aoP. Then,
the scalar ¢ is scanned column-wise by recoding it into d blocks each one with
a bit length of w bits, where d = |r|/w. The computational and storage costs of
the comb method is of d(A + D), and a look-up table of 2% points, respectively.
Notice that the storage cost can be reduced to a half by using a signed repre-
sentation of the scalar £. A further speedup in the computation of the scalar
multiplication can be achieved if there exists an efficient-computable endomor-
phism ¢ over E/F, such that (P) = AP [8]. In the case of BN curves, given a
cube root of unity 5 € F,, one has that the mapping ¢ : E; — E; defined as,
(z,y) = (Bz,y) and O — O, is an endomorphism over [, with a characteristic
polynomial given as A2 + A = —1mod r, A = 36z* — 1. The scalar ¢ can be

NEON Implementation of an Attribute-Based Encryption Scheme 331

rewritten as ¢ = fo + 1) mod r, where |[¢;| < [v/r|, which allows to compute
the scalar multiplication as, [¢]P = [{o]P + [¢1]¥(P), at an approximate cost of

[D+ (292 - 1)A] + [w’fHA + gD].

In the case that the scalar multiplication in Ga, i.e. the computation of the
multiple S = [(]Q, with ¢ € Z,, Q,S € E(F,2), is of interest, one can take
advantage of the Frobenius endomorphism to extend the two-dimensional GLV
method to a four dimension version using the GS approach [7]. Let E be a BN
elliptic curve over I, with embedding degree k£ = 12 and let E(IF‘pz) be the sixth
degree twist of E. Let 7, be the Frobenius operator in E, then v = ¢~ 'm,¢ is
an endomorphism on £ such that ¢ : E(F,2) — E(F,2). Then for Q € E(F,z),
it holds that ¥*(Q) = Q, ¥(Q) = pQ, and v satisfies * — 12 + 1 = 0. Since
p =t —1mod r, the scalar ¢ can be decomposed as £ = £y + {1\ + o A% + 323
with A = t—1 and |¢;| ~ |r|/4, which allows to compute the scalar multiplication
in Ga, as, [(Q = [£0)Q + (@) + [LJV3(Q) + [(s]1*(Q), at an approximate
cost of [D+ (2072 = 1)A] + [, A+ 4D

Likewise, in the case of the exponentiation in G, the operation f¢ with
f € Gp,e € Z, can then be accomplished by rewriting the exponent e in base
pas,e=ey+er-p+es-p®+ez-pd, with |e;| = |r|/4, followed by the compu-

3

2 i
tation, f¢ = fe . fei . fe . fe . Notice that the Frobenius mapping e?" for
i1 =20,...,3, has a negligible computational cost. Notice also that the identity
fP = f* = £%° holds.

5 Bilinear Pairing Arithmetic

In this section we briefly describe the Miller’s loop and final exponentiation
computations as well as the algorithm utilized to perform multi-pairing
computations.

Miller Loop. The main operations of Algorithm [I] are the evaluation of the
tangent line {77 and the doubling of the point T'; as well as the secant line
evaluation and the computation of the point addition T+ P. The most efficient
way to perform above operations is through the usage of standard projective
coordinates, where the projective point (X : Y7 : Z7) in the elliptic curve FE
corresponds to the affine point (X1/Z1,Y1/Z1). Given the curve E/F, defined
as E : y? = 2 + b whose projective form is Y2Z = X3 +bZ3, one can calculate
2T = (X3 :Y3: Z3) € E'(F)2) using the formulas [3]:

Xs =X (Y2 - 90/ Z3)
Yy = [L(VZ 4+ 90 22)]? — 27027}
Zs =2YP7Z,

whereas the line {7 evaluated on P = (xp,yp) € E(F,) is given as,

by (P) = —2Y1Z1yp + 3Xixpw + (3’27 — Y)uw® € Fue

332 A. Helena Sanchez and F. Rodriguez-Henriquez

In the same way, given the points T = (X1,Y7,7Z1),Q = (X2,Y2,1) € E'(F,2)
and P = (xzp,yp) € E(F,) one can calculate the point addition R =T 4+ Q =
(X3,Y3, Z3) and £T7Q(P) as [3]

(1.0(P) = \yp — Oxpw + (X2 — \Ya)w?,

X3 = A3 + Z,0% — 2X,)2)
Y3 = 0(3X102 — A% — Z162) — Y13
Zy = Z)\3

where 0 = Y] — Y577 and A = X7 — X 7.

