
Preimage Attacks on Feistel-SP Functions:

Impact of Omitting the Last Network Twist

Yu Sasaki

NTT Secure Platform Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. In this paper, generic attacks are presented against hash
functions that are constructed by a hashing mode instantiating a Feistel
or generalized Feistel networks with an SP-round function. It is observed
that the omission of the network twist in the last round can be a weakness
against preimage attacks. The first target is a standard Feistel network
with an SP round function. Up to 11 rounds can be attacked in generic
if a condition on a key schedule function is satisfied. The second target
is a 4-branch type-2 generalized Feistel network with an SP round func-
tion. Up to 15 rounds can be attacked in generic. These generic attacks
are then applied to hashing modes of ISO standard ciphers Camellia-128
without FL and whitening layers and CLEFIA-128.

Keywords: Feistel, generalized Feistel, SP round function, hashing
modes, meet-in-the-middle attack, preimage attack, Camellia, CLEFIA.

1 Introduction

Designing secure and efficient symmetric-key primitives is a long-term challenge
in the cryptographic community. One of the most successful designs is AES [7,28].
Since then, many designs use an AES-based transformation as a core of their
algorithms. An unique design philosophy of AES is the omission of the diffusion
called MixColumns in the last round. The purpose of this design is making the
encryption and decryption algorithms symmetric, while it does not lower the
provable security bound against differential and linear cryptanalysis. However,
the omission impacts to the security for other cryptanalytic approaches. Dunkel-
man and Keller discussed its impact in [8]. Sasaki also showed that the omission
could be exploited by an attacker in several hashing modes [21].

Another widely used design approach is the Feistel network, which was firstly
used in DES [5], and the generalized Feistel network (GFN) [29]. The computa-
tion structures of Feistel network and 4-branch type-2 GFN are shown in Fig. 1.
In the Feistel network, the data is separated into the left and right halves L‖R,
and then R is updated by R ⊕ F (k, L), where F is called a round function
and k represents a subkey. Finally, the left and right halves are exchanged, i.e.,
R⊕F (k, L)‖L. The ciphertext is computed by iterating this transformation sev-
eral times. As shown in Fig. 1, several designs omit the network twist in the last

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 170–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Preimage Attacks on Feistel-SP Functions 171

Round 
function

k

Round 
function

k

Round 
function

k

Network twist is omitted in the last round

Fig. 1. Left: sketch of Feistel network, Right: sketch of 4-branch type-2 GFN

round, for example, DES [5] and ISO standard ciphers Camellia [2,12], CLEFIA
[27,13], and HIGHT [10,12]. The omission of the last network twist makes the
encryption and decryption algorithms symmetric.

Here, we raise a simple question; What is the impact of omitting the last
network twist in the Feistel network and GFN with respect to the security? This
paper answers this question by showing an attack against Feistel based hash
functions that works more efficiently when the last network twist is omitted.

One may say that analyzing hash functions constructed by a Feistel cipher,
especially for dedicated algorithms such as Camellia and CLEFIA, is meaningless
unless someone develops a system that actually implements their hashing modes.
However, we believe such analysis is important from the following reason.

Non-cryptographic experts do not always tell cryptographers which hash
function algorithm they implemented. Such information is sometimes
never opened. Thus, it is important for cryptographers to prepare for the
potential use by non-experts. Hashing modes based on an n-bit block-
cipher, e.g. the Matyas-Meyer-Oseas (MMO) mode [16, Algorithm 9.41],
is internationally standardized by ISO [11]. Camellia and CLEFIA are
also internationally standardized by ISO [12,13]. MMO-Camellia and
MMO-CLEFIA are important candidates for the potential use by non-
experts because giving a guideline of good technology to non-experts is
one of the purposes of the standardization.

So far, several researchers have studied the security of Feistel functions. Knud-
sen and Rijmen showed a collision attack for 7 rounds in the MMO mode
[15]. Sasaki and Yasuda analyzed the Feistel network with an Substitution-
Permutation (SP) round function. They showed a collision attack for a half
of the state for 11 rounds in the MMO mode [24]. The attack was later im-
proved and implemented on reduced-round Camellia [23]. Moon et al. presented
preimage attacks on Feistel network, GFN, and Misty network with an SP round
function [17]. They attacked 6 rounds of a Feistel-SP function and 9 rounds of
a 4-branch type-2 GFN-SP function.

Our Contributions. In this paper, we present meet-in-the-middle (MitM)
preimage attacks against hash functions that are constructed by the MMO or
other Preneel-Govaerts-Vandewalle (PGV) modes [20] instantiating a Feistel or
4-branch Type-2 GFN ciphers with an SP-round function. Regarding the Feistel



172 Y. Sasaki

network, 11 rounds can be attacked when an attacker can control several bits of
the last round subkey by choosing the first round subkey. Regarding 4-branch
type-2 GFN, 15 rounds can be attacked when the relation between the first-
round and the last-round subkeys is random. If the last network twist is not
omitted. the number of attacked rounds is 6 and 10 for the Feistel and 4-branch
type-2 GFN, respectively,

The MitM attack separates the target algorithm into two parts called forward
chunk and backward chunk so that each chunk includes several bits which are
independent of the other chunk. Such bits are called free bits. So far, there are
two types of the MitM attacks. One is setting the free bits in the key and the
other is setting the free bits in the internal state. In this paper, we take the
second approach.1 Note that, during the computation of one chunk, all previous
work treat the free bits for the other chunk as unknown.

Our attacks are based on the following two ideas. Note that these ideas are
not specific for SP-round functions.

