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Abstract. In this work we present an approach to automatically learn
pixel correspondences between pairs of cameras. We build on the method
of Temporal Coincidence Analysis (TCA) and extend it from the pure
temporal (i.e. single-pixel) to the spatiotemporal domain. Our approach
is based on learning a statistical model for local spatiotemporal image
patches, determining rare, and expressive events from this model, and
matching these events across multiple views. Accumulating multi-image
coincidences of such events over time allows to learn the desired geometric
and photometric relations. The presented method also works for strongly
different viewpoints and camera settings, including substantial rotation,
and translation. The only assumption that is made is that the relative
orientation of pairs of cameras may be arbitrary, but fixed, and that the
observed scene shows visual activity. We show that the proposed method
outperforms the single pixel approach to TCA both in terms of learning
speed and accuracy.

1 Why Finding Multi-view Correspondences — and How

In this work we present an approach to automatically learn pixel correspondences
between pairs of cameras, based on rather long sequences (hundreds or thousands
of frames). The only assumption that is made is that the relative orientation of
pairs of cameras may be arbitrary, but fixed, and that the observed scene shows
visual activity. In particular, we are interested in how correspondences among
different views may evolve over time. Thus, we learn correspondence distributions
rather than point estimates of pixel correspondences.

A large part of computer vision research deals with some sort of the corre-
spondence problem where the relations between two or more images are to be
determined. To obtain reasonable results, these problems are often addressed
under certain simplifying assumptions. In stereo analysis, usually the (implicit)
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Fig. 1. Three cameras observing three points in 3D space, and temporal image signals
of the 9 pixel in the three images

assumption is made that the camera settings (focal length, gain & offset) of all
involved cameras are essentially identical. However, matching between the im-
ages becomes a non-trivial task, in case of significant differences in the opening
angle of the visual field, in the camera location, or in the camera light-to-value
conversion characteristics.

Consider for instance a surveillance scenario of two or more cameras observ-
ing an urban space from very different view points. In order to analyze events
ongoing in these areas, the image-to-image correspondence of visible points is im-
portant and allows conclusions on 3D depth. Furthermore, the determination of
pixel correspondences is a precursor to the (automatic) determination of camera
overlap, or in recovering the topographical layout of the camera network.

There is a principle which we consider to be a highly probable candidate
both to explain the emergence of correspondence finding in binocular biological
vision, as well as to allow for the automatic determination of geometric and pho-
tometric correspondences between multiple views in a technical vision system.
This principle is the presence, and detection, of temporal coincidences. Corre-
sponding pixel in different views often have a much more characteristic, and dis-
tinctive temporal signature, than their spatial surrounding alone. Furthermore,
temporal signatures are subject to photometric transformations, but not to ge-
ometric transforms in time direction. Thus it can be expected that they can be
associated across images much more reliably. The drawback of temporally accu-
mulating evidence about coincidences is that only the distribution of such cor-
respondences can be determined, but not image-individual stereo for each time
instant. However, it is just this distribution information which is valuable for find-
ing the overall image-to-image mapping, and which allows to fully automatically
parameterize stereo and multi-camera algorithms.



458 C. Conrad and R. Mester

The principles of temporal coincidence detection and event matching for sin-
gle pizel have been presented by us recently in [1]. Figure [l shows a simplified
situation for explaining single-pixel coincidence detection. Three cameras are
observing the same scene from very different view points. The task is to find
the image-to-image mappings for the three pairs of cameras, and the photomet-
ric relations (pairwise grayvalue-to-grayvalue mappings). The three individually
blinking lights in the scene stand for the individual temporal course of gray
value (or color) signals that can be observed in the three images. Looking at the
temporal signals, the correspondence between the signals, and thus also between
image locations, can be determined, e.g. by measuring the pairwise correlation
coeflicients. However, since for a real application there will be much more than
just three points to associate correctly, the similarity of gray values alone does
not provide much information; much more decisive are short temporal segments
during which ’rare events’ occur. If such an event is rare, it will have a much
lower probability to occur simultaneously on several locations in the image, that
is: the probability of incorrect associations is significantly lower. Furthermore,
if the shape of the short signal segment is the decisive characteristic it allows
for performing associations even if the relative amplitude scaling between two
signals is not known. This, in turn, allows for the simultaneous estimation of
the pixel-to-pixel mapping between images and the gray value transfer function
(GVTF) between the cameras. In single-pixel coincidence detection |1}, temporal
gray value changes which are above a threshold 7 are considered as events, and
simultaneous events in the other image(s) are counted as correspondences if they
are similar under a GVTF that considers moderate changes of gain and offset.
Each suspected corresponding event increases a counter cell in a two-dimensional
accumulator array, where the true correspondence will show up after a while as
a distinctive peak. In the present paper, we extend this idea to spatiotempo-
ral image patches. In contrast to [1] where temporal differences between pixel
values have been manually chosen as event descriptors, we learn scene-specific
spatiotemporal event descriptors based on Principal Component Analysis (PCA)
in an offline learning stage. Compared to standard matching pipelines based on
hand-crafted descriptors, such as SIFT [2] etc., we want to emphasize that we
are especially interested in learning these descriptors from data.

