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Abstract. We present a direct construction for signcryption Key En-
capsulation Mechanism (KEM) without random oracles under standard
complexity assumptions. Chosen-ciphertext security is proven in the
standard model under the DBDH assumption, and unforgeability is proven
in the standard model under the CDH assumption. The proof technique
allows us to achieve strong unforgeability from the weakly unforgeable
Waters signature. The validity of the ciphertext of our signcryption KEM
can be verified publicly, without knowledge of the decryption key.
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1 Introduction

Signcryption [25] provides confidentiality and non-repudiation simultaneously
for the messages sent over an insecure channel, at lower costs of computation
and communication than those required in both signature-then-encryption (StE)
and encryption-then-signature (EtS) approaches. Thus, protocols based on sign-
cryption are considerably more efficient than those traditional approaches that
combine both encryption and signature. One may apply signcryption to obtain
a performance-enhanced protocol which contributes to the practical and engi-
neering side of real-world applications [20,21,12,22,11].

For long messages, it is quite inefficient in the real-life applications to apply
signcryption directly. Inspired by traditional hybrid encryption techniques, Dent
[9] generalized the KEM paradigm to the signcryption setting by proposing new
security criteria and a construction for the signcryption KEM (SC-KEM) to
provide in KEM the authentication service. Such a construction combines the
convenience of a signcryption with the efficiency of a symmetric-key system [8].
By using such a construction, a random session key is first encapsulated by a
signcryption KEM, then the data (plaintext) is encrypted by the session key,
and finally two ciphertexts are both sent over an insecure channel.
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1.1 The State of the Art

Dent [9,10] introduced the concept of signcryption KEM which includes an au-
thentication in KEM by constructing two signcryption KEM schemes with in-
sider security and outsider security, respectively. A signcryption scheme is out-
sider secure if it is secure against attacks made by any third party, i.e., attacks
made by an entity who is neither the sender nor the receiver. This is a weaker no-
tion of security than has been traditionally dealt with by signcryption schemes,
a notion known as insider security. Actually, the work [10] improved the model
in [9] (which only covers outsider security) by providing a signcryption KEM
with insider security such that the resultant scheme is secure against attacks
against the confidentiality of the message made by any third party and from
forgery attacks made by any person except the sender.

However, insider security proposed by Dent [10] is only considered for au-
thenticity. In other words, the model in [10] allows an attacker to recover the
symmetric key generated by signcryption KEM during the attacks. Compara-
tively, the stronger notion named full insider security [2,23] protects the sender’s
authenticity even against the receiver, and the receiver’s privacy even against
the sender, at the same time.

Recently, Tan proposed in [23] a signcryption KEM with full insider security.
Much different from those schemes [9,10], Tan’s SC-KEM is proven secure in the
standard model whose security does not rely on random oracles. Another sign-
cryption KEM in the standard model was presented in [18] which is shown more
efficient than Tan’s scheme in terms of computational cost and communication
overhead.

1.2 Motivation

Concrete constructions for signcryption KEM are evaluated according to the
following perspectives: (1) the complexity assumptions on which security of the
construction is based; (2) the expansion of a single ciphertext; (3) the operational
assumption of setting up the construction practically; and other interesting fea-
tures (e.g., public verifiability of the ciphertext).

All existing constructions of SC-KEM need the recipient’s private keys to
verify the validity of the ciphertexts. Hence these schemes can not be used in
applications where a ciphertext need to be validated by any third party that
knows the public key of the sender as in usual signature scheme. As a techni-
cally higher standard, public verifiability of ciphertexts enables any member of
the public to independently fully verify the accuracy of a ciphertext [1,14]. Addi-
tionally, the constructions in [9] and [10] are proven secure in the random oracle
model that serves as a heuristic. Although those in [18] and [23] are without
random oracles, yet they utilize standard signatures as building blocks, thus we
can’t reduce the computation and the size of a single ciphertext fewer than the
underlying signature, and the readers may refer to section 4 for more details on
the sizes of standard model based signatures; on the other hand, the construction
in [18] is based on non-standard GHDH assumption [16]. For all, the question of
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constructing a signcryption KEM that is secure under the standard assumptions
without random oracles (and achieving public verifiability) remains open.

1.3 Our Contributions

In this paper we provide an elegant construction for SC-KEM to give a positive
answer to the question. Our signcryption KEM achieves the following desirable
features simultaneously, compared with the previous constructions.

1. Full Insider Security (FIS): Our SC-KEM is proven secure in the standard
model with respect to insider adversaries.

2. Standard Complexity Assumptions : Security of our SC-KEM relies on the
well-established DBDH and the CDH assumptions. Prior to our work, the
SC-KEM scheme [18] requires non-standard assumption (i.e., the Gap Hashed
Diffie-Hellman assumption [16]) to prove security in the standard model.

3. Small Ciphertext Expansion: The ciphertext of our SC-KEM consists of three
elements of G. It outperforms all known standard model-based constructions
(that use strongly unforgeable signatures as building block) because accord-
ing to the state of the art [19] a strongly unforgeable signature contains at
least 3 group elements since each Waters signature, the only known signature
secure under CDH assumption without random oracles, has two group ele-
ments. Our construction is also comparable to, though not quite as efficient
as, the Dent signcryption KEM schemes [9,10] in the random oracle model.