1. The omission of the last network twist can be exploited by the splice-and-cut
technique [3]. When the last and then first rounds are computed in this order,
the input value to the round function do not change. Therefore, if the subkey
values are identical, the impact of these two rounds cancel each other. The
same situation also occurs between the second last and the second rounds.
In the hash function, the key value can be chosen by the attacker and thus
the round-shrink can be caused deliberately. Note that the cancellation of
the round function was exploited by Gauravaram et al. [9]. Our discovery
is that the cancellation gives more impacts when the last network twist is
omitted.

2. During the computation of one chunk, free bits for the other chunk do not
have to be completely independent as long as they linearly relate to the
computation. Therefore, for the computation of each chunk, we trace how
the free bits for the other chunk relate rather than treat them as unknown
immediately. Our attack on 4-branch type-2 GFN traces the linearity over
10 rounds, and thus the idea works efficiently.

We apply these techniques to block-ciphers Camellia-128 without the FL and
whitening layers and CLEFIA-128 in hashing modes. Camellia is a Feistel-SP
cipher but its P-layer does not satisfy the maximum branch number. Thus, the
attack can be extended compared to the generic case. We show an attack up to 13
rounds of Camellia-128 hashing modes. CLEFIA adopts 4-branch Type-2 GFN
but uses two different diffusion matrices for the diffusion switching mechanism
[25,26]. This increases the security and thus the attack becomes worse than the
generic case. We show an attack up to 12 rounds of CLEFIA-128 hashing modes.

1 Setting free bits in the key is impossible without defining a key schedule algorithm.



Preimage Attacks on Feistel-SP Functions 173

2 Preliminaries

2.1 Specification of Camellia

Camellia was jointly designed by NTT and Mitsubishi Electric Corporation. It
is widely standardized or recommended, e.g., ISO [12], NESSIE [19], and CRYP-
TREC [6]. This paper attacks Camellia-128, where both of the key and block
sizes are 128 bits. We attack a weak variant of Camellia-128 where computations
called FL and whitening layers are omitted.

LetM andK be a 128-bit plaintext and a secret key, respectively. Eighteen 64-
bit round keys k0, . . . , k17 are generated from K. Let XL

r and XR
r (0 ≤ r ≤ 18)

be left and right 64-bits of the internal state in each round. The plaintext is
loaded into XL

0 ‖XR
0 . Then, XL

r = XR
r−1 ⊕ F (XL

r−1, kr−1) and XR
r = XL

r−1 for
1 ≤ r ≤ 17 is computed up to the second last round. In the last round, The
ciphertext XL

18‖XR
18 is computed by XL

18 = XL
17 and XR

18 = XR
17 ⊕ F (XL

17, k17),
namely, the last network twist is omitted.

The key schedule takes a 128-bit key K as input and firstly produces another
128-bit value KA. We later analyze subkey values k0, k1, k11, and k12. These
subkeys are defined as k0‖k1 = KA, k11 is the right half of (KA ≪ 60), and k12
is the left half of (K ≪ 94).

The round function consists of a 64-bit subkey addition, S-box transformation,
and a diffusion called P-layer. The size of each S-box is 8 bits, and thus 8 S-boxes
are applied. Let (z0‖z1‖ · · · ‖z7) be 64-bit values input to the P-layer. The output
(z′0‖z′1‖ · · · ‖z′7) is computed as follows. Here, z[s, t, u, · · · ] means zs⊕zt⊕zu⊕· · · .
The branch number of P is only 5. This is different from the case of an MDS
matrix multiplication.

z′0 = z[0, 2, 3, 5, 6, 7], z′2 = z[0, 1, 2, 4, 5, 7], z′4 = z[0, 1, 5, 6, 7], z′6 = z[2, 3, 4, 5, 7],

z′1 = z[0, 1, 3, 4, 6, 7], z′3 = z[1, 2, 3, 4, 5, 6], z′5 = z[1, 2, 4, 6, 7], z′7 = z[0, 3, 4, 5, 6].

2.2 Specification of CLEFIA

CLEFIA is a block-cipher proposed at FSE 2007 by Shirai et al. [27]. It is stan-
dardized by ISO [13] as a lightweight cipher. In this paper, we attack CLEFIA-
128, where both of the block size and the key size are 128 bits. It adopts the
type-2 generalized Feistel structure with 4 branches and consists of 18 rounds.
Two round functions FL and FR consist of a 32-bit subkey addition, an S-box
transformation, and a multiplication by an MDS matrix. The size of each S-box
is 8 bits, and thus 4 S-boxes are applied in each of the left and right functions.
MDS matrices for the left and right functions are different.

Let M and K be a 128-bit plaintext and a secret key, respectively. Thirty-
six 32-bit subkeys k0, . . . , k35 and four 32-bit whitening keys wk0, wk1, wk2, wk3
are generated from K. Let X0

r ‖X1
r‖X2

r‖X3
r (0 ≤ r ≤ 18) be an input internal

state in each round. The plaintext is loaded into X0
0‖X1

0‖X2
0‖X3

0 . Then, the
second and fourth words are updated by the pre-whitening operation, i.e., X1

0 ←



174 Y. Sasaki

X1
0 ⊕wk0 and X3

0 ← X3
0 ⊕wk1. Then, internal state is updated by the following

computation up to the second last round (for 1 ≤ r ≤ 17);

X0
r = X3

r−1 ⊕ FR(X2
r−1, k2r−1), X1

r = X0
r−1,

X2
r = X1

r−1 ⊕ FL(X0
r−1, k2r−2), X3

r = X2
r−1.