Another important aspect of the Miller’s algorithm is the multiplication of
the Miller variable f by the line (either tangent or secant) evaluation. However,
the evaluation of the lines g g and {7 g produce a sparse element in the group
F*,, with half of its coefficients having a zero value, which motivates the idea
that any product of f € Fpi2 with £g g or {1,g should be performed using a
procedure specially tailored for computing sparse multiplications.

Final Exponentiation. The exponent e = (p*¥ — 1)/r in the BN final
exponentiation can be broken into two parts as,

P =1)/r=[(p" = 1)/P12(p)] - [P12(p) /7]

where @12(p) = p* — p? + 1 denotes the twelfth cyclotomic polynomial evaluated
in p. Computing the map f +— f(pm*l)/‘pl?(”) is relatively inexpensive, cost-
ing only a few multiplications, inversions, and inexpensive p-th exponentiations
in F,i2. Raising to the power d = ®12(p)/r = (p* — p* + 1)/r is considered
more difficult. This part was computed using a multiple d’ of d where r t d as
discussed in [6], which allowed a lower number of operations. Using the BN pa-
rameter z, the exponentiation of gd'(z) requires the calculation of the following
addition chain,

2 2 3
fz — fZZ — f4z — f6z — f6z — f12z — f12z ,

which requires 3 exponentiations by z, 3 gquariglgs an one multiplication over
F,:2. Finally, given the variables a = ¢'**" - g% - g% and b = a - (¢**)7', the
d’(2)

exponentiation of g is calculated as follows:

’ 2 2 3
gt = P-g“ -ﬂ-[ﬂp-hf [b-g7')" €FX,
Since g € Ggq(Fp2), the cost of gd/(z) is 3 Frobenius operators, 3 exponentiations
by z, 10 multiplications in F, 12 and 3 squarings in Gg,(F,2). It should be noted
that we use the Karabina compressed squaring formulas [12] for performing the
exponentiation-by-z step.

Multipairing. Products of pairings are computations required in Waters’
attribute-based protocol. For this operation, one can make use of the pairing
bilinear property to group pairings sharing one of the input parameters. If all

NEON Implementation of an Attribute-Based Encryption Scheme 333

the pairings share a common input point, then one can exchange n pairing
products by n — 1 point additions and a single pairing using the identity,

n—1 n—1
[Te@ P)=e@,> P,
=0 =0

If a product of pairings is still needed, and the previous method was already
exploited, there is still room for obtaining significant speedups. For instance,
one can compute this product by performing a multi-pairing (or simultaneous
product of pairings), by exploiting the well-known techniques employed in the
multi-exponentiation setting. In essence, in a multipairing computation not only
the costly final exponentiation step can be shared, but also, one can share both
the Miller variable f, and the squaring computations performed in the step 4 of
Algorithm [Il A further performance improvement can be achieved if the point
Q@ in G» is known in advance, since in this case one can pre-compute some of the
operations involved in the line evaluations. In particular, the cost of computing
the line evaluated at the point P € Gy given as, £, (P) = loyp + lixpw + law?,
reduces to two scalar multiplications since Iy, [, l2, can be precomputed offline.

6 Attribute Based-Encryption

Attribute-Based Encryption (ABE) is a relatively new encryption scheme where
an identity is seen as a set of attributes. In this scheme a user can access to
some resources only if she had a set of privileges (called attributes) satisfying
a control access policy previously defined. The policy is described through a
boolean formula, which can be represented by an access structure and can be
implemented using a linear secret-sharing scheme (LSSS) [14,[16]. The LSSS
structure is described by the pair (M, p), where M € F, is an u X ¢ matrix,
where u, t are the number of required attributes and the access policy threshold,
respectively; whereas p is a label function that according to the policy links each
row of the matrix M to an attribute. For the sake of efficiency and as Scott did
in [15], we reformulate the protocol from its original symmetric setting to an
asymmetric one where some scheme parameters are conveniently defined in Gy
whereas others are in G,. The ABE scheme is made up of four algorithms [16]:
Setup, Encrypt, Key Generation and Decrypt, as described next.

