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Abstract. Xoring the output of k permutations, k > 2 is a very simple
way to construct pseudo-random functions (PRF) from pseudo-random
permutations (PRP). Moreover such construction has many applications
in cryptography (see [2I3/4)5] for example). Therefore it is interesting
both from a theoretical and from a practical point of view, to get precise
security results for this construction. In this paper, we will describe the
best attacks that we have found on the Xor of k random n-bit to n-
bit permutations. When k& = 2, we will get an attack of computational
complexity O(2"). This result was already stated in [2]. On the contrary,
for k > 3, our analysis is new. We will see that the best known attacks
require much more than 2" computations when not all of the 2" outputs
are given, or when the function is changed on a few points. We obtain
like this a new and very simple design that can be very useful when a
security larger than 2" is wanted, for example when n is very small.

Keywords: Pseudorandom functions, pseudorandom permutations,
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1 Introduction

The problem of converting pseudorandom permutations (PRP) into pseudoran-
dom functions (PRF) named “Luby-Rackoff backwards” was first considered in
[3]. This problem is obvious if we are interested in an assymptotical security
model (since a PRP is then a PRF), but not if we are interested in achieving
more optimal and concrete security bounds. More precisely, the loss of security
when regarding a PRP as a PRF comes from the “birthday attack” which can
distinguish a random permutation from a random function of n bits to n bits,
in 22 operations and 22 queries. In [5] (Theorem 2 p.474), it has been proved
that the Xor of k PRP gives a PRF with security at least in O(2 kil"). (For
k = 2 this gives O(23")). Moreover in [2], it has been proved that the Xor of
two PRP gives a PRF with security at least in O(2"/n3) and at most in O(2"),
which is much better than the birthday bound in O(22). Similarly in [8], it has
been proved that in fact the security is at least in (and therefore exactly in)
O(2™) for this problem to distinguish the Xor of two PRP from a PRF. An
interesting question is “Can we hope to get even better bound than O(2") with
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more than two Xor, particularly if not all the 2" inputs/outputs are given to the
cryptanalysis ?” In this paper, we will study this question. Let F} denote the
Xor of k random permutations. Let Gi denote the function F} except on a few
secret (or public) points x; where G(x;) is random (for example it can be only
the point 0). We will distinguish 4 kinds of attack scenarios:

1. The adversary has access to the full codebook of F}, i.e. exactly all the 2"
pairs of function input and function output.

2. The adversary has access to almost, but not all, the entire codebook of Fy,
i.e. to m pairs with m ~ 2" and m < 2".

3. The adversary wants to attack Gy, (instead of Fj) and he has access to the
full codebook of Gj.
Moreover, in these scenarios 2 and 3 we will also assume that the adversary
has access to a generator of such functions Fj, (or Gy), i.e. has access to u
such functions and he wants to distinguish these p functions from p random
independent functions.

4. Finally, in scenario 4, we will be as in scenario 2 except that:
a. The adversary has access to only one function Fj (not a generator).
b. We look in this scenario 4 for the best Advantage that the adversary can
get even if this mathematical value is < 1 (and therefore cannot be used to
distinguish).

To analyze these scenarios, we will introduce what we call “stable” attacks and
“unstable” attacks. An attack will be called “stable” if the attack is still valid
with a similar complexity when a few points of the functions are changed to truly
random values. We will present the best “stable” and “unstable” attacks that we
have found on the Xor of k& functions, k > 2 when we study a generator of such
functions (not only one such function). We will see that in Scenario 1, the best
security bound is indeed in O(2™), but in Scenario 2 and 3, the best attacks have
an even greater complexity. So it gives candidate schemes to build PRF from
PRP in a still very simple way and with potentially even better security. Since
building PRF from PRP has many applications (see [2J3l4]), we think that these
results are really interesting both from theoretical and from practical point of
view.

The paper is organised as follows. We will analyse Scenario 1 in section 2,
Scenario 2 in section 3 and 4, Scenario 3 in section 5 and Scenario 4 in sections
6 and 7. Then we will analyse the case where the k£ Xor are done on only one
permutation (instead of k independant permutations) in section 8. Some other
variants and open problems are presented in section 9. Finally, the results ob-
tained are summarized in section 10. We have decided to present in Appendices
the computation of all the mean values and standard deviations needed.

2 Scenario 1 on f1 @ fo @ ... D fr with O(2")
Computations

Notations: In all this paper we will denote I,, = {0,1}". F,, will be the set of
all applications from I, to I,, and B, the set of all permutations from I, to
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I,. So |I,| = 2", |F,| = 2™?%", and |B,| = (2")!. z €gr A will mean that x is
randomly chosen in A, with a uniform distribution.