In the last round, X0
18‖X1

18‖X2
18‖X3

18 is computed by X0
18 = X0

17, X
1
18 = X1

17 ⊕
FL(X0

17, k34), X
2
18 = X2

17, X
3
18 = X3

17 ⊕ FR(X2
17, k35), namely, the last net-

work twist is omitted. Finally, the second and fourth words are updated by
the post-whitening operation, i.e., X1

18 ← X1
18⊕wk2 and X3

18 ← X3
18⊕wk3, and

X0
18‖X1

18‖X2
18‖X3

18 is output as the ciphertext.

2.3 Feistel and 4-Branch Type-2 GFN with an SP Round Function

In this paper, we firstly analyze generic Feistel and 4-Branch Type-2 GFN struc-
tures with an SP round function. Analyzing such generic structure can be seen
many papers [4,14,17,23,24,26]. These structures are generally represented by
several parameters i.e., the block size N , the S-box size c, and the number of
S-boxes in each round b. The attack strategy and efficiency depends on these pa-
rameters. In this paper, to make a comparison of attacks against Camellia and
CLEFIA clear, we fix the parameters to (N, c, b) = (128, 8, 8) for the standard
Feistel and (N, c, b) = (128, 8, 4) for 4-branch type-2 GFN.

An SP round function consists of three operations: subkey addition, S-layer,
and P-layer. In the subkey addition, a subkey is XORed to the state. In the
S-layer, b S-boxes with the size of c bits are applied. In the P-layer, a linear
computation whose branch number is b+1 is performed. An MDS multiplication
is an example of the operation. We assume that all round functions are identical.
We also assume that whitening operations are not performed.

Hereafter we use the notations Si and Pi for the standard Feistel to represent
the state immediately after the S-layer and P-layer in round i, respectively.
For 4-branch type-2 GFN, we use the notations SL

i , S
R
i , P

L
i , and PR

i to further
distinguish the left and right round functions.

2.4 Domain Extension and Hashing Modes

Main targets of this paper are compression functions which are constructed by
PGV modes with a Feistel-SP or GFN-SP cipher. For simplicity, we explain the
attack on the compression function constructed by the Davies-Meyer mode [16,
Algorithm 9.42] or MMO mode, in which the compression function output is
computed by an XOR of plaintext and ciphertext.

Suppose that the compression function is constructed by the Davies-Meyer
mode and the hash function is constructed by the narrow-pipe Merkle-Damg̊ard
domain extension. It is well known that a pseudo-preimage attack on the com-
pression function with a complexity of 2x can be converted to a preimage attack
on the hash function with a complexity of 2((x+N)/2)+1 [16, Fact 9.99]. If the
MMO mode is adopted, the attack is converted to a second preimage attack on
the hash function with the same complexity.



Preimage Attacks on Feistel-SP Functions 175

k6

P

S6

k7

P

S7

k8

P

S8

t7

P7
0-2

P7
5-7

X6
L X6

R

X7
L X7

R

X8
L X8

R

X9
L X9

R

backword
chunk

forword
chunk

initial 
structure

Fig. 2. 3 rounds including the 1-round ini-
tial structure

k9

F

k10

X10
L X10

R

forword
chunk

X9
L X9

R

F
HL HR

k0
X0

L X0
R

F

k1

F

X2
L X2

R

X1
L X1

R

k0=k10⊕HL

cancel

(=X9
L⊕HR)

k1=k9⊕HR

cancel

(=X9
R⊕HL) (=X9

L⊕HR)

Fig. 3. 4-round shrink for generic Feistel

3 Preimage Attacks on Feistel-SP and GFN-SP Functions

3.1 Attacks on 11-round Feistel-SP Compression Function

The attack is a MitM attack with the splice-and-cut [3], initial structure [22],
and indirect-partial matching [1]. This attack only can work if a condition on the
key schedule function is satisfied. (Later we show the condition can be satisfied
for 13-round Camellia-128.) The attacked rounds are from round 0 to round 10.

The attacker firstly searches for a key value satisfying the condition. Then,
for the fixed key value, the MitM attack is performed. During the MitM attack,
4 rounds will be shrunken when we analyze the last and first rounds sequentially
with the splice-and-cut technique. The valid pair can be identified by efficiently
matching the results from two chunks with skipping several rounds.

1-round Initial Structure Plus 2 Rounds (Rounds 6 to 8). The attack
starts from round 7 by constructing the initial structure. The detailed construc-
tion is given in Fig. 2. Throughout this paper, free bytes for the forward chunk
and values depending of them are shown in blue, while free bytes for the back-
ward chunk and values depending of them are shown in red. Grey bytes are
fixed during the MitM attack. In the computation for each chunk, free bytes
of the other chunk are regarded as unknown value which are shown with blank
squares. Although one of the technical contributions of this paper is tracing lin-
ear relations of free bytes for the other chunk, this technique does not lead to
any advantage for the case of a generic Feistel-SP. Hence, in this attack, to make
the attack simple, we do not trace linear relations.

The computation for each chunk starts from choosing the value of the free
bytes. The free bytes for the forward chunk and backward chunk are the last
three bytes of XL

7 and the first three bytes of XL
7 , respectively. Because P

is a linear operation, the impact from the free bytes for each chunk, denoted
by P 0−2

7 and P 5−7
7 can be computed independently, i.e., P 0−2

7 = P
(
S(XL

7 [0]⊕



176 Y. Sasaki

k7[0])‖S(XL
7 [1]⊕k7[1])‖S(XL

7 [2]⊕k7[2])‖0‖0‖0‖0‖0
)
and P 5−7

7 = P
(
0‖0‖0‖0‖0‖

S(XL
7 [5]⊕k7[5])‖S(XL

7 [6]⊕k7[6])‖S(XL
7 [7]⊕k7[7])

)
. Therefore, two chunks can

be computed independently. In Fig. 2, one round computation is added for both
chunks after the 1-round initial structure.