Setup. This algorithm takes as input the security parameter A\ and the set of
U attributes. The security parameter becomes the main criterion to select the
groups Gy and Go of order r and the generators P € G; and Q € Go. The
points Hy,..., Hy € Gy are generated from the attribute universe and two ran-
dom integers a,a € F,, are chosen at random. The public key is published as,
PK ={P,Q,e(Q,P)*, [a]P, Hy,..., Hy}. Additionally, the authority establishes
MSK = [a]P as her master secret key. This algorithm has a cost of one pair-
ing, two scalar multiplications and U MapToPoint functions. Notice that it is
assumed that the elements P, @, [a]P and e(Q, P) are all known in advance.
On the contrary, the points Hy, ... Hy were not considered as fixed points since

334 A. Helena Sanchez and F. Rodriguez-Henriquez

the attribute universe has a variable length, a fact that is also reflected in the
storage cost.

Encrypt. The algorithm for encryption takes as input the public key PK, the
message M to be encrypted, and the LSSS access structure (M, p), where M € F,.
is an u X t matrix as described above. The algorithm starts by randomly selecting
a column vector v = (8,92, ...,y:)’ € F? that will be used to securely share the
secret exponent s. For i = 1 to u, it calculates \; = M, - v where M, is the 1 x t
vector corresponding to the i-th row of M. The scalars r1,...,7r, € F, are also
randomly chosen. Then, the cipher CT is published as follows:

C = Me(Q, P)*,C" = [5]Q,
(Cr = [M([a] P) = [m1]H qy, D1 = [r1]Q),

CT =

(Cu = [M]([a]P) — [Tu]Hp(u)vDu = [r.]Q),

which is sent along with the LSSS access structure (M, p).

The comb method was applied to compute scalar multiplications involving
the fixed points @, P and [a]P. In the same way, one can apply a variation of
this method to obtain the powering of e(Q, P)* by the exponent s. The GLV
method was used to compute scalar multiplications with the points H; € Gjy.
Hence the cost of encryption is one multiplication and one fixed exponentiation
in Gp, u fixed point multiplications in Gy, v + 1 fixed point multiplications in
G2 and u point multiplication in Gj.

Key Generation. This algorithm takes as input the master secret key MSK =
aP and a set of attributes S. First the algorithm selects a random number ¢t € F,.,
then it generates the attribute-based private key as follows,

SK = { K = [a]P + [{]([a]P), L = [(]Q, Yz € S K, = [{]H, }

Let N be the number of attributes on S, since the points aP and @) are known,
the cost of this algorithm is one fixed point multiplication in Gy, one fixed point
in Go and N point multiplications in G;. For the first two scalar multiplications
the comb method was used, and the GLV method for the rest.

Decrypt. This algorithm takes as inputs the cipher CT with the access structure
(M, p) and the private key SK for a set S. Suppose S satisfies the access structure
and define I C {1,2,...,u} as I = {i : p(i) € S}. Let {w; € Z};er be the set
of constants such that if A\; is a valid share of a secret s according to M, then
Ziel wiA; = As with A € F,.. The decryption algorithm first computes:

(e(L, > lwilC) [T e(Di, [Wz‘]Kp(i))> [e(C', K) = e(P,Q)™", (3)

icl iel
Followed by the multiplication of this value by C' as defined in Eq. @). If S
satisfies the access structure this should recover the message M.

NEON Implementation of an Attribute-Based Encryption Scheme 335

The variable A guarantees low size constants w;, i.e., | w; |< 64 bits, which
allows us to perform the scalar multiplications involving these constants using a
w-NAF method. We called this operation short scalar multiplication. Let N < u
be the number of elements of I, then the computational cost of Eq. @) is of
2N short multiplications in G, an N 4 2 multipairing computation, N point
additions in G; and one exponentiation in Gy which can be computed using
the GS method. Also, since L € G» is a known point, its lines evaluations were
precomputed.

Table 2. Clock cycle comparison for Single pairing computations

Work Processor 10% clock cycles for 254 bits
a m § 1 ML FE Pairing
m Tegra 2% 1.42 8.18 5.20 26.61 26, 320 24, 690 51,010
0] Apple A5" 0.25 3.48 2.88 19.19 8,338 5,483 13,821
TI OMAP® 0.16 3.37 2.53 16.86 8,231 5,258 13,489
(ASM) 0.12 2.952.48 16.60 7,376 4,510 11, 886
This Work Tegra 2% 0.17 3.41 2.41 39.25 8,313 5,269 13,582
Exynosd 0.17 3.42 2.41 39.21 8,348 4,607 13,618
(NEON) 0.16 2.29 2.00 60.37 5,758 3,794 9,477
Exynos® 0.14 1.36 0.86 29.01 3,388 2,353 5,838
a. NVidia Tegra 2 (ARM v7) Cortex-A9 a 1.0 GHz (C)
b. iPad 2 (ARM v7) Apple A5 Cortex-A9 a 1.0 GHz (C)
c. Galaxy Nexus (ARM v7) TI OMAP 4460 Cortex-A9 a 1.2 GHz (Two versions: C and ASM)
d. Galaxy Note (ARM v7) Exynos 4 Cortex-A9 a 1.4 GHz (Two versions: C and NEON)
e. Arndaleboard (ARM v7) Exynos 5 Cortex-A15 a 1.7 GHz (NEON)