4. Additional Interesting Features : On one hand, our construction enjoys simple
setup operation since it only needs one key generation algorithm to generate
the keys of both the sender and the receiver. Whereas, two different key
generation algorithms are required in [18] and [23] respectively to generate
the key pairs of the sender and the receiver. Thus, the setup process of these
SC-KEM schemes is more complicate than that of ours. On the other hand,
in the standard model based SC-KEM schemes in [18,23] only the receiver
has the capability of verifying the correctness of a ciphertext as the private
key of the receiver is required in verifying operation; whereas in our SC-KEM
scheme, a given ciphertext can get checked for validity solely based on the
knowledge of the public keys of the parties.

2 Preliminaries

2.1 Bilinear Group

Consider the following setting: Let G and GT be two multiplicative cyclic groups
of prime order p; the group action on G, GT can be computed efficiently; g is
a generator of G; e : G × G → GT is an efficiently computable map with the
following properties [3,4,24]: Bilinear: for all u, v ∈ G and a, b ∈ Zp, e(u

a, vb) =
e(u, v)ab; Efficiently computable: e(u, v) is efficiently computable for any input
pair (u, v) ∈ G × G; Non-degenerate: e(g, g) �= 1. We say that G is a bilinear
group if it satisfies these requirements.
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2.2 Complexity Assumptions

Definition 1 (DBDH). Let a, b, c and z be random from Zp, g the genera-
tor of G of prime order p. The (t, ε)-DBDH assumption says that there is no
algorithm A that can distinguish the tuple (ga, gb, gc, e(g, g)abc) from the tuple
(ga, gb, gc, e(g, g)z) in time t with advantage ε, where the advantage of A is de-
fined as the probability

AdvDBDH
A =

∣
∣Pr[A(ga, gb, gc, e(g, g)abc) = 1]− Pr[A(ga, gb, gc, e(g, g)z) = 1]

∣
∣ .

Definition 2 (CDH). In a bilinear group G, the computational Diffie-Hellman
problem is: given (g, ga, gb) ∈ G3 for some (randomly chosen) a, b ∈R Zp , to find
gab ∈ G. The success probability of an algorithm A in solving the CDH problem
on G is defined as

AdvCDH
A

def
= Pr

[

A(g, ga, gb) = gab : a, b
R←−Zp

]

.

The probability is over the random choice of g from G, of a, b from Zp, and the
coin tosses of A. A (t, ε)-breaks the CDH problem on G if A runs in time at
most t, and AdvcdhA is at least ε.

2.3 Collision Resistant Hash Function

Definition 3 (CRHF). Let H = {Hk} be a hash family of functions Hk :
{0, 1}∗ → {0, 1}n indexed by k. We say that algorithm A (t, εcr)-breaks the
collision-resistance of H if

Pr[A(k) = (x, x′) : Hk(x) = Hk(x
′), x �= x′] ≥ εcr,

where the probability is over the random choice of k and the random bits of A.
H is (t, εcr)-collision-resistant if no t-time adversary has advantage at least εcr
in breaking the collision-resistance of H.

2.4 Definition of Signcryption KEM

Definition 4 (SC-KEM). A signcryption KEM consists of three algorithms:

KeyGen(1λ): key generation algorithm, on input a security parameter λ, out-
puts the sender’s public/private key pair (pks, sks) and the receiver’s pub-
lic/private key pair (pkr , skr). We write (pk, sk) = KeyGen(1λ).

KeyEnc(sks, pkr): key encapsulation algorithm, on input the sender’s private key
sks and the receiver’s public key pkr, outputs a symmetric key K which may
be used in the subsequent data encapsulation mechanism, and a ciphertext C
which is an encapsulation of the key K. We write (K,C) = KeyEnc(sks, pkr).

KeyDec(pks, skr, C): key decapsulation algorithm, on input the sender’s public
key pks, the receiver’s private key skr and the encapsulation C of some
symmetric key K, outputs either the symmetric key K or the error symbol
⊥ in case the ciphertext is not valid. We write K = KeyDec(pks, skr, C).

Correctness requires that for all public/private key pair (pks, sks), (pkr, skr) it
follows K = KeyDec(pks, skr, C) for all (K,C) = KeyEnc(sks, pkr).
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2.5 Security Model of SC-KEM

We borrow the following models which are commonly used in the literature
[9,10,18,23]. The paper focuses on the direct construction for SC-KEM without
random oracles under standard complexity assumptions, in the security models.

Confidentiality. The attack model [18,23] of confidentiality for a signcryp-
tion KEM is defined in the following game, termed the IND-CCA2 game, played
between a hypothetical challenger C and a two-phase attacker A.

- Setup: On input a given security parameter λ, the challenger C runs the key
generation algorithm KeyGen(1λ) to produce the sender’s key pair (pk�s , sk

�
s)

and the receiver’s key pair (pk�r , sk
�
r ), and sends (pk�s , sk

�
s ) and pk�r to the

attacker A, while keeping sk�r secret.
- Phase 1: During this phase, A may make the polynomially bounded queries
of key decapsulation. In a key decapsulation query, A submits to the chal-
lenger C a ciphertext C associated with the sender’s public key pks for
key decapsulation. Herein, the public key pks may be generated by A as
it wishes. The challenger C performs key decapsulation operation for A in
the algorithm KeyDec by using the private key sk�r and then sends the result
K = KeyDec(pks, sk

�
r , C) or ⊥ (if C is not valid) to A.