4-round Shrink (Rounds 9, 10, 0, and 1). We continue the forward chunk
after Fig. 2. The next 4 rounds are given in Fig. 3. The splice-and-cut technique
is used, namely, after we obtain XL

11‖XR
11 we obtain the values of XL

0 ‖XR
0 by

taking an XOR with the hash value denoted by HL‖HR. The analysis for these 4
rounds does not use the property of an SP-round function. Therefore, we describe
the round function in a more generic form.

With a straight-forward method, the forward chunk cannot continue even two
rounds because the unknown three bytes at XL

9 makes all bytes of XL
10 unknown

and all bytes of XR
11 unknown. However, we observe that, with the help of the

omission of the network twist after round 10, we can cancel the round function
output in round 10, F (XL

10⊕k10), by the one in round 0, F (XL
0 ⊕k0), with setting

k0 = k10 ⊕HL. This is because F (XL
0 ⊕ k0) = F ((XL

10 ⊕HL)⊕ (k10 ⊕HL)) =
F (XL

10 ⊕ k10). Then, we can preserve the known bytes of XL
9 in XL

1 . Moreover,
because XL

1 and XL
9 have the relation HR, we can cancel the impact of round 9

with the one in round 1 by setting k1 = k9 ⊕HR.
In the end, after 4 rounds, XL

2 and XR
2 become XR

9 ⊕ HL and XL
9 ⊕ HR,

respectively. This is stronger than just skipping 4 rounds because the unknown
bytes (XL

9 ) are moved to the right half of the state (XR
2 ) which is not used to

update the next round.
We set two N/2-bit conditions on the key. If the output of the key schedule

function is uniformly distributed, satisfying this condition will take the same cost
as the brute-force preimage attack. However, satisfying this condition is often
possible because the key schedule function is usually light. For example, if some
bits of the secret key are used as subkeys e.g. DES [5] and XTEA [18], satisfying
the condition is trivial. Moreover, in some ciphers, the last-round subkey can be
directly generated from the secret key for achieving on-the-fly key generation for
decryption, e.g. HIGHT [10]. In such a case, the condition is easily satisfied.

4-round Match (Rounds 2 to 5). The remaining 4 rounds are shown in
Fig. 4. If we compute 2 rounds in backwards, all bytes become unknown due to
the three unknown bytes of XR

6 . Hence, the direct match cannot be applied.
We observe that the computation over three rounds denoted by bold lines

in Fig. 4 is linear. The equation is S5 ← P−1(P (S3) ⊕ XR
3 ⊕ XL

6 ). By apply-
ing a linear transformation, this part can be converted into a partial match. A
simplified description of these computations is given in Fig. 5. The transformed
equation is S5 ← S3 ⊕ P−1(XR

3 ) ⊕ P−1(XL
6 ). Note that the attacker knows all

values of XR
3 and XL

6 . Hence, P
−1(XR

3 ) and P−1(XL
6 ) can be computed in each

chunk independently of the other chunk. In more details, in the forward chunk,
we compute S3 ⊕ P−1(XR

3 ) and store them in a table. In the backward chunk,



Preimage Attacks on Feistel-SP Functions 177

k2

P

S2

k3

P

S3

k4

P

S4

X2
L X2

R

X3
L X3

R

X4
L X4

R

backword
chunk

forword
chunk

X5
L X5

R

k5

P

X6
L X6

R

S5

Fig. 4. The match over 4 rounds

P

X3
R

S3

X6
L

S5

X3
R

S3

X6
L

S5P-1 P-1

Linear Transform

2-byte match

P-1

Fig. 5. Detailed matching procedure

we compute S5⊕P−1(XL
6 ) and check the match. Because 2 bytes are overlapped

between these values, 2-byte match can be performed.

Attack Procedure. The attack procedure for a target HL‖HR is as follows.

1. Find a key value K such that k0 = k10⊕HL and k1 = k9⊕HR are satisfied.
2. For all choices of the ten fixed-byte values, XL

7 [3, 4] and t7, do as follows.
3. Choose three free bytes for the forward chunk, XL

7 [5, 6, 7], and compute the
value of S3 ⊕ P−1(XR

3 ). Store the results in a table.
4. Choose three free bytes for the backward chunk, XL

7 [0, 1, 2], compute the
value of S5 ⊕ P−1(XL

6 ), and check if the same value exists in the table with
respect to the 3rd and 4th bytes.

5. If the match is found, check the match of all bits with the corresponding free
bytes for both chunks. If all bits match, output it as a pseudo-preimage.

The complexity for Step 1 depends on the key schedule function. Let Tkey be the
complexity of Step 1. Step 2 iterates the following steps 280 times. For each value
of Step 2, Step 3 is iterated 224 times, and requires 224 amount of memory. Step 4
is also iterated 224 times. The sum of the complexities for Steps 3 and 4 is about
224 11-round compression function computations. Strictly speaking, the attacker
does not have to compute the shrunken 4 rounds. Here, we ignore its impact.
After Step 4, 224+24−16 = 232 values will remain. These values are examined in
Step 5 that requires 232 11-round compression function computations. Finally,
this 232 computations are iterated by 280 times due to Step 2, which results in
2112 11-round compression function computations. Note that, for a fixed key,
all output values of the compression function cannot be produced. Hence, the
success probability of the attack is 1− 1/e ≈ 0.63. Note that the attack can be
iterated as long as several key values satisfying the conditions are available.