2 Related Work

Finding pixel correspondences is an important problem in many different low-
level vision tasks such as stereo vision, and motion estimation. Regarding the
determination of pixel to pixel correspondences among multiple views, there is a
lot of work based on the standard matching pipeline of spatial interest point de-
scriptors (keypoints) and detectors. These range from highly accurate descriptors
with high computational demands to fast and real-time applicable approaches
at the cost of reliability and robustness [2-4]. In [5] Laptev builds on the work
by Harris et al. |6] and Forstner et al. [7] and extends their spatial interest point
operator to the temporal domain. However, we want to emphasize that in this
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work we are interested in how correspondences may evolve over time, instead
of computing them based on hand-crafted features. Thus, we learn a correspon-
dence distribution rather than single pixel-to-pixel mappings. Furthermore, and
in contrast to |5] we learn a spatiotemporal event descriptor directly from data.

The approach by Szlavik et al. laid down in a series of papers on co-motion
statistics [8-H10] and the work by Ermis et al. based on that [11], is methodically
related to the one presented here. Szlavik aims at finding point-to-point corre-
spondences by detecting pixel in two views with similar motion change history,
based on background subtraction. RANSAC [10] is used to discarded false cor-
repondences. Furthermore, the correspondence map is regularized based on the
"principle of good neighbors’ [12]. To reduce the number of false correspondences
due to random noise on the background, in [8] an entropy-based criterion is in-
corporated. In contrast to this our processing structure is less demanding and
the observed scene does not need to be essentially static, since neither motion
detection , nor any kind of background subtraction is required.

Another approach to some extent related to ours is by Wexler et al. [13]
which aims at learning epipolar geometry from multiple image pairs, by fitting
a suitable Gaussian density model. In |14] Triggs develops joint feature space
distributions to model the joint probability distributions of the position of corre-
sponding features among different views. However, training relies on previously
determined correspondences.

In contrast to the work by Szlavik, and Wexler, our algorithm starts with
a very vague notion of similarity between pixel values, and updates both the
photometric relation (“when are two grey values to be regarded as similar?”) as
well as the geometric relation (“which pixel in both images correspond to each
other?”) in such a way that both kinds of information are used to support and
improve the other one. We also emphasize that in contrast to [13], [10], and [14]
we do not aim at representing the epipolar relation by an algebraic expression.

3 Temporal Coincidences Using Subspace Projection

In order to be able to detect rare events systematically, a probabilistic model of
the regarded signal is required. In principle, a probability distribution p(B) for
the spatiotemporal image patches B € RV*N*P needs to be specified. However,
efficient learning of a, say, 27-dimensional distribution (N = P = 3) is simply
not feasible. Since we do not want to impose a Gaussian distribution on p(B),
we are looking for a scalar function f(B)

f(B) : RNXNXP R (1)

which at least approximately comes close to a sufficient statistic |15, p.102ff.],
and thus can be used to decide whether an observation should be regarded as
typical or unusual. The model we impose on the gray value data here is that the
block mean value is essentially uniformly distributed in [0,255] and thus does
not essentially contribute to the distinctiveness or rareness of a block realization,
and that the distribution of the non-constant portion of B is approximately
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Fig. 2. Two-step spatial/temporal representation for N x N x P image blocks

elliptically-invariant, but not necessarily Gaussian. Elliptical invariance means
that the Mahalanobis distance from the ensemble mean is a sufficient statistic of
the data, and a test for rareness can be based upon it. The final assumption is
that the total process can be separated into a purely spatial random process, and
a purely temporal process. The canonical coordinate frame for the Mahalanobis
distance can thus be determined sequentially for space and time coordinates.
In phase 1, for a given cell size N x N x P where P denotes the temporal
dimension we first learn the PCA basis for the N x N spatial patches, given a
large training sample of such spatiotemporal cells. We project the spatial slices
of the cell onto this basis, and truncate the resulting coefficient vector € RV ’
onto its D < N? most significant elements. In phase 2, the P truncated vectors
€ RP from temporally subsequent spatial blocks are concatenated to a vector
with P - D elements and undergo a second PCA analysis. The resulting vector
is truncated to its K most significant elements. All this is summarized in Fig. 2

