

E. Petrinja et al. (Eds.): OSS 2013, IFIP AICT 404, pp. 271–276, 2013.
© IFIP International Federation for Information Processing 2013

The Emergence of Quality Assurance
Practices in Free/Libre Open Source

Software: A Case Study

Adina Barham

Hitotsubashi University, Graduate School of Social Sciences, 2-1 Naka,
Kunitachi, Tokyo, 186-8601, Japan
adina.barham@yahoo.com

Abstract. As the user base of Free/Libre Open Source Software (FLOSS) di-
versifies, the need for higher quality is becoming more evident. This implies a
more complex development model that includes various steps which were pre-
viously associated exclusively with proprietary development such as a formal
quality assurance step (QA). However, little research has been done on how
implementing formal quality assurance impacts the structure of FLOSS com-
munities. This study aims to start filling this gap by analyzing interactions
within such a community. Plone is just one among many FLOSS projects that
acknowledged the importance of verification by implementing a quality assur-
ance step.

Keywords: quality assurance, test, social network analysis, information flow.

1 Introduction

A previous preliminary study [1] established that almost one third of the top 50
FLOSS software products ranked by number of downloads on www.ohloh.net had
implemented explicit QA procedures. Furthermore, more than a quarter of the top 100
products ranked by number of user have some kind of QA. Verification, and more
specifically quality procedures under the FLOSS development model has attracted a
lot of interest within the academic community [2-9]. The structure of communities
behind FLOSS has also been extensively researched. Studies focus on many commu-
nity aspects such as structure and dynamics [10], communication patterns between
core and periphery [11-12], or migration within the hierarchy of FLOSS projects [13].
However, little research has been done on how implementing formal QA affects the
community. This research aims to start filling that gap by improving our understand-
ing of how QA fits into the organizational structure of FLOSS communities.

A single open source project was chosen as a pilot case study in order to develop
research questions that can then be applied in a wider comparative study of QA in
open source projects. The Python-based content management system Plone was se-
lected because it is a mature project (began in 1999) and because its development
process includes a QA step [14]. The QA team has a dedicated webpage where one

272 A. Barham

can find basic information such as activity description, communication channels and
team leaders [15]. QA activities include triaging new bugs, validating submitted
patches, ensuring that new releases are usable and generally help in the release
process.

2 Research Questions

Q1: How is the QA layer included in the Plone community structure? We aim to find
out how much contributors work only on QA and how much they work on other as-
pects of the project. Also, we ask how much peripheral members perform QA tasks.
Previous research has approached the latter issue for Firefox and it has been shown
that the percentage of periphery contributions is 20-25% [12].

Q2: What are the characteristics of activities performed by members of the Plone QA
team? It is logical to draw the conclusion that some members will be more active than
others but it would be interesting to investigate if members are equally active on all
communication channels or if their tasks are limited to certain areas of the project.

Q3: How does the QA team communicate with other teams? Previous research has
shown, that participants who have better access to information are able to contribute
more efficiently [16] therefore interrupting the information flow might affect nega-
tively the project’s evolution. For this reason it is important to determine if there are
any members that control the information flow. Due to the fact that social networks
are in a continuous change [17], it might be useful to also establish the stages that the
community went through before reaching its current state.

3 Data and Research Method

In order to measure QA activity levels, issue tracker data as well as mailing list data
were taken into account. Data was retrieved in December 2012 – January 2013 and
stored locally. The issue tracker data contained 13026 bugs with 55883 associated
comments, and was downloaded using a web crawler. 29525 e-mails were
downloaded from all the Plone mailing list archives that were parsable using Mailin-
gListStats [18]. In addition, a list of Plone contributors containing names and nick-
names used in code repositories was downloaded from Ohloh.net [19].

Data from the QA mailing list which started in 2011 included 41 members of
whom approximately 70% had sent only one e-mail at the time of data collection. Of
the remaining 12 members only 1 had sent more than 10 e-mails, 4 were not active on
other mailing lists and 7 were not listed as code contributors. The 4 members who
were not active on other mailing lists were also not listed as code contributors. How-
ever, their activity on the QA mailing list was low: none sent more than 5 e-mails.
Therefore QA does not constitute a separate layer in the Plone community.