Aim: In this section we want to distinguish f ® g, with f,g €r B, from
her F,.

Attack. We analyze a function G, we want to know if G = f@ g, f,g9 €r Bn,
or if G = h, h €g F,. If we have access to all the 2" values G(x), then we can
compute T = @2, G(i). If G = f @ g, then with probability 1, we have T' = 0.
(Proof: If f is a permutation we have ©?_,f(i) = ®2.,i = 0 and similarly
©2,9(i) =0, 50 ¥, f(i) ® g(i) = 0). If G = h, h €g F,, then we have T =0
with probability 21" . Therefore, by computing T', we can distinguish f & g from h
with a very good probability. This attack is in O(2") computations, with O(2")
input/output values.

Aim with k£ > 3: We want to distinguish f1 ® fo ® ... ® fx,
with f1, fo,..., fx €r By, from h € F,.

Fig. 1. Our attack distinguish between a function and the xor of k permutations

Attack. We use exactly the same attack: by computing T, we can distinguish
f1® fo®...® fr from h with a very good probability. This attack is in O(2™)
computations, with O(2™) input/output values.

Therefore, it seems that 2™ is the best security result that we can get with k
Xor of permutations, for all k. However we can notice that if instead of having
1D fo®...D fr, we use a function G such that G = f1 ® fo D ... D fi except
on a few points (or even except only on 0), and on these few points the output
of G is truly random, then the above attack fails. We will say that this attack is
“unstable”. More precisely, we will define “stable” attacks as follows:

Definition. We want to distinguish a function G of F}, (generated by a func-
tion generator) from truly random functions f €p F,, with an attack A. Let
P(n) be a polynomial in n and 1, ...z, be ¢ points randomly chosen in I,, with
¢ < P(n). Let & = {z1,...24}. Let G’ = G on all the points of F,, — & and
G'(z;) be truly random on all z; € @. Then if for each such sets ¢ the attack A
is polynomial (in n) against G’, we will say that this attack is stable on G.

Remark: It is possible to store a few random points with O(n) random bits,
i.e. polynomial in n, but to store a random function of F;,, we need n-2"™ random
bits, i.e. not polynomial in n. To avoid an “unstable” attack on G, we have to
change the design of G only on a few points. However to avoid a “stable” attack
on G, the design of G must be deeply changed.
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3 Scenario 2 on f @ g with O(2?") Computations

Aim: we want to distinguish a generator A of functions f @ g, with f,g €r By,
from a generator B of functions h, with h €r F),; i.e. we can have access to
more than one test function G, these G functions are generated from A or from
B and we have to distinguish these two cases with a non negligible probability.
Moreover for each G function, we have access to all the inputs/outputs, except
a few points. (Or alternatively, from generator A, G = f @ g except on a few
points).

Attack. We will count the number N of collisions on the functions G. There-
fore if we have access to m inputs/outputs for G, G(x;) = y; for 1 <i <m, N
is the number of (4, ), 1 <i < j < m such that G(z;) = G(z;). (In our attack
we will generally choose m ~ 2" but we will not need m = 2™.)

Case of Random Functions. We know that for a random function of F,,
we have E(N) = ™1 and o(N) = O( J/on) where E(N) denotes the mean
value of N, and o(N) denotes the standard deviation of N. (See Appendix A
for the proof of these results). Therefore, for a generator with p such functions,

w-m(m—1) Vi m
E(N) = 9. 9n and o(N)=0( Jan )
(Since if X5,..., X, are n independent events with E(X;) = F and o(X;) = 0,
we have E(X1+...+X,,) =nF and 0(X1 +...X,,) = v/no. Here the generator

generates independent functions hq, ... hy,).
Case of f ® g. We know that if G = f @ g, with f,g €gr B,, we have
By = mm=b 1 d o(N) = O( "), (see Appendix B for th
= 5 on _q 2nd o = Jan) see Appendix or the

proof of these results). Therefore, for a generator with p such functions,

:/rm(m—l). 1

E(N
(V) 2 2n —1

(This shows that we have in average slightly more collisions with f @ g than with
h), and
Jm
o(N)=0
) =0V

From Bienayme-Tchebichev theorem we know that we will be able to distinguish
h from f @® g with a good probability when

o(N)n << |E(N)n — E(N)faql
and
U(N)fGBQ << |E(N)n - E(N)f69g|

(This is a sufficient condition to distinguish A from f @ g.)
Here these conditions give:
VEm. pem(m —1)

<<
Von 2.92n
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For m ~ 2™ this gives: p > 2™ and the complexity of this attack is in O(p - m)
computations, i.e. in O(22").