- Challenge: At the end of Phase 1, C performs the algorithm KeyEnc by
using the private key sk�s and the public key pk�r , and obtains the result
(K�

0 , C
�) = KeyEnc(sk�s , pk

�
r ). C also chooses a random bit b ∈ {0, 1} and a

random symmetric key K�
1 with the requirement that K�

1 and K�
0 are of the

same length. Lastly, C gives A the tuple (K�
b , C

�) as the challenge.
- Phase 2: During this phase, A may make the queries as in Phase 1, while
differently we do not allow A to query the key decapsulation for the cipher-
text C� under the the sender’s public key pk�s .

- Guess: Eventually, A outputs a bit b′, and it wins the game if b = b′.

The advantage of the adversaryA is defined as the probability AdvIND
A = |2Pr[b = b′]− 1|.

Definition 5 (Confidentiality). We say A (t, qd, ε)-breaks the IND-CCA2 se-
curity of the signcryption KEM, if A wins the IND-CCA2 game with the advan-
tage ε in time t after making qd key decapsulation queries. A signcryption KEM
is said to achieve the IND-CCA2 security if no polynomially bounded adversary
has a non-negligible advantage in winning the IND-CCA2 game.

Unforgeability. The notion of strongly existential unforgeability for a signcryp-
tion KEM [18,23] is defined by the SUF game, played between a hypothetical
challenger C and an attacker F below. For a given security parameter λ:

- Setup: The challenger C runs the key generation algorithm KeyGen(1λ) (de-
fined in definition 4) to produce the sender’s key pair (pk�s , sk

�
s ) and the

receiver’s key pair (pk�r , sk
�
r), and sends pk�s and (pk�r , sk

�
r ) to the attacker

F , while keeping sk�s secret.
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- Attack: During this phase, F may make the polynomially bounded queries
of key encapsulation. In a key encapsulation query, the challenger C per-
forms key encapsulation operation for F in the algorithm KeyEnc by using
the private key sk�s and the public key pk�r , obtains the result (K,C) =
KeyEnc(sk�s , pk

�
r ), and sends C to F .

- Forgery: Eventually, the attacker F outputs a ciphertext C� with the re-
quirement that C� is not one of the outputs of the key encapsulation queries.
F wins the game if C� is valid, i.e., KeyDec(pk�s , sk

�
r , C

�) �= ⊥.

The advantage of F is defined as the probability of success in winning the game:
AdvSUFF = Pr[Win].

Definition 6 (Unforgeability). We say the signcryption KEM is (t, qe, ε)-
forgeable if F wins the SUF game with the advantage ε in time t after making
qe key encapsulation queries. A signcryption KEM achieves strongly existential
unforgeability if no polynomially-bounded adversary can win the SUF game with
non-negligible advantage.

Definition 7 (Public Verifiability). We say the signcryption KEM has public
verifiability of ciphertexts if any member of the public can independently fully
verify the accuracy of a ciphertext without relying on any secret information.

3 The Proposed Signcryption KEM

Let G be a group of prime order p, for which there exists an efficiently com-
putable bilinear map into G. The size of the group is determined by the security
parameter. Additionally, let e : G × G → GT denote the bilinear map and g be
the corresponding generator, along with u′, u1, u2, . . ., un, f , h, v, w ∈ G. Let
G : {0, 1}∗ → {0, 1}n, H : {0, 1}∗ → Zp be two collision resistant hash functions.
Our construction is described as follows.

KeyGen(1λ): A probabilistic polynomial-time sender/receiver key generation
algorithm, chooses xs, xr ∈R Zp, sets sks = xs, pks = gxs , skr = xr , pkr =
gxr , and outputs the public/private key pair (pks, sks) for the sender and
the public/private key pair (pkr, skr) for the receiver.

keyEnc(sks, pkr):

1. Randomly choose k, � ∈R Zp.
2. Compute K = e(h, pkr)

k, σ1 = gk, σ2 = g�, t1 = G(σ1, pks, pkr),
3. Let T ⊂ {1, 2, . . . , n} be the set of indices such that t1[i] = 1 where t1[i]

is the i-th bit of t1.

4. Compute t2 = H(σ1, σ2, pks, pkr), σ3 = fxs ·
(

u′ ∏

i∈T
ui

)�

(vt2w)
k
.

5. Let C = (σ1, σ2, σ3) and return (K,C).

Different from the constructions in [18,23], a ciphertext C of our SC-KEM
scheme is only composed of three elements in G.

KeyDec(pks, skr, C):
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1. Compute t1 = G(σ1, pks, pkr), t2 = H(σ1, σ2, pks, pkr).
2. If

e(g, σ3) = e(f, pks) · e
(

σ2, u
′
∏

i∈T
ui

)

· e
(

σ1, v
t2w

)

,

return
K = e(σ1, h

xr);

otherwise return ⊥.

It can be verified easily that the construction satisfies the correctness. Note that
unlike previous SC-KEM constructions, the validity of the ciphertext of ours can
get checked by anyone who only knows the public keys.

