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Abstract. Stochastic matrices are arrays whose elements are discrete
probabilities. They are widely used in techniques such as Markov Chains,
probabilistic latent semantic analysis, etc. In such learning problems, the
learned matrices, being stochastic matrices, are non-negative and all or
part of the elements sum up to one. Conventional multiplicative updates
which have been widely used for nonnegative learning cannot accommo-
date the stochasticity constraint. Simply normalizing the nonnegative
matrix in learning at each step may have an adverse effect on the con-
vergence of the optimization algorithm. Here we discuss and compare two
alternative ways in developing multiplicative update rules for stochastic
matrices. One reparameterizes the matrices before applying the multi-
plicative update principle, and the other employs relaxation with La-
grangian multipliers such that the updates jointly optimize the objective
and steer the estimate towards the constraint manifold. We compare the
new methods against the conventional normalization approach on two
applications, parameter estimation of Hidden Markov Chain Model and
Information-Theoretic Clustering. Empirical studies on both synthetic
and real-world datasets demonstrate that the algorithms using the new
methods perform more stably and efficiently than the conventional ones.

Keywords: nonnegative learning, stochastic matrix, multiplicative
update.

1 Introduction

Nonnegativity has shown to be a useful constraint in many machine learning
problems, such as Nonnegative Matrix Factorization (NMF) (e.g. [1H3]) and clus-
tering (e.g. [4,15]). Multiplicative updates are widely used in nonnegative learning
problems because they are easy to implement, while naturally maintaining the
nonnegativity of the elements to be learned after each update. Consider a matrix
problem: suppose we are minimizing an objective function J (W) over a nonneg-
ative matrix W, that is, Wy, > 0 for all (4, k). Multiplicative update is easily
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derived from the gradient V = 0.7 /OW . The conventional multiplicative update
rule is given by

Wir < Wik zf, (1)
ik
where VT and V™ are the positive and (unsigned) negative parts of V, respec-
tively, ie. V=V* - V™.

When dealing with probabilistic problems such as Markov Chains, the matrix
elements are discrete probabilities. Then, in addition to the nonnegativity con-
straint, some or all entries of such matrices must sum up to one. Such matrices
are called stochastic matrices. Given a nonnegative matrix W, there are three
typical stochasticities in nonnegative learning;:

— (left stochastic) or column-sum-to-one: » . Wy, = 1, for all £,
— (right stochastic) or row-sum-to-one: » , Wy, = 1, for all 4,
— (vectorized stochastic) or matrix-sum-to-one: » ., Wi, = 1.

The multiplicative update rule in Eq. () cannot handle as such the stochastic-
ity constraints. A normalization step is usually needed to enforce the unitary
sum (e.g. [6-8]). However, this simple remedy may not work well with the mul-
tiplicative updates and may cause unstable or slow convergence. There is little
literature on adapting the multiplicative update rules for stochastic matrices.

We focus here on how to develop multiplicative update rules for stochastic
matrices in nonnegative learning in a general way. For clarity we only solve
the right stochastic case in this paper, while the development procedure and
discussion can easily be extended to the other two cases.

We present two approaches in Section Pl The first applies the principle of
multiplicative update rules in a reparameterized space, while the second per-
forms multiplicative updates with the relaxed constraints by using Lagrangian
multipliers. While both approaches are quite generic and widely used, they have
not been applied in detail on stochastic matrix learning problems. In Section [3]
these methods demonstrate their advantages in terms of stability and conver-
gence speed over the conventional normalization approach in two applications,
estimating Hidden Markov Chain Models and clustering, on both synthetic and
real-world data. Section M concludes the paper.

2 Multiplicative Updates for Stochastic Matrices

2.1 Normalization

The simplest approach for maintaining the constraints is re-normalization, which
has conventionally been used for updating stochastic matrices (e.g. [6, [7]). After
each multiplicative update by Eq. (), this method normalizes the matrix: Wi, +
Wik / >, Wip. However, as shown in Section 3.2} the normalization method often
causes instability or leads the objective function to fall into some poor local
minima.
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2.2 Reparameterization

Alternatively, we reparameterize the right stochastic matrix W into a non-
stochastic matrix U via Wy, = Ug/ Y., Use. We can then optimize over U
without the stochasticity constraints, instead of W. For notation brevity, in this
paper, we denote V1 and V™ as positive and (unsigned) negative gradient parts
of the objective function J (W) for W. For the gradients of other matrices, we
use subscripts to differentiate those of W, for example, V;} and V.