3.1 Event Detection

The Mahalanobis distance of a spatiotemporal image patch B from its ensemble
mean is regarded as an (approximate) sufficient statistic of the patch data. This
test statistic can be expressed as [16]

K
B =37, 2)

with y being the vector which contains the projection coefficients of a spatiotem-
poral image patch B when projected onto the basis determined in phase 2. Note
that in Eq.2lwe exclude the first projection coefficient, as it merely accounts for
the the average brightness of the spatiotemporal patch.

The regarded spatiotemporal image patch is said to be rare, and thus an event
is detected, if the condition f(B) > T, holds with the event threshold T. being
empirically determined such that Pr(f(B) > T.) = 8 holds on a reasonable
training set.



Subspace Temporal Coincidences 461

Fig. 3. (left) Accumulator shape for point-to-point, (middle) point-to-line, and (right)
no correspondence (corresponding event count plotted against pixel coordinates). Best
viewed in color and upscaled.

3.2 Event Matching

Let B be a spatiotemporal image patch located at coordinates x in view Z;,
denoted as a seed patch in the following. We aim at determining all potentially
corresponding patches B, in view Z;. Once an event on the seed patch has been
detected, all patches in view Z; are determined where an event occurred simul-
taneously. This significantly reduces the number of patches in view Z; which
subsequently have to be compared to the seed patch B. We have to take into
account that the different views are affected by different light conversion charac-
teristics and gain/offset settings of the cameras. Therefore we have to consider
the mapping of a gray value s;(x) in view Z; to its corresponding gray value
sj(y) in view Z;, denoted as the gray value transfer function (GVTF) ¢;;:

si(y) = ¢ij(si(x)), 3)

which is applied to every pixel within the seed patch. An initial coarse estimate
of the GVTF has to be determined before the matching process starts; this is
done by fitting an affine function to the histograms of two images, minimizing the
sum of squared histogram bin differences between the two images. The GVTF
estimate is updated using the pairs of patches which have been classified as
corresponding patches. The matching of the seed patch with all correspondence
candidates requires a similarity measure, or metric w(B, B.). For the patch-to-
patch comparison, the sum of squared pixel-wise differences is used. The set
of patches in view Z; which possibly correspond to the seed patch can now be
determined as follows, with T being a similarity threshold:

2pe(B) = {B.€Z;:f(B) = T. (4)
AN f(Be) > Te
A w(¢12(31(B))a82(Bc)) < Ts}'

3.3 Estimation and Classification of Correspondence Distributions

For every seed patch B; in the reference view Z; and each different view Z; an
accumulator array of the same size as Z; is created. Over a rather long image
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sequence (hundreds or thousands of images), events are detected and matched
among the different views. Once events are matched, the count of the accumu-
lator cells indexed by 2,.(B;) are increased by 1. After processing a sufficient
number of frame, the accumulator contains an estimate of the correspondence
distribution associated with seed patch B; in view Z;. In general, the accumu-
lator can contain one of three different correspondence distributions, depending
on the scene-depth structure at the seed patch B;: If (i) low depth variations
occur, the accumulator will show a sharp peak, marking the true spatial corre-
spondence, if (ii) high depth variations occur, the accumulator will in general
contain an elongated peak, which is the part of the epipolar ray that is actually
attained by 3D points in the scene, or if (iii) no corresponding patch in view Z;
exists, the accumulator will contain a noisy and scattered structure. We denote
the different types of correspondences as (i) point-to-point, (ii) point-to-line and
(iii) no correspondence, where Fig.[Bl shows examples of accumulators for each
of the cases. Based on an eigenvalue analysis of the accumulators covariance
matrix, the accumulators can be classified according to the cases (i)-(iii). For a
point-to-point correspondence, both eigenvalues will be small, for a point-to-line
correspondence one eigenvalue will be large while the other one will be small
and for no correspondence both eigenvalues will be large. As PCA is neither
rotation or scale invariant we learn spatiotemporal event descriptors on small
patches which alleviates the problem. Within the experimental section we show
that good results can be obtained even for pairs of views which are rotated w.r.t
each other or differ in scale (cf. Sec. H).