Conclusion: This is a “stable attack” on f @ g with O(2?") computations
(see section 5 to see why this attack is “stable”).

Remark: This is the best “stable” generic attack on f& g that we have found.

4 Scenario 2 on fi ® fo @ ... D fr with O(2(2k—2)n)
Computations

Aim: we want to distinguish a generator A of functions f1 ® fo ® ... D fi, with
fi,-.. fx €r By from a generator B of functions h €r F,. We assume that we
have access to m inputs/outputs values for each function G, with m # 2™ (but
m ~ 2™ if we want), i.e. we look for a stable attack (the attack will still be valid
if a few inputs/outputs of G are changed).

Remark: Section 3 was a special case of section 4 with k = 2.

Attack. We will count the number N of collisions on all the functions G.
Therefore, if we have access to m inputs/outputs for each function G, N is the
number of (4,7), ¢ < j, such that: G(z;) = G(z;).

Case of Random Functions. We have seen in Section 3 (and in Appendix
B) that for a random function of F,, we have:

m(m —1) m

E(N) = 9. 9n and o(N) = O(\/Qn

)

Therefore, for a generator with u such functions,

:,u~m(m71)

_oVHEm
9 on and o(N) = O( )

var

Case of fi ® fo @ ... ® fr. We know that if G = f1 ® fo @ ... ® fr, with
fis f2, .- fx €r B, we have

E(N)

m(m — —1)F

and o(N) = O( \/"2?"), (Proof: see Appendix C). Therefore, for a generator with

w such functions,

:u~m(m—1) 1

_1)k m
) .271[1—1— (=1 | and a(N):O(\/M )

(2n _ 1)}6‘71 \/2"

From Bienayme-Tchebichev theorem we know that we will be able to distinguish
h from f1 & fo P ... P fr with a good probability when

E(N)

o(N)n << [E(N)n = E(N)io..0 5]

and
o(Npa. of <<|E(N)rn—EN)no. o
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(This is a sufficient condition to distinguish h from f1 @ ... ® fi).
Here these conditions give:
vim _uem?®

\/271 << an

For m ~ 2", this gives: u > 2(2=3)" and therefore the complexity of this attack
is in O(p - m) computations, i.e. in O(2(2k=2)n),

5 Analysis of Scenario 3

Let G* be perfectly random on ¢ points, and G*(x) = f1(x)® fo(z)D...® fr(z),
with f1,..., fx €r Bn, on the 2™ — ¢ other points. Let ¢ be the set of the ¢
special points. Let assume that we know G* on m points x;, such that ¢’ of
these point are in @ and m — ¢’ are not in @, ¢’ < ¢. Let N be the number of
collisions G*(x;) = G*(x;), with i < j. We have: N = N; + Ny + N3 with

Ni= number of collisions with z; ¢ ¢ and x; ¢ ¢, i < j.

No= number of collisions with z; ¢ ¢ and x; € ¢, i < j.

N3= number of collisions with x; € ¢ and z; € ¢, i < j.

We have E(N) = E(Ny) 4+ E(N2) + E(N3). From Theorem [1 of Appendix C,

we have:

m—y¢)(m—y¢' —1) 1 (=D* ]

B = " L

Moreover, E(Ngy) = “’/(7;"_‘”/) and E(N3) = ‘”l(z‘_”;,:l). Therefore

_mm—1) 1  (m-¢)m-¢' -1 1 (-D*
E(N) - 9 : on + 2 ’ on (2n _ 1)k—1

So if m ~ 2™ and ¢ << 2", we have ¢’ << 2™ and

1

E(N)g« — E(N o~
|E(N)a (N)renr,l 2. (2n — 1)k2

Therefore this attack by counting N for G* will work with the same complexity
as the attack by counting N on fi(z) ® fa(z) ®...® fr(z) as long as p << 27,
so we say that this attack is “stable”. (This also means that “scenario 3” and
“scenario 2” have the same conplexity).

6 Scenario 4: Best Known Advantage on a Single f @ g
with m < 2"

Let h be the single function of F}, that we want to study. h can be h €g F,,, or
h can be h = f @ g with f, g €g B,. We assume that we know h on m points x;:
h(z;) = yi, Vi, 1 <i < m.Let N be the number of collisions on these m points,
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i.e. N is the number of (4,j), 1 <14 < j <m such that: y; = y;.