4 Comparisons

Prior to proving the security of our construction, we compare in this section our
SC-KEM with the SC-KEM schemes in the literature [9,10,23,18]. Table 1 shows
the comparisons.

The schemes in [18] and [23] need strongly unforgeable signatures as building
block. Without random oracles, several signature schemes can be shown to be
strongly unforgeable under relatively strong or standard assumptions.

Gennaro, Halevi, and Rabin [13], and Cramer and Shoup [7] constructed
strongly unforgeable signatures based on the Strong-RSA assumption, and the
signatures are composed of one element in Zn (n is the RSA modulus) [13],
and one element in Zn and two elements in a group G (n is the RSA modulus,
|G| ≥ 160) [7], respectively; Boneh and Boyen [3] constructed a strongly unforge-
able signature based on the Strong-Diffie-Hellman assumption, and the signature
consists of an element in G and an element in Zp; Boneh, Shen, and Waters [5]
constructed a strongly unforgeable signature based on the standard computa-
tional Diffie-Hellman assumption, and the signature contains two elements in G

and an element in Zp; Kang et al. [15] constructed a short signature scheme based
on the computational Diffie-Hellman assumption, and the signature is composed
of an element in G and an element in Zp.

We also notice that there are several generic transformations proposed to
convert weak unforgeability into strong unforgeability. According to the shortest
generic transformation [19] so far, in terms of signature size expansion, the trans-
formation increases the resulting signature by one group element. For example,
when we use the transformation to convert the Waters signature, the only known
signature secure under standard CDH assumption without random oracles, into
a strongly unforgeable one, the resultant signature contains three elements in G.

The idea behind our SC-KEM construction is to combine the technique in
the Waters signatures [24] with that in transforming identity-based encryption
to CCA-secure public key encryption [6,17]. Different from the previous SC-
KEM methods, we present a direct construction which does not rely on the
use of any strongly unforgeable signature scheme. All known constructions for
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Table 1. Comparisons of SC-KEM Schemes

S/R KG Size ROM/Standard model SA PV FIS
Dent[9] 1A 1|G| ROM CDH NO NO
Dent[10] 1A 2|Zq| ROM GDH NO NO
Tan[23] 2A 3|G|+ |sig| Standard DDH+SUF NO YES
Li[18] 2A 2|G|+ |sig| Standard GHDH +SUF NO YES
Ours 1A 3|G| Standard DBDH+CDH YES YES

S/R KG: Sender/Receiver Key Generation Algorithms; Size: Ciphertext Expansion
Size; 1A: the key generation algorithm generates the public/private key pairs for both
the sender and the receiver; 2A: two separate key generation algorithms are required,
one for the sender, another for the receiver; |G|, |sig|: the bit lengths of the represen-
tation for elements in the underlying group G, and for the signature generated by the
underlying signature scheme, respectively (and |sig| ≥ |G|+ |Zp| according to the state
of the art on standard model based signatures); SA: Security Assumption; PV: Public
Verifiability; FIS: Full Insider Security; GDH: Gap Diffie-Hellman; SUF: Strong Un-
forgeability of the underlying signature scheme; GHDH: Gap Hashed Diffie-Hellman.

SC-KEM schemes in the standard model are ‘generic’: they involve running a
standard strongly unforgeable signature scheme and are thus not very efficient
in ciphertext expansion as well as the computational performance.

5 Proving The Security

5.1 Confidentiality

Theorem 1. If there exists an adversary A that can (t, qd, ε)-break the IND-
CCA2 security of our SC-KEM (qd is the total number of the key decapsu-
lation queries), then one can construct an algorithm B that (t′, ε′)-breaks the
DBDH problem assuming that H is (t, εcr)-collision resistant, where Te, Tp are
the running-time of the exponentiation in G and the pairing respectively, and

ε′ ≥ ε

2
− εcr −

qd
p
, t′ ≤ t+O(6 · qd + n+ 12)Te +O(6 · qd)Tp, (1)

Proof. Our idea of the proof is to utilize the adversary A that (t, qd, ε)-breaks
the IND-CCA2 security of our signcryption KEM, to construct an algorithm B
that first simulates the environment of the IND-CCA2 game, and then uses the
output of A to solve the DBDH problem.

Assume that algorithm B is given as input a random 5 tuple (g, ga, gb, gc, Z)
where Z = e(g, g)abc or e(g, g)z for a, b, c, z randomly chosen from Zp. Algorithm
B’s goal is to output 1 if Z = e(g, g)abc and 0 otherwise. B does the following to
achieve the goal.

Setup. B randomly chooses α0, α1, α2, . . ., αn, αv, αw, βv, s, γ and xs from
Zp, then sets

σ�
2 = gs, u′ = gα0 , u1 = gα1 , u2 = gα2 , . . . , un = gαn , h = gb, f = gγ , v = gαvhβv ,
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t�2 = H(gc, gs, pk�s , pk
�
r), w = gαwh−βvt

�
2 , pk�s = gxs , sk�s = xs, pk

�
r = ga.

Finally B gives A the parameters u′, u1, u2, . . ., un, f , h, v, w and keys pk�s ,
sk�s , pk

�
r .