 The Emergence of Quality Assurance Practices in Free/Libre Open Source Software 273

Fig. 1. Clusters within the Plone community

An interesting fact that can be observed from Fig.1 is that there is no correlation
between time progression and activity levels. In addition, there seems to be no corre-
lation between the number of bugs posted and the number of associated comments,
which leads to the question the reasons behind these spikes in activity levels.

Social network analysis was used to analyse communication patterns within the
Plone community. Project participants were represented as nodes (vertices) while
interactions were represented as edges (arcs). The weight (value) of the graph’s arcs
represent the number of interactions between two members.

To create the network graph only authors who had replied to someone were taken
into consideration. The next step consisted of eliminating loops or arcs starting and
pointing to the same vertex. An additional reduction was performed in order to re-
move vertices that had no connections with other vertices. The resulted network con-
tains 3414 vertices connected by a total of 16042 arcs of which 5093 have a value
greater than 1. This means that 10949 connections (68%) are created by only one
interaction. These members are occasional or peripheral contributors. From the re-
maining arcs 31% have values between 2 and 79 which means that arcs with values
between 1 and 79 account for almost 99% of all arcs. The average degree is 9.39,
which means that on average, a person interacts with approximately 9 other people.
The network was then processed by transforming arcs into edges by summing up their
values. Members who interacted with only one other member represented 35% of the
whole community. 86% of community members interacted with a lower than average
number of members (i.e. < 9).

To assess task distribution among community members the graph was divided into
clusters. The cluster that contains QA mailing list members represents 1.06% of the
whole community, and contains a sub-cluster of members who do not contribute code
accounting for 0.46% of the community.

Social networks are dynamic as they change their structure over time and for this
reason it is important to consider time frames [20-21]. Social network analysis me-
thods were applied using 6-month time frames to analyze the states through which the

274 A. Barham

community went after dedicating a communication channel to the QA team. The size
of the network varied between 226 and 746 vertices. The variation in size was ex-
pected considering the fact that many arcs were created after only one interaction. In
addition the highest degree was 7.52 while the lowest was 4.29.

4 Conclusions

Q1: How is the QA layer included in the Plone community structure? Considering
that the most active QA members also contributed code and were active on other
mailing lists, QA is not a separate layer in the community. However, non-QA tasks
might have been performed in different time frames than the ones in which members
were part of the QA team; comparing time frames would allow us to clarify this. Fur-
thermore, approximately 70% of QA mailing list members have sent only one 1 e-
mail which might suggest that these are periphery members performing QA tasks.
Only 30% of QA mailing list participants have not been active on other channels. In
addition, members active on the QA mailing list account for only 1% of the whole
community.

Q2: What are the characteristics of activities performed by members of the Plone QA
team? An interesting phenomenon that occurs within the Plone community is the
increase in activity levels that seems not to be linked to time progression. In addition
it seems that the number of bugs opened does directly relate to the increase in com-
ment activity levels. This suggests that there are other variables that influence activity
levels.

Q3: How does the QA team communicate with other teams? The community seems to
form a large component that spans both issue tracker and mailing list with the excep-
tion of few small sub-networks. This means that there is a lower risk for some mem-
bers to control the information flow and to jeopardize the communication flow. How-
ever, there is a small group of people that are highly engaged in communicating with
other members (86% of community members interacted with less than 9 other mem-
bers – 9 being the average number of interactions a member has). In line with this
conclusion, a large percentage of community members (68%) create links defined by
only one interaction. This means that the rest of the community has somewhat strong-
er connections whereas a small percentage of users (1%) have very strong connec-
tions defined by more than 79 interactions. In addition, after analyzing the networks
created using time frames, one could reach the conclusion that due to the drastic de-
crease in community size many participants were occasional contributors or in other
words members of the periphery.

5 Limitations and Further Research

A number of limitations should be noted. First, only limited data cleaning was carried
out. Second, it is possible that community members have used other communication
channels than those listed on the relevant Plone websites. Third, it is possible that

 The Emergence of Quality Assurance Practices in Free/Libre Open Source Software 275

some members of the QA team did not actively participate in the mailing list. For
these reasons, it would be desirable to conduct follow-up interviews with members of
the community. These interviews would also shed light on the reasons for peaks in
activity levels.

It could also be useful to re-run the community analysis using smaller time frames
as 6 months may be a too big window for a community of this size. In addition, the
community evolution could be analyzed using time frames covering the period before
the formal adoption of QA in order to track down potential migration from one layer
to the other.