First case: m < v/2". Let ¢ be this attack:

e if N =0 then ¢ outputs 0.

o if N #0 (i.e. N > 1) then ¢ outputs 1.

Let p1 = Praepr, (6(h) = 1), and pi = Pryge,np, (8(f @ g) = 1). If m < v/2n,

p1 mg’;:l) ,and pt ~ M0 (4 on ) (cf Appendix B). Therefore, if m < /2",

2.2n
Adv(¢) = |p1—p}| ~ mz(_r;zl) . This shows that if m </2", the Advantage, Adv,,
to distinguish h €g F, from f @ g, f,g €r By is at least in O("™(2"). (This
value is < 1 and therefore too small to distinguish).

Remark. When m = 1, m = 2 and m = 3, the exact values for Adv,, are given
in [9]. More precisely in [9], it is shown that Advy = 0, Advy = :

1 ~
2n(2n_1) — 22na
3.22"_12.2"4+4\ ., 3
Ad’Ug 22n( (27L_1)(2n_2) ) — 922n °

Second case: V2" < m < 2". Let ¥ be this attack:

o if N > mg";n ). then ¥ outputs 1.

o if N <« m(;';,bl) then ¥ outputs 0.

(¥ is a “2-point” attack). If (f,g) €r B, we have E(N) = m(m—1) m(m 1) 1+

2.(2n—1) — 2.2n
o) and o(N) ~ Jaufan (cf Appendix B). If v/2" < m < 2", then the dlStl;l-
(z—B(N))
bution of NV is similar to the Gaussian distribution of density \/21 e 202

Therefore we have: Adv(¥) = O(AE ) Adv(¥) = 0(2’” ). This shows that if

V21 < m < 2", the Advantage to distinguish h € F,, from f @ g, f,g €r Bn

is at least O(ZT,L ). (This value is < 1, this is why in scenarios 2 and 3 we used
2

a generator of functions).

7 Scenario 4: Best Known Advantageon f1® fo®...® fx
with m < 2"

First case: m < v/2". Let ¢ be the attack ¢ seen in section 6. Let p; =
Pricpr, (¢(h) = 1) as in section 6. let pi(k) = Pry, . fienB.(0(f1 & fo &
o fe) =1 IEm < V2 py mg’;;l) and pi (k) ~ mgf;:l)(l + (ijgi_l) (cf
Appendix C). Therefore if m < /27, Adv(¢) = |p1 — p}(k)| ~ mz(.’;,;bl). This
shows that if m < /' 27 the Advantage, Adv,, to distinguish h € F), from
fL®fo® . ® frs fises i €r Ba, is at least O(™ ).
Second case: V2" < m < 2". Let ¥ be the attack ¥ seen in section 6. If h €p
F,, we have E(N) = ™"V If fi,..., fx €r Bn we have E(N) = ™D (1 4
D" Yando(N) ~ ™  (cf Appendix C). If /2" < m < 2", then the dis-

2r-1)k=t T V2ver )
(z—B(N))
tribution of N is similar to the Gaussian distribution of density \/2171'0' e 202
) AE(N m i
Therefore we have: Adv(¥) = O( ) Adv(¥) = O( S ). This shows that

if V2" < m < 2", the Advantage to distinguish h € F,, from f@ ... D f,
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fyooy fx €r Brisatleast O( ™ ). (This value is < 1, this is why in scenarios

o(k=3)m
2 and 3 we used a generator of functions).

8 A Simple Variant of the Schemes with Only One
Permutation

Variant with 2 Xor
Instead of G = f1 @ fa, f1, f2 €r Bn, we can study G'(z) = f(z||0) & f(z||1),
with f €g B, and = € I,,_1. This variant was already introduced in [2]. There
are many common results between G and G’ but also a few differences. It is
possible to prove that our attacks (stable and unstable) on G are also valid on
G’ with similar properties. The (unstable) attack of Section 2lin O(2") is also
valid for G/, since ®2,G’(z) = ®?",i = 0, and the number of collisions for the
(stable) attacks of Section 3 will be similar for G and G’.

A Specific Attack on G’
There is however a specific attack on G’ that do not exist on G since Vz €
I, G'(z) # 0. Therefore, if we know m outputs y; of G, we can test if Vi, 1 <14 <
m,y; #0 (#). The probability of this event is 1 on G’ and (1 — an )M~ e on
on f €g Fy,. Thereforeif J is not close to 0, we can distinguish f €r F), from G’
with a good probability. We will call A this attack. Like the attack on ©2", G(3),
this attack A requires O(2") queries and O(2") computations. (This attack was
already described in [2].) However unlike the attack on @2~ G(i), this attack A
does not requires m = 2", but only to have Ji not close to 0.