All the parameters and keys we give here have the same distribution as those
used in our construction. Thus, B provides a perfect simulation in this phase.

Phase 1. WhenA submits a query (pks, C = (σ1, σ2, σ3)) for key decapsulation,
B responds as follows:
1. Compute t1 = G(σ1, pks, pk

�
r ), t2 = H(σ1, σ2, pks, pk

�
r).

2. Check

e(g, σ3)
?
= e(f, pks) · e

(

σ2, u
′
∏

i∈T
ui

)

· e(σ1, v
t2w), (2)

if not, return ⊥.
3. If t2 = t�2, abort (this event is denoted as CRFail); otherwise randomly

choose r from Zp and compute

D1 = (ga)
−αv·t2+αw

βv(t2−t�
2
) · (vt2w)r = ha · (ha)

− βv(t2−t�2)

βv(t2−t�
2
) · (ga)−

αv ·t2+αw
βv(t2−t�

2
) · (vt2w)r

= ha ·
(

gαv·t2+αwhβv(t2−t�2)
)− a

βv(t2−t�2) · (vt2w)r

= ha · (vt2w)−
a

βv(t2−t�
2
) · (vt2w)r = ha · (vt2w)r−

a
βv(t2−t�

2
) ,

D2 = gr · (ga)−
1

βv(t2−t�2) = g
r− a

βv(t2−t�2) .

Let η = r − a
βv(t2−t�2)

, we have D1 = ha · (vt2w)η , D2 = gη.

4. Compute

Δ = σ3 · (pks)−γ · (σ2)
−α0−

∑

i∈T
αi

. (3)

Since C = (σ1, σ2, σ3) can pass the verification equation (2), we have

pks = gx, σ1 = gk, σ2 = g�, σ3 = fx ·
(

u′
∏

i∈T
ui

)�

(vt2w)k,

for some x, k, � ∈ Zp. Thus, we know that

Δ = σ3 · (pks)−γ · (σ2)
−α0−

∑

i∈T
αi

= σ3 · (gx)−γ ·
(

g�
)−α0−

∑

i∈T
αi

= σ3 · (gγ)−x ·
(

u′ ∏

i∈T
ui

)−�

= fx ·
(

u′ ∏

i∈T
ui

)�

(vt2w)k · (f)−x ·
(

u′ ∏

i∈T
ui

)−�

= (vt2w)k.

5. Return

K =
e(σ1, D1)

e(D2, Δ)
.

Note that K is correct because

e(σ1, D1) = e (σ1, h
a · (vt2w)η) = e (σ1, h

a) · e
(

gk, (vt2w)η
)

= K · e
(

gη, (vt2w)k
)

= K · e(D2, Δ).
(4)
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Challenge. In this phase, B generates the challenge ciphertext for the adversary
A as follows.
1. Set σ�

1 = gc and compute t�1 = G(σ�
1 , pk

�
s , pk

�
r );

2. Compute σ�
3 = (gγ)xs ·

(

u′ ∏

i∈T �

ui

)s

· (gc)αv ·t�2+αw ;

3. Set K�
0 = Z, C� = (σ�

1 , σ
�
2 , σ

�
3);

4. Choose a random bit θ ∈ {0, 1} and a random key K�
1 ∈ GT ;

5. Return (K�
θ , C

�) as the challenge.
The ciphertext C� is valid and can pass the Equation (2) since

σ�
3 = (gγ)xs ·

(

u′ ∏

i∈T �

ui

)s

· (gc)αv ·t�2+αw = fxs ·
(

u′ ∏

i∈T �

ui

)s

· (gαv·t�2+αw)c

= fxs ·
(

u′ ∏

i∈T �

ui

)s

·
(

(gαv · hβv )t
�
2 · (gαw · h−βvt

�
2 )
)c

= fxs ·
(

u′ ∏

i∈T �

ui

)s

·
(

vt
�
2w

)c
.

Phase 2. B responds to the queries of A as it does in Phase 1, except denying
to answer the query of the challenge ciphertext C� w.r.t. pk�s .

Guess. Eventually A outputs a bit θ′ as its guess for θ.

Algorithm B outputs 1 if θ′ = θ (denoted by ASuc), and 0 if θ′ �= θ.
Analysis. In the following, we analyze B’s probability of success in solving the
Decisional Bilinear Diffie-Hellman problem. We first present the following claim.

Claim. Pr [CRFail] ≤ εcr +
qd
p , where qd is the number of the key decapsulation

queries made by A.

Proof. For any valid ciphertext C = (σ1, σ2, σ3), event CRFail happens only when
one of the following two events takes place:

1. Event CR, (σ1, σ2, pks, pk
�
r ) �= (σ�

1 , σ
�
2 , pk

�
s , pk

�
r) ∧ t2 = t�2;

2. Event Fail, (σ1, σ2, pks, pk
�
r ) = (σ�

1 , σ
�
2 , pk

�
s , pk

�
r).