With the reparameterization, we have %VUVf = 25”* — (ZUg”w)Q, where dp; is

US a

the Kronecker delta function. Applying the chain raule, the derivative of J with
respect to U is

o7 V4,
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This suggests multiplicative update rules for U and W:

(Vo)st _ gy Vir+ X Vi W
(V) st VAL VW

followed by the row normalization of W, i.e. Wg, = Ug/ >, Usa-

Ust — Ust

2.3 Relaxation

The Lagrangian technique, as a well-known method to tackle constraints in opti-
mization, can be employed here to relax the stochasticity constraints. Given the
set of equality constraints ), Wy, —1 = 0,7 = 1,...,m for a right stochastic
matrix, the relaxed objective function can be formulated by introducing La-
grangian multipliers {A;}}2;: T (W, {}m) = J(W) — DA, Wik — 1). Tts

gradient w.r.t. W is 8‘?,[{_k = Vik — V. — Ai. Thus, we can obtain the prelimi-

nary update rule: Wfk = Wi V;v’“j: A Inserting the preliminary update rule into
ik

the constraint ), W, = 1, we have ), Wy v* g i Yo, vlb = 1. Solving the

equation gives \; = = Zz::” ® /vb/ Vi . Putting them back to the preliminary rule,
» Win/ V3,
we have W/ Wik Vikéiflit;lk B , where A;;, = Zb + and Bir, = >, Wi v+

There is a negative term — B;; in the numerator, Wthh may cause negative en-
tries in the updated W. To overcome this, we apply the “moving term” trick
[9-12] to resettle B;i to the denominator, giving the final update rule

Vo Aip +1

g g Vi Aik + Bik

(4)

We call the above update rule iterative Lagrangian solution [9] for the nonneg-
ative learning problem with stochasticity constraints.
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The final update rule reveals that there are two forces, weighted by A;x, in
the update procedure of W. One keeps the original multiplicative update rule
Wik < Wi V,./ V?}c, and the other steers the matrix to approach the manifold
specified by the stochasticity constraints. Incorporating the two forces into one
update rule can ultimately optimize the matrix W and fulfill the constraints
approximately as well.

Moreover, if there exists a certain auxiliary upper-bounding function (see
e.g. |1, 9]) for J(W) and minimization of the auxiliary function guarantees
that J (W) monotonically decreases under multiplicative updates, we can easily
design an augmented auxiliary function for J (W, {\;}) by the principle in [9]
to keep the relaxed objective function descending under the update rule ().
This can theoretically ensure the objective function convergence of multiplicative
update rules for stochastic matrices.

3 Applications

3.1 Parameter Estimation in HMM

A Hidden Markov Model (HMM) chain is widely used for dealing with temporal
or spatial structures in a random process. In the basic chain model, s(i) de-
notes the hidden state at time 4, taking values from & = {1,2,...,7}, and its
corresponding observed output is denoted by x (). The state joint probability is
S(s1,s2) = P(s(i) = s1,5(i + 1) = s2). The factorization of the joint probability
of two consecutive observations X(wl,xg) = P(z(i +1) = x2,2(i) = x1), can
be expressed as X (z1,z3) = Y a5y P(@1]81)S(51, 82) P(w2|s2). For the discrete

and finite random variable alphabet |X| = m, X forms an m x m vectorized
stochastic matrix. Then, the above factorization can be expressed in matrix
form: X = PSP, where X e RT*™, P € R7*" and S € R}*".

The matrix )/(\'Ais generally unknown in practice. Based on the observations,
z(1),...,z(N), X is usually approximated by the joint normalized histogram

n—1

X(on,) = S 8(() = 28 + 1) = 2), (5)
N -1
i=1

where ¢ is Dirac delta function. With the Euclidean distance metric, the NMF op-
timization problem can be formulated as minp>o,s>0 J (P, S) = 3| X —PSPT|]?,
subject to ), P =1, ,Sqe=1fors=1,...,r.

Lakshminarayanan and Raich recently proposed an iterative algorithm called
NNMF-HMM for the above optimization problem [13]. Their method applies
normalization after each update of P and S, which is in turn based on matrix
pseudo-inversion and truncation of negative entries.

Here we solve the HMM problem by multiplicative updates. First, we decom-
pose the gradients of J to positive and negative parts: Vp = VIJS — V5 and
Vs = Vi — Vg where V}, = PSPTPST + PSTPTPS, V, = XPST + XTPS,
V; = PTPSPTP, and Vg = PT X P. Multiplicative update rules for P and S
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Table 1. Comparison of convergence time (in seconds) and final objective on (top)
synthetic dataset and (bottom) English words dataset. Results are in the form mean
=+ standard deviation.

Methods NNMF-HMM norm.-HMM repa.-HMM rela.-HMM
Time 3.52 4 2.10 1.00 + 0.44 1.84 +1.04 1.89 + 0.56
Objective 4 x 1072 +£1x 1072 7x 10794+ 9x 10724 x 1072+ 9x 1072 7x 1075+ 9 x 107°

Methods NNMF-HMM norm.-HMM repa.-HMM rela.-HMM
Time 0.15 4+ 0.09 2.94 + 1.43 2.53 4+ 1.28 2.89 4+ 0.62
Objective 6 x 1072 £2x 1072 8 x 1074 £0.2x 1074 9x 1074+ 1 x 1074 8 x 1074+ 0.2 x 107*

are then formed by inserting these quantities to the rules in Section Pl Note that
P is left stochastic and S is vectorized stochastic. Some supporting formulae for
these two cases are given in the appendix.