Stability of the Attack
Let G;s be the function G’ ,except on ¢ randomly and secretly chosen points x;,
and on these points G is perfectly random. The probability of (#) is 1 on G/,
is (1 — 21",)"’ ~ e o~ 1 — 2‘2 on Gib and is ~ e~ 2" on f €r F,. Therefore,
if ¢ is < P(n) and if m ~ 2", with p(n) a polynomial in n, the probability of
(#) is about 1 on G;s, and is about i on f €r F,, so this attack A is still able
to distinguish G:b from f €g F,,. Therefore A is ”stable” with our definition of
"stable”.

Variant with > 3 Xor
With 3 Xor, instead of G(z) = (f1 ® f2 @ f3)(x), if x # 0, with f1, fa, f3 €r Bn,
and G(0) random, we can study G’'(x) = f(z]/00) @ f(x||01) & f(z|/10), if x # 0,
with f €r B, and x € I,,_3, G'(0) random. Now G’(x) can have the value 0,
and as with f@g@h, f,g,h € B, with this design the best known attacks have
complexity greater than O(2™). More generally, with k& Xor, instead of using k
random permutations of B,,, we can use only one. From a theoretical point of
view the analysis, attacks and results will be similar if the number of Xor is > 3
(cf Appendices D and E), but from a practical point of view these variants may
be sometime a bit better since they use only one random permutation of B,,.
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9 Other Variants and Open Problems

Let assume, for example, that we want to build a pseudo-random function of F,
from two random permutations of B,,. We have

1B = (2M)) ~ (27" - e " Var - 2n)% ~ 2272622 (27 27)

Here we use Stirling formula and |F,,| = (2")2" = 272" So |B,|* > |F,| and
therefore, from an information theoretic point of view, we may imagine to trans-
form a random element of B2 in a pseudo-random element of F, with a security
bound much better than O(2"). In fact, if we have a very small probability that
the transformation fails, i.e. gives no element of F;,, then we may even hope to
get a perfectly random element of F,, when the construction works.

Remark. A similar problem arise when we want to transform for example a
perfectly random integer x of [1,11] into a perfectly random integer y of [1,2].
We can decide that if € {1,2,3,4,5} then y = 1, and if z € {6,7,8,9,10} then
y = 2, and if x = 11, then no output y is given. Then when an output y is given,
y is perfectly random in [1,2].

It may be interesting to design a similar transformation from B2 to F,, i.e.
with a high probability the construction will give an output, and when it gives an
output, this output will be a perfectly random element of F;,. However, we want
to perform only O(n) operations (or polynomial in n) to get the output (as (f1 ®
92)(x) where only 2 operations are needed), not O(2"). Therefore, this problem
may have no solution. However, it may exist some designs with better security
results than our constructions with the same number of operations. In any case,
it is an interesting and open question to evaluate the best possible designs when
only O(n) (or a polynomial in n) operations are possible to evaluate G(x). Of
course another open question is: Are our generic attacks the best possible attacks
on our constructions (with k£ Xor and a few random points)?

10 Summary of the Results

— k denotes the number of Xor: f1 ® fo® ... D fk.

— In “scenario 1”7 we present the number of computations required in a CPA-2
(Adaptive chosen plaintext attack) to distinguish f1 @ fo @ ... ® fi (with
fis--sfx €r Bp) from a truly random function h €r F,, when the ad-
versary has access to the full codebook. This number is proved to be at

Table 1. Best known attacks for the Xor of k permutations

k Scenario 1 Scenario 2 and 3 Scenario 4, m < /2" Scenario 4, /2" < m < 2"

2 2n <2 Adv > O™ 1) Adv> O( %)
3 2n < 2in Adv > O(™0n ) Adv > O( %)
4 < 20" Adv > 0(™0n 1) Adv > O( 7,)
kK 2" < 23k Adv > O(™0 V) Adv>O( ™))
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least in O(2"/n3) (security results of [2]) at least in O(2") (security results
of [§]), and at most in O(2™) (“unstable” attack of Section ) when all the
2" inputs/outputs are given), and therefore exactly in O(2").

— “Scenario 2” is like “scenario 1” except that we have access to m input/output
pairs, with m ~ 2™ but m < 2", and that we use a generator of such
functions.