Actually, event Fail can’t happen in Phase 2 because if (σ1, σ2, pks, pk
�
r) =

(σ�
1 , σ

�
2 , pk

�
s , pk

�
r ) and C = (σ1, σ2, σ3) is valid (which can be verified by Equation

(2)), then σ3 = σ�
3 must hold. However, the challenge ciphertext (σ�

1 , σ
�
2 , σ

�
3)

with respect to (pk�s , pk
�
r) is not allowed to be queried. Thus we know (pks, C =

(σ1, σ2, σ3)) can’t be queried as well in Phase 2. Therefore, event Fail may
happen in Phase 1, but must not happen in Phase 2.

The adversary cannot know the challenge ciphertext in Phase 1 because it is
information-theoretically hidden in Phase 1. Then, the eventA submits a cipher-
text identical to the challenge one with the same sender’s public key happens
with probability at most 1

p . And event Fail happens with probability at most qd
p

for the qd queries in Phase 1, i.e., Pr[Fail] ≤ qd
p .

Event CR, (σ1, σ2, pks, pk
�
r ) �= (σ�

1 , σ
�
2 , pk

�
s , pk

�
r ) ∧ t2 = t�2, implies B finds a

collision for H by utilizing A. Therefore, Pr [CR] ≤ εcr.
Thus, we know B’s abortion probability is bounded by Pr [CRFail] = Pr [CR]+

Pr [Fail] ≤ εcr +
qd
p . �
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Now we can compute the probability that B in the above game outputs 1
given Z with either Z = e(g, g)abc or Z = e(g, g)z where a, b, c, z are randomly
chosen from Zp. Let ASuc be the event that the adversaryA succeeds in guessing
θ (i.e., θ′ = θ).

Due to the simulation, it follows that if Z = e(g, g)abc then the challenge
ciphertext C� = (σ�

1 , σ
�
2 , σ

�
3) is a valid key encapsulation of K�

0 = Z under
(sk�s , pk

�
r ). Therefore, B provides a perfect simulation unless event CRFail hap-

pens. Namely, A’s view is identical to that in the real attack game unless event
CRFail happens. So we have the following result.

Pr
[

B(ga, gb, gc, Z = e(g, g)abc) = 1
]

= Pr
[

(ASuc|Z = e(g, g)abc)
∧
(¬CRFail)

]

≥ Pr
[

ASuc|Z = e(g, g)abc
]

− Pr [CRFail] ≥ Pr
[

θ = θ′|Z = e(g, g)abc
]

− εcr − qd
p

=
AdvIND

A +1
2 − εcr − qd

p = ε+1
2 − εcr − qd

p .

(5)
If Z = e(g, g)z, then the challenge ciphertext C� = (σ�

1 , σ
�
2 , σ

�
3) is an invalid

key encapsulation of K�
0 = Z under (sk�s , pk

�
r). In this case, both K�

0 = Z and
K�

1 are random. Therefore, A succeeds in guessing θ with probability at most 1
2 .

Thus, we have

Pr
[

B(ga, gb, gc, Z = e(g, g)z) = 1
]

= Pr [(ASuc|Z = e(g, g)z)
∧
(¬CRFail)]

≤ Pr [ASuc|Z = e(g, g)z] = Pr [θ = θ′|Z = e(g, g)z] = 1
2 .

(6)

Combining Equation (5) and Equation (6), we conclude that

ε′ = AdvDBDH
B =

∣
∣Pr[A(ga, gb, gc, e(g, g)abc) = 1]− Pr[A(ga, gb, gc, e(g, g)z) = 1]

∣
∣

≥ ε+1
2 − εcr − qd

p −
1
2 = ε

2 − εcr − qd
p .

Finally, for the running-time of B, we mainly take into account the running-
time t of A, the exponentiations and the pairings in the key decapsulation
queries, and the exponentiation of generating the parameters. This takes time
at most t+O(6 ·qd+n+12)Te+O(6 ·qd)Tp, where Te is the running-time of the
exponentiation in G, Tp is the running-time of the pairing, and qd is the number
of key decapsulation queries.

5.2 Unforgeability

Our signcryption KEM satisfies strong unforgeability as defined in definition
6. The following theorem formally proves its unforgeability. Note that we can
conclude that the proposed construction is asymptotically unforgeable under
the CDH assumption if the underlying hash function is collision resistant, as the
Waters signature [24] itself can be reduced to the CDH assumption.

Theorem 2 (Unforgeability). Our signcryption KEM is (t, qs, ε)-strongly un-
forgeable assuming the Waters signature is (t + O(qs), qs, ε/2)-existentially un-
forgeable, the CDH assumption (t + O(qs), (ε − εcr)/2qs)-holds in G, and H is
(t, εcr)-collision resistant.
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Proof. The SUF game defines the strong unforgeability for signcryption KEM,
and is played by an adversary and the challenger. Suppose there is an adversary
A which can win the SUF game in time t with probability ε. A is first equipped
with the public parameters and the keys pk�s , pk

�
r , sk

�
r . A can make qs key en-

capsulation queries and will be given Σ = {Ci = (σi1, σi2, σi3)|i = 1, 2, . . . , qs}
on these queries. Let Σ1 = {σi1|i = 1, 2, . . . , qs}, and let C∗ = (σ∗

1 , σ
∗
2 , σ

∗
3) be

the forgery A eventually produces. As C∗ /∈ Σ, we can then distinguish between
two types of forgeries:

Type I. A forgery where σ∗
1 /∈ Σ1. In this case we denote the adversary as type

I forger AI.
Type II. A forgery where σ∗

1 = σl1 and σ∗
2 �= σl2 for some l ∈ {1, 2, ..., qs}. In

this case we denote the adversary as type II forger AII.