In summary, the total computational complexity is Tkey + 2112 computations
and the memory requirement is 224 internal-state values. Suppose that Tkey is



178 Y. Sasaki

k18
P

S9
LX9

0 X9
1

k19
P

S9
RX9

2 X9
3

k20
P

S10
LX10

0 X10
1

k21
P

S10
RX10

2 X10
3

k22
P

S11
LX11

0 X11
1

k23
P

S11
RX11

2 X11
3

k24
P

S12
LX12

0 X12
1

k25
P

S12
RX12

2 X12
3

X13
0 X13

1 X13
2 X13

3

ba
ck

w
or

d
fo

rw
or

d
in

iti
al

 s
tr

uc
tu

re t10
L

P10
L0-2

P10
L3

Fig. 6. 4 rounds with 2-round initial
structure

k26
F

k27

X14
0 X14

1 X14
2 X14

3

X0
0 X0

1 X0
2 X0

3

X13
0 X13

1 X13
2 X13

3

fo
rw

or
d

ch
un

k

F

k28
F

k29
F

k0
F

k1
F

k2
F

k3
F

H0 H1 H2 H3

X1
0 X1

1 X1
2 X1

3

X2
0 X2

1 X2
2 X2

3

k0=k28⊕H0 k1=k29⊕H2

k2=k27⊕H3

(=X13
0⊕H1)

(=X13
0⊕H1)

(=X13
2⊕H3)

(=X13
2⊕H3) (=X13

3⊕H0)

Fig. 7. 4-round shrink for generic
GFN-SP

much smaller than 2112 11-round computations. Then, the attack is converted
to the preimage attack or the second preimage attack on the hash function with
a complexity of 2((112+128)/2)+1 = 2121 computations.

Let us discuss the comparison with the case where the last network twist is
not omitted. In this case, the cancellation property cannot be exploited in the
MitM attack. We focus on the identical pattern of the known byte positions
between (XL

9 , X
R
9 ) and (XL

3 , X
R
3 ). This indicates that if we remove rounds 9,

10, 0, 1, and 2, in total 5 rounds, the MitM attack can work. Hence, the number
of attacked rounds is 6, which is significantly smaller than the case without the
last network twist.

3.2 Attacks on 15-round Type-2 GFN-SP Compression Function

2-round Initial Structure Plus 2 Rounds (Rounds 9 to 12). The attack
starts from round 10 by constructing a 2-round initial structure. The detailed
construction is given in Fig. 6. Hereafter, yellow bytes represent the ones that
are linearly dependent of free bytes for the other chunk.

Inside the 2-round initial structure, we need to ensure that the impact from
two chunks do not mix. Here, we explain the computation of each chunk.

Forward Chunk: The free byte for the forward chunk (blue) is X0
10[3]. In

round 10, Because P is linear, the impact from X0
10[3] denoted by PL3

10 is
independently computed from the backward chunk i.e., PL3

10 = P
(
0‖0‖0‖

S(X0
10[3]⊕ k20[3])

)
. In round 11, suppose that the value of PL3

11 is indepen-
dent of the backward chunk. Then, the output of round 11 is computed by
simply computing the round function.

Backward Chunk: The free bytes for the forward chunk (red) are X1
12[2] and

X1
12[3]. We only choose 1-byte (256) possibilities for these two bytes so that

PL3
11 in round 11 can be a fixed value. In details, we first choose the value

of SL
11[2] and then choose the corresponding SL

11[3] that makes PL3
11 be a

predetermined fixed value. The value of SL
11[3] depends on the specifica-

tion of P . In general, we can have unique candidate of SL
11[3] due to the



Preimage Attacks on Feistel-SP Functions 179

linearity of P . After we choose SL
11[2], S

L
11[3], we compute X1

12[2], X
1
12[3] by

XORing k22[2], k22[3]. In round 10, PL0−2
10 can be computed independently

of the forward chunk as explained before. In the end, X1
10 can be computed

independently of the forward chunk.

In Fig. 6, one round computation is added for both chunks after the 2-round
initial structure. Note that X2

13[2, 3] is linearly affected by the free bytes for the
backward chunk, X1

12[2, 3]. Similarly, X3
9 [3] is linearly affected by the free byte

for the forward chunk, X0
10[3].

4-round Shrink (Rounds 13, 14, 0 to 2). 4 rounds after Fig. 6 is shown in
Fig. 7. After we obtain X0

15‖ · · · ‖X3
15, we obtain X0

0‖ · · · ‖X3
0 by taking an XOR

with the hash value H0‖ · · · ‖H3. The analysis does not use the property of an
SP-round function, thus the round function is described in a more generic form.

We observe that, with the help of the omission of the network twist after
round 14, we can cancel the round function output in round 14, F (X0

14 ⊕ k28)
and F (X2

14 ⊕ k29), by the ones in round 0, F (X0
0 ⊕ k0) and F (X2

0 ⊕ k1), with
setting k0 = k28 ⊕ H0 and k1 = k29 ⊕ H2. Then, we can preserve the known
bytes. Moreover, because X0

1 and X2
13 have the relation H3, we can cancel the

impact of F (X2
13 ⊕ k27) in round 13 by setting k2 = k27 ⊕H3.

Similar to the attack on the Feistel network in Sect. 3.1, byte positions affected
by the other chunk moved from the input side to the output side of the round
function. This helps the attacker in subsequent rounds. Note that X1

2 [2, 3] is still
only linearly affected by the free bytes for the backward chunk.

Different from the attack on a Feistel network, we only set three N/4-bit
conditions on the subkeys. These 3N/4-bit relations can be satisfied by the brute
force search with a complexity of 23N/4 key schedule function.