A single case study cannot provide a recipe for success that can be applied to all
FLOSS projects, but can be used to create hypotheses to be validated in future studies.
Based on the findings of this paper the following hypotheses were formulated:

H1: The majority of the QA team members perform non-QA tasks as well.

H2: Approximately 80% of QA tasks are performed by a small percentage of the
community.

H3: Increase in activity levels is not linked to time progression.

H4: Members performing QA are not an isolated layer in the community.

References

1. Barham, A.: The emergence of quality assurance in open source software development. In:
Proceedings of the OSS 2011 Doctoral Consortium (2011)

2. Halloran, T.J., Scherlis, W.L.: High quality and open source software practices. In: 2nd
Workshop on Open Source Software Engineering (2002)

3. Hedberg, H., Iivari, N., Rajanen, M., Harjumaa, L.: Assuring Quality and Usability in
Open Source Software Development. In: First International Workshop on Emerging
Trends in FLOSS Research and Development, FLOSS 2007, p. 2 (2007)

4. Michlmayr, M., Hunt, F., Probert, D.: Quality practices and problems in free software
projects. In: Proceedings of the First International Conference on Open Source Systems,
pp. 24–28 (2005)

5. Schmidt, D.C., Porter, A.: Leveraging open-source communities to improve the quality &
performance of open-source software. In: Proceedings of the 1st Workshop on Open
Source Software Engineering (2001)

6. Chengalur-Smith, I., Sidorova, A., Daniel, S.: Sustainability of Free/Libre Open Source
Projects: A Longitudinal Study. JAIS 11 (2001)

7. Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P., Adams, P.J., Samoladas, I., Sta-
melos, I.: Evaluating the Quality of Open Source Software. In: Proceedings of the Interna-
tional Workshop on Software Quality and Maintainability. Electronic Notes in Theoretical
Computer Science, vol. 233 (2009)

8. Aberdour, M.: Achieving Quality in Open Source Software. IEEE Software, 58–64 (2007)
9. Zhao, L., Elbaum, S.: Quality assurance under the open source development model. Jour-

nal of Systems and Software - JSS 66(1), 65–75 (2003)
10. Crowston, K., Howison, J.: The social structure of Free and Open Source software. First

Monday 10(2) (2004)

276 A. Barham

11. Oezbek, C., Prechelt, L., Thiel, F.: The Onion has Cancer: Some Social Network Analysis
Visualizations of Open Source Project Communication. In: Proceedings of the 3rd Interna-
tional Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development, FLOSS 2010, pp. 5–10 (2010)

12. Masmoudi, H., den Besten, M., de Loupy, C., Dalle, J.-M.: “Peeling the Onion”: The
Words and Actions that Distinguish Core from Periphery in Bug Reports and How Core
and Periphery Interact Together. In: Boldyreff, C., Crowston, K., Lundell, B., Wasserman,
A.I. (eds.) OSS 2009. IFIP AICT, vol. 299, pp. 284–297. Springer, Heidelberg (2009)

13. Jensen, C., Scacchi, W.: Role Migration and Advancement Processes in OSSD Projects: A
Comparative Case Study. In: Proceedings of the 29th International Conference on Soft-
ware Engineering, pp. 364–374 (2007)

14. http://plone.org/
15. http://plone.org/community/teams/qa-team
16. Aral, S., Brynjolfsson, E., Van Alstyne, M.: Productivity Effects of Information Diffusion

in E-mail Networks. In: Proceedings of ICIS 2007 (2007)
17. Watts, D.J.: A Twenty-first century science. Nature 445(7127), 489–489 (2007)
18. https://github.com/MetricsGrimoire/MailingListStats
19. https://www.ohloh.net/
20. Howison, J., Wiggins, A., Crowston, K.: Validity Issues in the Use of Social Network

Analysis for the Study of Online Communities. Journal of the Association for Information
Systems (2012)

21. Christley, S., Madey, G.: Global and Temporal Analysis of Social Positions at Source-
Forge.net. In: The Third International Conference on Open Source Systems, IFIP WG
2.13, Limerick, Ireland (2007)

	The Emergence of Quality Assurance Practices in Free/Libre Open Source Software: A Case Study
	1 Introduction
	2 Research Questions
	3 Data and Research Method
	4 Conclusions
	5 Limitations and Further Research
	References