Note that if σ∗
1 = σl1 and σ∗

2 = σl2, then σ∗
3 = σl3 because given (pk�s , pk

�
r),

σ∗
1 and σ∗

2 (resp., σl1 and σl2) uniquely determines σ∗
3 (resp., σl3) that implies

C∗(= Cl) is not a valid forgery.
A successful adversary A must output a forgery of either Type I or Type

II. We will show that a Type I forger AI can be used to break the existential
unforgeability of the Waters signature, and a Type II forger AII can be used to
solve the CDH problem if H is collision resistant. The simulator can flip a coin at
the beginning of the simulation to guess which type of forgery the adversary will
produce and set up the simulation appropriately. In both cases the simulation is
perfect. We start by describing how to use a Type II forgery which is the more
interesting case.

Type II Forgery. Suppose AII is a Type II adversary which (t, qs, ε)-breaks
strong unforgeability of our signcryption KEM, producing a Type II forgery.
We construct an adversary BII that can (t, 1

qs
(ε− εcr))-break the Computa-

tional Diffie-Hellman problem if the hash function is (t, εcr)-collision resis-
tant.
Suppose BII is given (g, ga, gb) associated with the bilinear group parameters
pp = (G,GT , e, g) and its goal is to output gab. To utilize the forger AII, the
simulator BII simulates the environment of the SUF game.

Setup. BII generates the parameters, the public key of the sender, and the
private/public key pair of the receiver.
1. Randomly choose α0, α1, . . ., αn, αv, αw, xs, s, γ and xr from Zp.
2. Set

u′ = gα0 , u1 = gα1 , u2 = gα2 , . . . , un = gαn , f = gb, h = gγ , v = gαvf,

pk�r = gxr , sk�r = xr, pk
�
s = gxs , t�2 = H(ga, gs, pk�s , pk

�
r), w = gαwf−t�2 .

3. Give AII the parameters u′, u1, u2, . . ., un, f , h, v, w and the keys
pk�s , sk

�
r , pk

�
r .

Encapsulation Queries. Suppose AII issues qs key encapsulation queries.
BII first picks up j� ∈ {1, 2, . . . , qs} randomly, then responds to the i-th
query as follows (i = 1, 2, ..., qs):
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1. If i �= j�, select k, η randomly from Zp, and return Ci = (σi1, σi2, σi3)
where σi1 = gk, σi2 = gη, t1 = G(gk, pk�s , pk

�
r ), t2 = H(gk, gη, pk�s , pk

�
r )

and

σi3 = (gb)xs ·
(

u′
∏

i∈T
ui

)η

· (vt2 · w)k;

2. If i = j�, return Ci = (σj�1, σj�2, σj�3) where σj�1 = ga, σj�2 = gs,
t�1 = G(ga, pk�s , pk

�
r ),

σj�3 = (gb)xs ·
(

u′
∏

i∈T �

ui

)s

· (ga)αvt
�
2+αw .

3. Update Σ = Σ
⋃
{Ci} ( where we let Σ be initially empty).

Indeed, the ciphertext Cj� = (σj�1, σj�2, σj�3) is valid because σj�1 = ga,
σj�2 = gs,

σj�3 = (gb)xs ·
(

u′ ∏

i∈T �

ui

)s

· (ga)αvt
�
2+αw

= (gb)xs ·
(

u′ ∏

i∈T �

ui

)s

·
(

(gαvf)t
�
2 · (gαwf−t�2 )

)a

= (gb)xs ·
(

u′ ∏

i∈T �

ui

)s

·
(

vt
�
2 · w

)a
.

(7)

Output. In this phase, AII eventually outputs its forgery C∗ = (σ∗
1 , σ

∗
2 , σ

∗
3)

of Type II (implying σ∗
1 ∈ Σ1), BII does the following to extract gab for

solving the CDH problem.
1. If (σ∗

1 = σj�1 and σ∗
2 �= σj�2), compute t�1 = G(σ∗

1 , pk
�
s , pk

�
r ), t2 =

H(σ∗
1 , σ

∗
2 , pk

�
s , pk

�
r ).

2. If t2 = t�2, abort (we denote this as event ColF); otherwise compute

Δ =
σ∗
3

(gb)xs ·(σ∗
2 )

α0+
∑

i∈T �
αi

·(σ∗
1 )

αw+t2αv

. (8)

3. Return (Δ)
1

t2−t�2 .
As C∗ = (σ∗

1 , σ
∗
2 , σ

∗
3) is a valid forgery, we have, for some � ∈ Zp:

σ∗
1 = ga, σ∗

2 = g�, σ∗
3 = (gb)xs ·

(

u′
∏

i∈T �

ui

)�

· (vt2w)a,

Δ =
σ∗
3

(gb)xs ·(σ∗
2 )

α0+
∑

i∈T �
αi

·(σ∗
1 )

αw+t2αv

=
(gb)xs ·

(

u′ ∏

i∈T �
ui

)�

·(vt2w)a

(gb)xs ·(σ∗
2 )

α0+
∑

i∈T �
αi

·(σ∗
1 )