3.4 Implementation Details

The experimental implementation consists of a geometric module where both the
event detection and event matching are performed, and a photometric module
which determines the GVTFs for every pair of cameras.

Both modules are initialized by the results of an offline learning step: For ev-
ery view Z; the two PCA bases as described in Sec.[J] are computed, based on a
few hundred temporally neighboring images, where all spatially overlapping spa-
tiotemporal image patches will be used to construct the data matrix in phase 1.
We then choose as many basis vectors as necessary to represent at least 90% of
the variance of the data matrices in phase 1 and phase 2.

The GVTFs ¢;; are initialized as follows: For time t, let (mjg, 0127 ) and
(mj,t,crj?’t) be the mean and variance of image signals s;(-,t) and s;(-, %), re-
spectively. The initial GVTF ¢;; is then obtained as the linear least-squares fit
to the 2D scatter data formed by the pairs (m; ¢, m; ), inverse-weighted with the
variances Ufyt extracted from the image data available so far. This estimate does
obviously not need point-to-point correspondences, but relies on a substantial
overlap of the views Z; and Z;.

! This strongly depends on the type of motion observed and the coverage of the image
area with motion.
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Fig. 4. Learnt PCA bases: First 5 eigenpatches found by PCA in phase 1 for (left
to right) experiment 1, experiment 2, and experiment 3. (Top row) Eigenpatches for
the left view, (bottom row) eigenpatches for the right view.

4 Experimental Results

In this section we show results obtained with the proposed patch-based coinci-
dence analysis for correspondence learning in quite different binocular camera
setups and compare it to the single-pixel approach.

The sequences used within the experiments are synchronized binocular views
recorded at 30fps with a spatial resolution of 640 x 480 pixel. Every sequence
consists of at least 5000 frames. The seed patches are laid out as a regular
rectangular grid. For each experiment, the PCA bases are learnt based on patches
of size 3 X 3 x 3, where the event threshold was empirically set to T, = 50. The
similarity threshold T is set adaptively as two times the minimum of w(B;, B..).

Experiment 1: In this experiment, two cameras are observing an urban junc-
tion. The cameras have the same focal length but are rotated with respect to each
other. Figure[ (left) shows the eigenpatches found by PCA in phase 1 (cf. Sec.[3).
Figure [l (left) visualizes the process of correspondence learning after having pro-
cessed 500, 1500, and 5000 images. The markings for the correspondences are
placed at the location where the respective accumulator attains its mean value.
Additionally, the covariance error ellipses visualize the spatial uncertainty in the
learnt correspondence. After having processed 5000 images, a correspondence
has been learnt for most of the seed patches, resulting in small circle like co-
variance error ellipses. This indicates that point-to-point correspondence have
been learnt, in coincidence with our expectation, as the scene is rather planar.
Figure [ (right) shows results obtained based on the single-pixel approach. It
can be seen that the proposed patch-based method speeds up the learning pro-
cess considerably, as the overall uncertainty about the learnt correspondences is
smaller. For a quantitative comparison, we determined the number of correctly
learned correspondences. Therefore, each accumulator is classified as encoding a
point-to-point correspondence provided that the sum of the eigenvalues of the
accumulators covariance matrix is below a threshold 7, = 12. Table @l shows the
percentage of correctly classified correspondences for both approaches. Particu-
larly in the early learning stage, after 500 and 1500 images have been processed,
the proposed method found 25% and 28% more correspondences,
respectively. Note that, within both approaches we are able to detect false or
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Fig. 5. Experiment 1: Correspondences learnt at frame 500, 1500 and 5000. (left col-
umn) Results obtained for the proposed patch-based approach, (right column) results
obtained for the single-pixel approach. Blue dots within the left image of each image
pair mark a seed patch, and correspondences learnt in the right image are shown as
blue circles. Covariance error ellipses per seed patch visualize the certainty about the
estimated correspondence. Best viewed in color and upscaled.

invalid correspondences based on the accumulators covariance matrix. For fur-
ther processing steps, these false correspondences may then be removed.