7-round Match (Rounds 3 to 9). The remaining 7 rounds are shown in Fig. 8.
If we compute 3 rounds in backwards and 4 rounds in forwards, the direct match
cannot be applied. We then use the linear computation over three rounds denoted
by bold lines in Fig. 8. The equation is SR

8 ← p−1(P (SL
6 )⊕X1

6⊕X0
9 ). A simplified

description is given in the top of Fig. 9. By applying a linear transformation,
this part can be converted into a partial match. The transformed equation is
SR
8 ← SL

6 ⊕ P−1(X1
6 ) ⊕ P−1(X0

9 ). X
1
6 consists of the values dependent of the

forward chunk and the free bytes for the backward chunk, X1
12. This is shown

in the middle of Fig. 9. Then, we further apply a transformation as the bottom
of Fig. 9, and perform the 3-byte match. In more details, in the forward chunk,
we compute P−1(X1

6 ) and store them in a table. In the backward chunk, we
compute SR

8 ⊕P−1(S0
9)⊕SL

6 ⊕P−1(X1
12) and check the match. Because 3 bytes

are overlapped, 3-byte match can be performed.

Attack Summary. Due to the limited space, if omit the detailed attack
procedure. In summary, the total computational complexity is 2120 15-round
computations and 296 key-schedule computations. The memory requirement is



180 Y. Sasaki

X
9

0 X
9

1 X
9

2 X
9

3

b
a

c
k
w

o
rd

ch
u

n
k

fo
rw

o
rd

ch
u

n
k

X
2

0 X
2

1 X
2

2 X
2

3

k
4

PS
k

5

PS

X
3

0 X
3

1 X
3

2 X
3

3

k
6

PS
k

7

PS

X
4

0 X
4

1 X
4

2 X
4

3

k
8

PS
k

9

PS

X
5

0 X
5

1 X
5

2 X
5

3

k
10

PS
k

11

PS

X
6

0 X
6

1 X
6

2 X
6

3

k
12

PS
k

13

PS

X
7

0 X
7

1 X
7

2 X
7

3

k
14

PS
k

15

PS

X
8

0 X
8

1 X
8

2 X
8

3

k
16

PS
k

17

PS

S
6

L

S
8

R

Fig. 8. 7 rounds including the matching
procedure

X6
1

S6
L

X9
0

S8
R

X6
1

S6
L

X9
0

S8
R

P P-1

P-1 P-1

X12
1

X6
1

S6
L X9

0

S8
R

3-byte match

P-1

X12
1

P-1

P-1

Linear Transform

Linear Transform

Fig. 9. Details of the matching
procedure

28 internal state. The attack is converted to the preimage or the second preim-
age attack on the hash function with a complexity of 2((120+128)/2)+1 = 2125

computations. Similarly to Sect. 3.1, the success probability is 0.63. The attack
can be iterated as long as several key values are available.

Let us discuss the comparison with the case where the last network twist is
not omitted. Known byte positions between (X0

14, . . . , X
3
14) and (X0

4 , . . . , X
3
4 )

are identical. Therefore if we remove rounds 14, 0, 1, 2, and 3, in total 5 rounds,
the MitM attack can work. Hence, the number of attacked rounds is 10, which
is significantly smaller than the case without the last network twist.

4 Application to 13-round Weakened Camellia-128

We analyze hashing modes of Camellia-128 without the FL and whitening layers.
Because the P-layer of Camellia does not satisfy the maximum branch number,
the attack is extended by 2 rounds compared to the generic case.

2-round Initial Structure. 2-round initial structure can be constructed by
exploiting a small branch number of the Camellia’s P-layer. 4 rounds, from round
7 to 10, are shown in Fig. 10. The initial structure is located in round 8 and 9.

The forward chunk starts from a single free byte of XL
8 [7]. During round 8, it

affects the single byte of S8[7]. For the output value of P in rounds 8 and 9, the
impact from the first 7 bytes denoted by P 0−6

8 , P 0−6
9 can be independently com-

puted of the impact from the 7th bytes denoted by P 7
8 , P

7
9 . S8[7] gives influence

to 6 bytes of XL
8 [0, 1, 2, 4, 5, 6]. The important point here is that XL

9 [7], which
is later used as a free variable for the backward chunk, is not affected by XL

8 [7].
XL

8 [7] also affects to a single byte of XR
9 [7]. We later show that this byte is not



Preimage Attacks on Feistel-SP Functions 181

k7

P

S7

k8

P

S8

k9

P

S9

X7
L X7

R

X8
L X8

R

X9
L X9

R

ba
ck

w
or

d
fo

rw
or

d

X10
L X10

R

k10

P

X11
L X11

R

S10

t8

t9

P8
0-6

P8
7

P9
7

P9
0-6

in
iti

al
 s

tr
uc

tu
re

Fig. 10. Initial structure for Camellia

k2 F

k3 P

S3

k5
P

S5

X2
L X2

R

X3
L X3

R

X5
L X5

R

ba
ck

w
or

d
ch

un
k

fo
rw

or
d

ch
un

k

X6
L X6

R

k6
P

X7
L X7

R

S6

k4
P

X4
L X4

RS4

Fig. 11. Matching procedure for
Camellia

affected by the free byte of the backward chunk. Computations during round 9
and round 10 are straight-forward.

The backward chunk starts from a single free byte of XR
10[7]. During round

9, it affects the single byte of S9[7]. Then, S9[7] gives influence to 6 bytes of
XR

9 [0, 1, 2, 4, 5, 6]. It surely does not affect to XR
9 [7], which is the free byte for

the forward chunk. XR
10[7] also affects to XL

9 [7]. As mentioned in the previous
paragraph, XL

9 [7] is not affected by the forward chunk. Thus, no contradiction
occurs. Computations during round 8 and round 7 are straight-forward.