αw+t2αv

=
(gb)xs ·

(

g
α0+

∑

i∈T �
αi

)�

·
(
(gαv ·f)t2 ·(gαwf−t�2 )

)a

(gb)xs ·(σ∗
2 )

α0+
∑

i∈T �
αi

·(σ∗
1 )

αw+t2αv

= (gαvt2+αwft2−t�2 )a

(σ∗
1 )

αw+t2αv =
(σ∗

1 )
αw+t2αv ·(fa)t2−t�2

(σ∗
1 )

αw+t2αv = (gab)t2−t�2 .
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Thus, Δ
1

t2−t�2 = gab. Namely, when AII outputs a valid forgery C∗ of Type
II (denoted as event ASuc), BII can successfully solve the CDH problem if
σ∗
1 = σj�1 and event ColF doesn’t happen.

Since j� is information theoretically hidden from AII, both event ASuc and
event ColF are independent from event σ∗

1 = σj�1. Then we have Pr[σ∗
1 =

σj�1] ≥ 1
qs
, and

Pr[gab ← B(g, ga, gb)] = Pr[ASuc
∧
¬ColF

∧
σ∗
1 = σj�1]

= Pr[ASuc
∧
¬ColF] · Pr[σ∗

1 = σj�1]

≥ Pr[ASuc
∧

¬ColF]
qs

≥ Pr[ASuc]−Pr[ColF]
qs

= ε−Pr[ColF]
qs

If event ColF happens, we get a collision of H . Thus Pr[ColF] ≤ εcr. From
Equation (5.2), we have

Pr[gab ← B(g, ga, gb)] ≥ ε− εcr
qs

.

The running time of BII is close to that of AII except (4qs + 12) · Te in
simulation where Te is the running time of the exponentiation in G.

Type I Forgery. Suppose AI is a Type I forger which (t, qs, ε)-breaks the
strong unforgeability of our signcryption KEM, producing a Type I forgery.
We can construct an adversary BI that (t, ε)-breaks (existential unforgeabil-

ity of) the Waters signature of the form

(

gr, gα2

(

u′ ∏

i∈M
ui

)r)

. Refer to [24]

for more details on the Waters signatures.
Suppose BI is given a public key g1 = ga along with the parameters pp =
(G,GT , e, g, u

′, u1, u2, . . . , un, g2, G) and a signing oracle Ow that returns
the Waters signatures on requested messages. Its goal is to output a Waters
signature on some fresh message which is not among BI’s chosen messages.
To utilize AI, the adversary BI simulates the environment of the SUF game.

Setup. In this phase, BI generates the remaining parameters and the public
key of the sender and the private/public key pair of the receiver.
1. Randomly choose αv, αw, γ and xr from Zp.
2. Set f = g2, h = gγ , v = gαv , w = gαw , pk�r = gxr , sk�r = xr, pk�s =

g1.
3. Give AI the parameters u′, u1, u2, . . ., un, f , h, v, w and the keys

pk�s , sk
�
r , pk

�
r .

Encapsulation Queries. When AI makes key encapsulation queries, BI
simulates the encapsulation oracle as follows:
1. Select k randomly from Zp, and compute σ1 = gk.
2. Submit M = (gk, pk�s , pk

�
r) to the oracleOw and obtain the signature

(σw1, σw2) on M .
3. Set t2 = H(gk, σw1, pk

�
s , pk

�
r ), σ1 = gk, σ2 = σw1.

4. Return C = (σ1, σ2, σ3) where σ3 = σw2 ·(σ1)
αvt2+αw = σw2 ·(vt2w)k.

5. Update M = M
⋃
{M} ( where we let M be initially empty).
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Output. Eventually AI outputs its forgery C∗ = (σ∗
1 , σ

∗
2 , σ

∗
3) of Type I

(namely, σ∗
1 is not included in any (σ1, σ2, σ3) returned by the encap-

sulation oracle), BI does the following to obtain a new forgery for the
Waters signature:
1. Set M� = (σ∗

1 , pk
�
s , pk

�
r ) and t∗2 = H(σ∗

1 , σ
∗
2 , pk

�
s , pk

�
r );

2. Compute σ�
w2 = σ∗

3 ·(σ∗
1)

−αvt
∗
2−αw , and return (M�, (σ�

w1 = σ∗
2 , σ

�
w2)).

Note that M� /∈M as σ∗
1 is not included in any (σ1, σ2, σ3) returned by the

encapsulation oracle. Meanwhile, (σ�
w1 = σ∗

2 , σ
�
w2) is a valid forgery of the

Waters signature because, for k = logg σ
∗
1 and � = logg σ

∗
2 , we have

σ�
w2 = σ∗

3 · (σ∗
1)

−αvt
∗
2−αw = σ∗

3 · (vt
∗
2w)−k = ga2 · (u′

∏

i∈T �

ui)
�,

where T � ⊂ {1, 2, . . . , n} is the set of indices such that G(M�)[i] = 1, and
G(M�)[i] is the i-th bit of G(M�).
The probability of BI’s success in forging a Waters signature is the same as
that of AI’s success in outputting a forgery of Type I. The running times of
AI and BI are almost the same except for 2qs exponentiation computations
in simulation. �
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