7 Implementation Results

This section presents the main implementation results classified into three sub-
sections: bilinear pairings, scalar multiplication and the ABE scheme timings.

7.1 Pairing Timings

Let us recall that (d,fn,{é,g) denote the computational cost of the addition,
multiplication, squaring and inversion operations over F,>. These field arithmetic
operations are used to perform a single pairing computation, a task that as it
was described in section Bl can be split into two main parts: the Miller Loop
(ML) and the Final Exponentiation (FE).

Using above definitions, Table 2] presents a comparison against the works [I]
and [10] In [I] a pairing library that employs affine coordinates was presented,
whereas [I0] reports an assembler optimized pairing library using standard
projective coordinates.

336 A. Helena Sanchez and F. Rodriguez-Henriquez

7.2 Costs of the Scalar Multiplication and Field Exponentiation

Table[B]shows the timings obtained for the computation of scalar multiplication in
the groups G; and Go, and the field exponentiation in the group Gr. The compu-
tation of the scalar multiplication using the w-NAF approach was only utilized for
small 64-bit scalars, with w = 3. The comb method was the choice for computing
fixed point scalar multiplication with a window size of w = 8. We stress that the
w-NAF was used in combination with both the GLV and GS methods

Table 3. Scalar mult. and exponentiation timings (in 10® clock cycles)

Processor G1 Mult. G2 Mult. Gr Exp.
w-NAF GLV Comb w-NAF GS Comb w-NAF GS Comb
Tegra 2 779 1977 626 2059 4190 1745 2643 5998 2727
Exynos 4 785 1973 627 2096 4189 1742 2633 4777 2155
(NEON) 676 1698 556 1493 2933 1214 1827 4102 1863
Exynos 5 337 822 251 797 1571 636 1125 2522 1121

Table 4. ABE scheme with 6 attributes (Timings in 10% clock cycles)

Processor Key Encryption Decryption Decryption
Generation A=1) A>1)
Tegra 2 18,340 31,830 63,870 74,140
Exynos 4 18,270 29,480 63,810 73,930
Exynos 4 (NEON) 15,333 24,167 43,980 50,808
Exynos 5 7,617 12,748 26,638 31,161

7.3 Attribute-Based Encryption Costs

We could not compare our ABE scheme timings against [2], because this work
only implements the decryption algorithm and it does not present the exact
timings. Table @ reports the timings obtained when a 6-attribute policy is em-
ployed in the three main primitives of the ABE protocol, namely, key generation,
encryption and decryption that were discussed in section Bl Note that for the
decryption algorithm we present the cases when A =1 and A > 1 (see Eq. B).

8 Conclusion

We presented a cryptographic library that implements Waters’ attribute en-
cryption scheme in mobile devices operated with ARM processors. The main
primitives developed were bilinear pairings and scalar multiplications in differ-
ent flavors. Our library uses four different scalar multiplications according to the

2 A description of the w-NAF GLS and GS methods for computing scalar
multiplications was given in subsection 1]

NEON Implementation of an Attribute-Based Encryption Scheme 337

group, scalar size and the type of the point (either fixed or variable), providing a
127 bits security level and achieving record timings for the computation of a sin-
gle bilinear pairing at this level of security when implemented on the Exynos-5
Cortex-A15 processor.

A key factor that helps us to achieve faster timings than previously reported
works was the usage of the NEON technology that allows a better exploitation
of the inherent parallelism present in several field and elliptic curve arithmetic
operations. It is illustrative to analyze the Exynos-4 scalar multiplication tim-
ings shown in Table [Bl where NEON produces savings of about 14%, 30% and
15% in the computations over the G1, Gy and G groups, respectively. Notice
that the significant better performance of NEON in the computations over Go
are a consequence of the rich parallelism extracted for the field squaring and
multiplication over F,2 as it was explained in Section [l

Another interesting aspect to remark is the performance comparison of our
work against [I] for the single pairing computation at the 127 bit security level.
As shown in Table Bl without using NEON, the two libraries perform essentially
the same when implemented in the Tegra 2 and Apple A5 processors, respec-
tively. However, taking advantage of NEON, our library outperforms the library
in [I] by approximately 20% when implemented in the Exynos 4 and TT OMAP
processors, respectively. Moreover, when implemented in the Exynos 5 proces-
sor, our library is a bit more than two times faster than the software in [IJ.
We conclude that the Cortex A-15 micro-architecture and its improved NEON
unit, provide a significantly better performance for cryptographic application
implementations.