Experiment 2: In this experiment, the cameras again observe an urban junc-
tion, however, now the cameras have considerable different focal lengths (6 mm
& 16 mm). Figure [ (middle) shows the eigenpatches found by PCA in phase 1.
In Fig. [@ (left) the process of correspondence learning is visualized after having
processed 500, 1500, and 5000 images following the same visualization style as
before.

While both orientation as well as scaling are quite different between the views,
our method is able to learn a large number of true correspondences. In Fig.
(right) it can be seen that for 500, 1500, and 5000 processed frames the uncer-
tainty about correspondences obtained with the single-pixel approach is much
higher than for the patch-based approach (Fig. [f (left)) resulting in many large
covariance error ellipses. This is confirmed by Tb. @] which shows that the patch-
based approach constantly outperforms the single-pixel approach in terms of
correctly learned correspondences, even in the late learning stage by more than
20%.

From the results of the single-pixel approach shown in Fig. [0 (right), one
can see that the proposed patch-based approach (Fig. [ (left)) learns more
correspondences in less time.
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Table 1. Quantitative benchmark results: Ratio between number of learned and
total number of seed patches for sequences used within experiment 1 and experiment 2

Experiment 1, 36 seed patches Experiment 2, 36 seed patches
#Frames single-pixel patch-based #Frames single-pixel patch-based

500 0.25% 0.50% 500 0.25% 0.44%
1500 0.53% 0.81% 1500 0.33% 0.69%
5000 0.81% 0.86% 5000 0.64% 0.86%

Fig. 6. Experiment 2: Correspondences learnt at frame 500, 1500 and 5000. (left col-
umn) Results obtained for the proposed patch-based approach, (right column) results
obtained for the single-pixel approach. Markings as in Fig.[Bl Note the significantly
different focal lengths of the two cameras. Best viewed in color and upscaled.

In order to evaluate the quality of the results in experiment 1 and 2, we
estimated the homography matrix between the two views, based on the found
correspondences (correspondences with high uncertainty have been removed be-
fore). Figure [0 shows the registered images, where the base image is indicated
by a black border. Only at the street lamps, where the scene is obviously not
planar, visual artifacts can be seen, confirming the good quality of the found
correspondences.

Experiment 3: In the final experiment we show that the presented approach
can also cope with scenes where the cameras are moving. The sequence used here
was recorded with two cameras on a stereo rig with a baseline of approx. 30 cm,
mounted on the roof of a car driving in urban and highway traffic. In contrast
to experiment 1 and 2, where the scenes were recored from static cameras in
this experiment visual events occur all over the image plane as the cameras are
moving.
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Fig. 7. Registered images: for experiment 1 (left) and 2 (right) based on a homog-
raphy estimated from learnt point-to-point correspondences

Fig. 8. Experiment 3: Correspondences learnt at frame 500, 10000, 15000, and 30000.
Results obtained for the proposed patch-based approach. Markings as in Fig.[Bl Best
viewed in color and upscaled.

Figure @ (right) shows the eigenpatches found by PCA in phase 1. We ex-
pect the accumulators to show both point-to-point as well as point-to-line cor-
respondences, as large depth changes occur within the scene. Figure [§] shows
the process of correspondence learning after having processed 500, 10000, 15000,
and 30000 frames. Point-to-point correspondences are mostly found above the
horizon where the scene depth stays nearly constant over time. Point-to-line cor-
respondences were found in the lower half of the scene, that is, where cars can
be seen at different depth levels. This is visualized by line-like covariance error
ellipses. The accumulators of several seed patches located on the engine hood
are of type no correspondence. Due to the reflection effect of the engine hood,
detected events are likely to be the mirror image of events on the horizon, leading
to a scattered accumulator, and therefore a large covariance error ellipse.

For experiment 3, we deliberately omit a direct comparison with the single-
pixel approach, as the true type of correspondence (point-to-point or point-to-
line) may change over time depending on the currently observed scene.
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5 Conclusion

We presented an approach to learn the geometric relations between a set of cam-
eras, based on temporal coincidences. We extended the single-pixel approach
to TCA to the spatiotemporal domain based on PCA. The proposed method
succeeds in estimating correspondence distributions in camera setups where the
different views are subject to substantial geometric transformations.No prior
information on the relations of the video data streams needs to be provided,
since these are learnt automatically. The same process has been applied even
to a moving stereo camera set. We showed that the patch-based approach to
TCA considerably outperforms the single single-pixel method within static cam-
era setups. We consider these results to be an important step towards fully
automatically setup and continuous adaption of vision systems.
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