Matching Procedure. The 4-round shrink (round 11 to round 12 and round 0
to round 1) exploiting the omission of the last network twist is exactly the same
as the attack on a generic case in Sect. 3.1. After 4 rounds, XL

2 and XR
2 become

XR
11 ⊕HL and XL

11 ⊕HR, respectively.
We match the results of two chunks in the remaining 5 rounds (round 2 to

round 6). These rounds are described in Fig. 11. The form of the match is
the same as Fig. 4, hence we omit the details. The equation for the match is
written as S5 = S3 ⊕ P−1(XR

3 ) ⊕ P−1(XL
6 ⊕ XL

8 [7]), thus S5 ⊕ P−1(XL
6 ) =

S3 ⊕ P−1(XR
3 ⊕ XL

8 [7]). 2 bytes of the left-hand-side and 7 bytes of the right-
hand-side can be independently computed, and we can match 1 byte of them.

Analysis of the Key Schedule. For the 4-round shrink, we need to satisfy
two conditions of subkeys; k0 = k12 ⊕ HL and k1 = k11 ⊕ HR. According to
the specification, k0‖k1 = KA, k11 is the right half of (KA ≪ 60), and k12 is
the left half of (K ≪ 94). Our strategy is choosing KA so that the condition
k1 = k11 ⊕ HR is deterministically satisfied, and satisfy k0 = k12 ⊕ HL with
probability 2−64. The details of the analysis is as follows. See its illustration in
Fig. 12. The goal is finding 264 128-bit values KA that satisfy k1 = k11 ⊕HR,
where k1 is the right half of KA, and k11 is the right half of (KA ≪ 60). For
simplicity, we assume HR = 0 in below. This is trivially extended for any HR.



182 Y. Sasaki

KA

KA
<<<60

k1

k11

2. copy3. copy

1. Choose k1
4. Choose undermined bits

Fig. 12. Analysis of Camellia key schedule function. Each cell represents 4 bits.

1. Choose a 64-bit value of the right half of KA so that the most significant 4
bits and the the least significant 4 bits are identical.

2. Copy the remaining 60 bits of k1 to the corresponding bits of k11. These also
fix 60 bits of KA.

3. The remaining 4 bits of KA can be any value. In other words, we obtain 24

key values KA that satisfy k1 = k11.
4. Finally, we have 60-bit choices for the value of the right half of KA fixed at

Step 1. Thus, we can find 24 · 260 = 264 values of KA that satisfy k1 = k11.

From 264 values of KA with k1 = k11 ⊕HR, we will find one that also satisfies
k0 = k12 ⊕HL. Note that the success probability of the key search is 0.63, and
we cannot expect more than 1 key.

Summary. We first search for a key value satisfying two conditions for the 4-
round shrink. This is done with a complexity of 264 key schedule function. We
then start the MitM attack. Both of the forward and backward chunks include
1 free byte, and we match 1 byte of the results from two chunks. Hence, the
pseudo-preimage is found faster than the brute force attack by a factor of 28,
which is 2120 computations. The success probability is about 0.632 ≈ 0.40 due
to the key search phase and the MitM phase. If it succeeds, the pseudo-preimage
is converted to the preimage or the second preimage attack on a hash function
with a complexity of 2125.

5 Application to 12-round CLEFIA-128

Because F functions are different between the left half and the right half in CLE-
FIA, the number of attacked rounds is reduced by 3 compared to a generic case.
Instead, conditions for subkeys is reduced from 3N/4 to N/4 bits. Interestingly,
the whitening operations do not impact to the attack very much.

2-round Initial Structure. The construction of the initial structure is basi-
cally the same as the one in Fig. 6. However, because the number of attacked
rounds changes, we change the starting position of the backward chunk from the
left half to the right half. We also increase the number of free bytes from 1 to
2. The detailed construction for 4 rounds, from round 6 to round 9, is shown in
Fig. 13. Due to the similarity to Fig. 6, we omit the detailed explanation.



Preimage Attacks on Feistel-SP Functions 183

k10
PL

S6
LX6

0 X6
1

k11
PR

S6
RX6

2 X6
3

k12
PL

S7
LX7

0 X7
1

k13
PR

S7
RX7

2 X7
3

k14
PL

S8
LX8

0 X8
1

k15
PR

S8
RX8

2 X8
3

k16
PL

S9
LX9

0 X9
1

k17
PR

S9
RX9

2 X9
3

X10
0 X10

1 X10
2 X10

3

ba
ck

w
or

d
fo

rw
or

d
in

iti
al

 s
tr

uc
tu

re

t8
R

Fig. 13. 2-round initial structure for
CLEFIA-128

k18
FL

k19

X11
0 X11

1 X11
2 X11

3

X0
0 X0

1 X0
2 X0

3

X10
0 X10

1 X10
2 X10

3

FR

k20
FL

k21
FR

k0
FL

k1
FR

k2
FL

k3
FR

H0 H1 H2 H3

X1
0 X1

1 X1
2 X1

3

X2
0 X2

1 X2
2 X2

3

k1=k21⊕H2

(=X10
2⊕H3⊕wk1⊕wk3)

wk0

wk2

wk1

wk3

Fig. 14. 4-round shrink that requires an
n/4-bit condition. The shrink only occurs
in the same function.

4-round Shrink. The cancellation only occurs if the F function in consecutive
two rounds are identical. Hence, we only make the cancellation between FR in
round 11 and FR in round 0 by setting an N/4-bit condition k1 = k21⊕H2. This
makes 32 bits of X0

2 unknown, and the number of attacked rounds is reduced
compared to a generic 4-branch type-2 GFN.

Matching Procedure. Again, the different F functions in the left half and
the right half prevent the efficient matching over 2 P-layers. Hence, we use the
indirect-partial matching technique [1], which enables us to match 4 bytes of the
state. Due to the limited space, we omit the figure, but it can be derived in the
same way as other attacks.