Acknowledgments. We wish to thank Peter Schwabe for explaining us how to
perform accurate clock cycle counts on ARM processors and for giving us feed-
back on the first draft of the paper and Armando Faz-Hernandez for benchmark-
ing our software in the Exynos 5 Cortex-A15 processor. We also thank Alfred
Menezes for commenting on the earlier draft. The second author acknowledges
partial support from CONACyT project 132073

References

1. Acar, T., Lauter, K., Naehrig, M., Shumow, D.: Affine pairings on ARM. In: Ab-
dalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 203-209. Springer,
Heidelberg (2013)

2. Akinyele, J.A., Lehmann, C., Green, M., Pagano, M., Peterson, Z., Rubin, A.:
Self-Protecting Electronic Medical Records Using Attribute-Based Encryption. In:
Bhattacharya, A., Dasgupta, P., Enck, W. (eds.) The 1st ACM Workshop on Secu-
rity and Privacy in Smartphones and Mobile Devices SPSM 2011, pp. 75-86. ACM
(2010)

3. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., Lépez, J.: Faster Explicit
Formulas for Computing Pairings over Ordinary Curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48-68. Springer, Heidelberg (2011)

338

4.

10.

11.

12.

13.

14.

15.

16.

A. Helena Sanchez and F. Rodriguez-Henriquez

Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319-331. Springer,
Heidelberg (2006)

Chung, J., Hasan, M.A.: Asymmetric Squaring Formulas. In: Kornerup, P., Muller,
J.-M. (eds.) Proceedings of the 18th IEEE Symposium on Computer Arithmetic,
pp. 113-122. IEEE Computer Society (2007)

Fuentes-Castanieda, L., Knapp, E., Rodriguez-Henriquez, F.: Faster hashing to G2.
In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 412-430. Springer,
Heidelberg (2012)

Galbraith, S.D., Scott, M.: Exponentiation in Pairing-Friendly Groups Using Ho-
momorphisms. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 211-224. Springer, Heidelberg (2008)

Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 190-200. Springer, Heidelberg (2001)

Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209-223. Springer, Heidelberg (2010)

Grewal, G., Azarderakhsh, R., Longa, P., Hu, S., Jao, D.: Efficient implementation
of bilinear pairings on ARM processors. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 149-165. Springer, Heidelberg (2013)

Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings (Chap-
ter 12). In: Joye, M., Neven, G. (eds.) Identity-based Cryptography. Cryptology
and Information Security, vol. 2, pp. 188-206. IOS Press (2009)

Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82(281) (2013)
Koc, C.K., Acar, T., Kaliski Jr., B.S.: Analyzing and Comparing Montgomery
Multiplication Algorithms. IEEE Micro 16(3), 26-33 (1996)

Liu, Z., Cao, Z.: On efficiently transferring the linear secret-sharing scheme matrix
in ciphertext-policy attribute-based encryption. IACR Cryptology ePrint Archive,
2010:374 (2010)

Scott, M.: On the Efficient Implementation of Pairing-Based Protocols. In: Chen,
L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 296-308. Springer, Heidelberg (2011)
Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53-70. Springer, Heidelberg (2011)

	NEON Implementation of an Attribute-Based
Encryption Scheme
	1 Introduction
	2 Mathematical Background
	3 Tower Extension Field Arithmetic
	3.1 Field Multiplication Over
	3.2 Extension Field Arithmetic Computational Cost
	3.3 Field Arithmetic Implementation Using NEON

	4 Elliptic Curve Arithmetic
	4.1 Efficient Techniques for Computing Scalar Multiplication

	5 Bilinear Pairing Arithmetic
	6 Attribute Based-Encryption
	7 Implementation Results
	7.1 Pairing Timings
	7.2 Costs of the Scalar Multiplication and Field Exponentiation
	7.3 Attribute-Based Encryption Costs

	8 Conclusion
	References