— In “scenario 3” we present the number of computations required in a CPA-

2 (Adaptive chosen plaintext attack) to distinguish G from a truly random
function h € F,, where G is equal to f1® fo®...® fi (with f1,..., fr €r Bn)
on all the points except on a few points x; where G(z;) is random. (For ex-
ample it can be only on the point 0). Moreover, we use a generator of such
functions G.
“<” denotes the fact that we give here the best known attack. We see that
in scenarios 2 and 3 the number of computations can be much larger than
in scenario 1.Therefore the design of G can be very efficient in some appli-
cations.

— In Scenario 4 we present the best Advantage that we have found when we
try to attack in CPA-2 a single f1 @ fo @ ... @ fr with m queries, (not a
generator), with /2" < m < 2". (These values for Adv are always < 1, this
is why in Scenarios 2 and 3 we needed more than one function to distinguish).
“>” denotes the fact that we give here the best known advantage, but better
Advantage may exist.

With the variant of section 8 (i.e. with only one permutation), the results ob-
tained are the same as for f1 & fo ® ... P fir except for k = 2.
Table 2. Best known attacks for the variant of section 8 (i.e. k Xor on only one

permutation)

k Scenario 1 Scenario 2 and 3 Scenario 4, m < /2" Scenario 4, V2" < m < 2"

2 2" 2" Adv > O(%) Adv > O(%)
3 20 < 2t Adv > O(™n 1) Adv>0( )
2 2
4 < 20m Adv > O™ M) Adv>0O( )
22
kK 2" < 2(2k=2n Adv > O™V Adv>0( ™ )
2 2 n

11 Conclusion

In this paper, we have designed new schemes to build PRF from PRP. On these
schemes we use k Xor instead of two, on all the points except a few, and on
these few points, we have a truly random output. On these new schemes, we
have shown that the best known generic attacks have a complexity much larger
than O(2™). Therefore these schemes might be very useful when we want to
generate random functions from random permutations with a small value of n
and a high security (security in 2% for example and n < 80).
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Appendices

A  Mean Value and Standard Deviation of Collisions on

Random Functions

Aim. Let f be a random function from I,, to I,,. We assume that we know f
on m distinct points z;: Vi, 1 < i < m, f(x;) = y;. Let N be the number of
collisions on these values y;. We want to evaluate E(N) (the mean value of N
when f €r F,,) and o(N) (the standard deviation of N whenf €r F,,).

We have N =3

Computation of E(N).Let d;; =1 f(z;) = f(zj)and §;; =0 6;; # 1.

i<j 0ij. Therefore, E(N) =3, . E(J; ;). Moreover

B = Pr ooy (70 = fla) =

fERBn 2”

Therefore E(N) = ™1,

2.2n
Computation of o(N).

V(N) = V(Z5ij) = ZV(5ij) + Z Cov(6i j,0k1)
< < G
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where Cov(d; ;,051) denotes the covariance of (J; , 9k ;):
CO’U((SZ‘]',(SM) = E((Sij '6kl) — E(éij)E(ékl)

We have: ) )
V(0i;) = B(55) = B(6i3)* =, — 5on
We now have to evaluate E(d;; - 0x1).
Case 1: i, j, k,l are pairwise distinct. Then

B(615-601) = Prycap, (@) = (o) and () = f() =,

Case 2: In 1,7, k,l, we have exactly 3 distinct values. For example i = k.

Then
1

E(8ij - 0x1) = Pricyn, (f(z:) = f(z;) = f(x1)) = 92n
Therefore all the covariance are 0 and we have:

m(im—1),1 1

m
2 (2n o 22n

V(N) = O( ﬂn)

) and o(N)=+/V(N)=

B Mean Value and Standard Deviation of Collisions on
f®dg, f,9 €Er By,

Aim. Let G = f@g, with f,g €r B,. We assume that we know G on m distinct
points z;: Vi, 1 < i < m, G(x;) = y;. Let N be the number of collisions on these
m values y;. We want to evaluate E(N) (the mean value of N when f,g €r B,,)
and o(N) (the standard deviation of N when f,g €r By).

Computation of E(N). Let (51‘]‘ =1 G(.’IIZ) = G(.’L‘]) and (Sij =0< (Sij 75

1. We have N =}, . d; ;. Therefore, E(N) = 3_, . E(J; ;). Moreover

E(6ij) = Pr i (9(x:) ®g(z)) = f(z:) © f(z)))
When f is fixed, f € B, f(z;) ® f(x;) is a value different from 0. Therefore the
probability when g €r B, that g(z;) ® g(z;) = f(x;) ® f(x;) is exactly ,." ;.
So
m(m —1) 1

and E(N)= .