Summary. We first search for a key value satisfying N/4-bit condition for the
4-round shrink. This is done with a complexity of 232 key schedule function.
Note that several keys satisfying the condition can be generated by iterating the
procedure. We then start the MitM attack. Both of the forward and backward
chunks include 2 free bytes, and we match 4 bytes of the results from two chunks.
Hence, the pseudo-preimage is found faster than the brute force attack by a
factor of 216, which is 2112 computations. Because several keys are available,
the success probability can become close to 1. Finally, the pseudo-preimage is
converted to the preimage or the second preimage attack on a hash function
with a complexity of 2121.

6 Concluding Remarks

In this paper, we analyzed hash functions constructed by a generic Feistel and
4-branch type-2 GFN with an SP function. We showed that the omission of the
last network twist can be utilized in the MitM preimage attack. Our attacks can



184 Y. Sasaki

work up to 11 rounds and 15 rounds for a Feistel-SP and 4-branch type-2 GFN-
SP functions respectively under several conditions of the subkey relations. We
then applied our attacks to hashing modes of Camellia-128 and CLEFIA-128.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

3. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

4. Bogdanov, A., Shibutani, K.: Double SP-Functions: Enhanced Generalized Feistel
Networks. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp.
106–119. Springer, Heidelberg (2011)

5. Coppersmith, D.: The data encryption standard (DES) and its strength against
attacks. IBM Journal of Research and Development 38(3), 243–250 (1994)

6. Cryptography Research and Evaluation Committees (CRYPTREC). e-Government
recommended ciphers list (2003)

7. Daemen, J., Rijmen, V.: The design of Rijndeal: AES – the Advanced Encryption
Standard (AES). Springer (2002)

8. Dunkelman, O., Keller, N.: The effects of the omission of last round’s MixColumns
on AES. Inf. Process. Lett. 110(8-9), 304–308 (2010)

9. Gauravaram, P., Leurent, G., Mendel, F., Naya-Plasencia, M., Peyrin, T., Rech-
berger, C., Schläffer, M.: Cryptanalysis of the 10-Round Hash and Full Compression
Function of SHAvite-3-512. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT
2010. LNCS, vol. 6055, pp. 419–436. Springer, Heidelberg (2010)

10. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

11. International Organization for Standardization. ISO/IEC 10118-2:1994, Informa-
tion technology – Security techniques – Hash-functions – Part 2: Hash-functions
using an n-bit block cipher algorithm (2010)

12. ISO/IEC 18033-3:2010. Information technology–Security techniques–Encryption
Algorithms–Part 3: Block ciphers (2010)

13. ISO/IEC 29192-2:2011. Information technology–Security techniques–Lightweight
cryptography–Part 2: Block ciphers (2011)

14. Kang, H., Hong, D., Moon, D., Kwon, D., Sung, J., Hong, S.: Known-key attacks on
generalized Feistel schemes with SP round function. IEICE Transactions 95-A(9),
1550–1560 (2012)

15. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)



Preimage Attacks on Feistel-SP Functions 185

16. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1997)

17. Moon, D., Hong, D., Kwon, D., Hong, S.: Meet-in-the-Middle preimage attacks
on hash modes of generalized Feistel and Misty schemes with SP round function.
IEICE Transactions 95-A(8), 1379–1389 (2012)

18. Needham, R.M., Wheeler, D.J.: TEA extensions. Technical report, Computer Lab-
oratory, University of Cambridge (October 1997)

19. New European Schemes for Signatures, Integrity, and Encryption(NESSIE).
NESSIE PROJECT ANNOUNCES FINAL SELECTION OF CRYPTO ALGO-
RITHMS (2003)

20. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

21. Sasaki, Y.: Meet-in-the-middle preimage attack on AES hashing modes and an
application to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–
396. Springer, Heidelberg (2011)

22. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009)

23. Sasaki, Y., Emami, S., Hong, D., Kumar, A.: Improved known-key distinguishers
on Feistel-SP ciphers and application to Camellia. In: Susilo, W., Mu, Y., Seberry,
J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 87–100. Springer, Heidelberg (2012)

24. Sasaki, Y., Yasuda, K.: Known-key distinguishers on 11-round Feistel and collision
attacks on its hashing modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp.
397–415. Springer, Heidelberg (2011)

25. Shirai, T., Preneel, B.: On Feistel ciphers using optimal diffusion mappings across
multiple rounds. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 1–15.
Springer, Heidelberg (2004)

26. Shirai, T., Shibutani, K.: Improving immunity of Feistel ciphers against differential
cryptanalysis by using multiple MDS matrices. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 260–278. Springer, Heidelberg (2004)

27. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit block-
cipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

28. U.S. Department of Commerce, National Institute of Standards and Technology.
Specification for the ADVANCED ENCRYPTION STANDARD (AES) (Federal
Information Processing Standards Publication 197) (2001)

29. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)


	Preimage Attacks on Feistel-SP Functions: Impact of Omitting the Last Network Twist
	1 Introduction
	2 Preliminaries
	2.1 Specification of Camellia
	2.2 Specification of CLEFIA
	2.3 Feistel and 4-Branch Type-2 GFN with an SP Round Function
	2.4 Domain Extension and Hashing Modes

	3 Preimage Attacks on Feistel-SP and GFN-SP Functions
	3.1 Attacks on 11-round Feistel-SP Compression Function
	3.2 Attacks on 15-round Type-2 GFN-SP Compression Function

	4 Application to 13-round Weakened Camellia-128
	5 Application to 12-round CLEFIA-128
	6 Concluding Remarks
	References