E(6; ;) =
(8:;) 2 on — 1

1
2n —1
Computation of o(N).

VIN) =V 6i;) =D V(i) + Y. Cov(dij,de1) (*)

L L L
v v %D

where Cov(6; ;,0r1) denotes the covariance of (J; ;, dx1):

Cov(dij,ékl) = E((s” '5kl) — E((S”)E((;kl)
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We have:
1 1

V((s”) = E(dzzj) 7E(5ij)2 = on _ 1 (271 _ 1)2

We now have to evaluate E(d; ; - 0x1)
Case 1: 1, j, k,l are pairwise distinct. Then

o o) @ g(z;) = f(z) @ F(z)
B -0c) = Prigers, <g<xk> ® g(z1) = flox) @ fm))

When f(z;), f(z;), f(zk), f(z1), 9(x;), g(z;) are fixed, g(z;) and g(xy) are fixed
with

g(i) = g(x;) © f(z:) ® f(z;) and  g(zx) = g(x1) © f(xy) D f(a1)

(and these conditions may be compatible or not with g being a permutation). If
we did not have these two equalities, for g(x;) we would have (2™ — 2) possibil-
ities (g(x;) ¢ {g(x;),g(x1)}), and for g(zx) we would have (2™ — 3) possibilities

(9(zr) & {g(x:), 9(x5), g(z1)}. So,

1

( J l) (2"—2)(2"—3)
[herefore

E(6ij - 6x1) — E(0ij)E(6r1) < (2n — 2)1(2n —3)  (2» i 1)2

3-2m 1
<O(..
2n —1)2(2n —2)(2" —3) — (23”)
Case 2: in i, j, k, [, we have exactly 3 distinct values. For example ¢ = k. Then

E(0ij - 0k1) = Prygen, (f(z:) ® g(z:i) = f(2;) © g(x;) = f(x1) © g(a1))

When f(x;), f(z;), f(z1), g(z;) are fixed, g(x;) and g(z;) are fixed with

{g(%‘) = f(x:) ® g(x:) © f(x;)
g(x1) = f(z:) ® g(w;) © f(x1)

=

(and these conditions may be compatible or not with g being a permutation). If
we did not have these two equalities, for g(z;) we would have (2" —1) possibilities
(9(zj) # g(z;)) and for g(x;), we would have (2" — 2) possibilities (g(z;) ¢

{9(:),9(z;)}). So

1
E(6;;-0k1) < (2n —1)(2n — 2)

Therefore

E((sij : 5kl) - E((sij)E((skl) < (2” o 1)1(271 _ 2) - (277, i 1)2
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1
= (2n -1 —2) = Yo
So from () we get
m(m — m*
V(N)S ( 9 1)(2n1_1_(2"i1)2)+0(23n)
So 2 4
V(N <0(h ) +0()

Since m < 2" V(N) < O(gf) and therefore o(N) < O(\/’;L)

C Mean Value and Standard Deviation of Collisions on

[1iDf2D...B fr

Theorem 1 Let G=f1 D foD...D fr, f,9 €Er Bn, with f1, fo,...,, fx €r Bn.
Let assume that we know G on m distinct points x;: Vi, 1 <i <m, G(x;) = y;.
Let N, be the number of collisions on these m points: Ny = the number of (i,7),
1<i<j <m such that y; = y;. Then

mim—1) 1 (—1)*
E(Ng) = .
( k) 2 an [ + (2n _ 1)k—1]
where E(Ny) denotes the mean value of Ny when f1, fa,..., fr are randomly

chosen in B,.

To prove this theorem we will first need a lemma.
Lemma 1. If x; # x;, we have

1

Te#0, Prien,(fe) o fe) =)=, |

and if ¢ =0, Pryep, (f(fz) @© flz;) =¢)=0

Proof of Lemma[dl

If =0, f(z;) # f(z;) since f is a permutation. If ¢ # 0, when f(z;) is fixed,
f(z;) is fixed to the value of ¢ & f(x;), so instead of having 2" — 1 possible values
for f(z;) we have one when f(x;) is fixed.

Proof of Theorem [1]
Let 6;; = 1 < G(z;) = G(z;) and 6;; = 0 < 6;; # 1. We have Ny =3, . 5fj,
so E(Nk) =32, E(68};). We will compute E(6F;) by induction on k.

E(6F;) = Pryy.. puenB, [[1(@:) @ ... @ f(xi) = fi(z;) ® ... © frlz;)]
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So from Lemma [l above,

Pri o fusenBn [J1(@)®. . @ foo1(m) # f1(x)®. .. @ froo1(z;)]

1 _
an _ 1 []‘ - E(éfj 1)] (*)
If k = 1 we have E(6};) = Pryep,(fi(zi) = fi(z;)) = 0 (+x) (since f; is
a permutation and z; # x;). Now from (%) and (xx) we get immediately by
induction on k that

E(ézkj) =

1 (—1)*
and therefore,
m(m — m(m — —1)*

as claimed. Moreover the standard deviation can be computed exactly as in
Appendix B, or alternatively by using the fact that G = f; @ fo ® ¢ where 1 is
a function mdependant of f1 @ fo. We get the same result: o(N;) < O( o ).
Remark. This result is not surprising: by Xoring k permutations, £ > 3
instead of 2, we expect to obtain a better or at least as good pseudorandom
permutation. Since we have seen that o(N) for k = 2 and o(NV) for a random
function are less than or equal to O( \/QH), it is natural that for k > 3 we also

have the same result o(N) < O( 2")

D Mean Value of Collisions on f(z||a)® f(x||3), f €Er B

Let G'(z) = f(z||a) @ f(z||B), f €r Bn, with a # 8. We assume that we know
G’ on m distinct points z;: Vi, 1 < i < m, G'(x;) = y;. Let N be the number
of collisions on these m values y;. We want to evaluate E(N), the mean value
of N when f €r B,. Let §;; =1 & G'(z;) = G'(z;) and 6;; = 0 & 6;; # 1.
We have N = 37, . 6&;;. Therefore E(N) = >, E(d;j). Moreover E(d;;) =
Prye s, (f@illa)® Fail8)& fjlla) = F(z;8). S0 B(y) = Prye s, (f(a)@
f(b) @ f(c) = f(d)) where a,b,c,d are pairwise distinct. When f(a), f(b) and
f(b) are fixed, then f(d) can have any value ¢ {f(a), f(b), f(c)} with probability
exactly ,,! , (and f(d) € {f(a), f(b), f(c)} with probability 0). Moreover f(a)®

f)yaf(e) E {f(a), f(b), f(c)} is not possible since f is a permutation. Therefore

)
E((SZ]) = 3 and E(N) — m("L 1) m(m—1) (1 + 3 )

2n 2.(2n—3) —  2.27 2n

E Mean Value of Collisions on

f(zllon) @ ... f(zllow), f €r Bn

Let Gi(z) = f(z|lon) & ... & f(z|lak), f €r Bn, with a1, as,. .., pairwise
distinct. We assume that we know G;f on m distinct points z;: Vi, 1 < i <
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m, G} (x;) = y;. Let Ni be the number of collisions on these m values y;. We
want to evaluate E(Ny), the mean value of N when f €r B,. Let §;; = 1 &
Gl(z;) = Gi(z;) and §;; = 0 & &;; # 1. We have Ny = 3, . d;;. Therefore
E(Nk) =325 E(6ij). Let pp = E(6i5) = Pryeps, (f(@ila1) @ ... & f(xl|ar) =
f@jllon)®... & f(zjllok)) = Preepp, (f(a1) ® fla2) ®...® flazk-1) = f(azk))
where aq,aq,...,as; are pairwise distinct. When f(aq),... f(azr—1) are fixed,
then f(agk) can have any value ¢ {f(a1),..., f(azx—1)} with probability exactly
2n_ék_1) (and f(azk) € {f(a1),..., f(azx—1)} with probability 0). Therefore
we have: p, = (1 — (2k — 1)pk*1)'2"—(;k—1) (%) (since Vi, 1 <7 < 2k —1 we
have the probability exactly 1 — pi—1 that f(a1)® f(a2)®... f(azk-1) = f(a;)).
For example, from p; = 0 (since f is a bijection), we get from (x): po = ..

2n—3

(as already found in Appendix D), and then ps = (1 — 5p2).2"175 = 21”(1 —
2}21,_;‘3," +15 ). More generally, from () and ps = 2,,}73, we get easily by induction
that:

1 (—1)*.3.5.7...(2k—1) _ m(m-1) _
Pk = o {1 * 2(k-1>"<172%)(1725n)m(172’;;1>}' Thereforf E(Ng) = "5 o =

m—1 . —1)¥.3.5.7...(2k—1
G [14 0G0 with 00t = a0
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