We have compared the multiplicative algorithms against the implementation
in |13] on both synthetic and real-world data. First, a data set was generated
under the same settings as in [13]. That is, we constructed an HMM with r = 3

00.90.1
states and a transition matrix X (sa]s1) = |0 0 1 |. Next, r was sampled
10 0

based on the conditional distributions z'|s = 1 ~ N(11,2), z'|s = 2 ~ N(16, 3)
and z |s = 3 ~ Uniform(16,26). Then z was generated by rounding z to its
nearest integer. We sampled N = 10° observations and calculated the joint

probability normalized histogram matrix X by Eq. (&).

The iterative algorithms stop when Hpﬁ;"‘;up < € and Hsﬂgﬁ’;’”F < €, where
| - | stands for Frobenius norm and ¢ = 107°. We run the algorithms 50

times with different random initialization for P and S. All the experiments are
performed on a PC with 2.83GHz CPU and 4GB RAM. Results are given in
Table[Il (top), from which we can see that the three methods with multiplicative
updates are faster and give better objectives than NNMF-HMM.

For one group of random implementations, we compare their convergence
speeds, i.e, objective value as a function of time, in Fig. [l (top). We can ob-
serve that NNMF-HMM algorithm gets stuck into a high objective. The other
three algorithms converge much faster and have similar convergence speed while
satisfying the stochasticity constraints.

In a real-world application, 1510 commonly used English words have been
selected for exploring word-building rules in English by HMM modeling. We
treat each word as a sequence of letters (observations) and consider two consec-
utive letters as two successive observations. We calculated the joint normalized
histogram matrix X € RiGX% by Eq. (). We empirically set the number of hid-
den states r = 6 in our experiment. Table [l (bottom) presents the convergence
time and objectives based on 50 independent runs. Fig. [[] (bottom) shows the
convergence speed of the four algorithms on of the runs, exhibiting the same
advantage of multiplicative updates over NNMF-HMM which was demonstrated
for the synthetic data set.
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Fig. 1. Objective evolution of the compared algorithms in HMM parameter estimation
on (top) synthetic data set and (bottom) English words. The right sub-figures are the
zoom-in plot for early epochs.

3.2 Nonparametric Information Theoretic Clustering

Next, we demonstrate another application of the proposed methods to a nonneg-
ative learning problem beyond matrix factorization: Nonparametric Information
Clustering (NIC) [4]. This recent clustering approach is based on maximizing
the mutual information between data points and formulates a clustering crite-
rion analogous to k-means, but with locality information enhanced.

Given a set of data points {z1,22,...,2x} and the number of clusters nc,
denote the cluster of z; by C(z;) = ¢;, and the number of points assigned to the
kth cluster by ng. NIC minimizes the following score as the clustering criterion:
Inic(C) =3 nkll Z#j‘cizcj:k log ||z; — x;||*. Faivishevsky and Goldberger
[4] proposed a greedy algorithm to optimize the score function Jnrc(C). Ini-
tialized by a random partition, the greedy algorithm repeatedly picks a data
point and determines its cluster assignment that maximizes the score function
JIn1c(C). Note that for each data point, the greedy algorithm has to recompute
the score function, which is expensive for large data sets.

To overcome this issue, we reformulate the hard clustering problem into a
soft version such that differential calculus in place of combinatorial optimization
can be used. Moreover, we use batch updates of cluster assignments for all data
points. First, we relax the score function J5;c = >, p(k) >_i; P(ilk)p(jlk) Di;
by using probabilities, where p(k) = __ p(k|a)p(a) is the cluster probability,
and p(i|k) and p(j|k) are the observation probabilities in cluster k. D abbrevi-
ates the dissimilarity matrix for the whole data set, with D;; = log ||z; — z;||*.
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Fig. 2. Clustering analysis for a synthetic dataset (top left) using five algorithms:
greedy algorithm (top middle), normalization (top right), reparameterization (bottom
left), relaxation (bottom middle) and k-means (bottom right)
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Fig. 3. Objective evolution of a typical trial of compared NIC algorithms: (left) syn-
thetic dataset and (right) pen digit dataset

In clustering, our aim is to optimize conditional probability p(k|i), the soft as-
signment to kth cluster for data point x;. Applying the Bayes theorem, we have

p(ilk) = Zp (pk(‘,i)‘g )(;)(a) = Zp (g(‘i?la)’ where we assume a uniform prior for data

points z;, p(i) = 5.
For notational simplicity, we define the assignment matrix W;, = p(kl|i). The

NIC model can thus be reformulated as the following nonnegative optimization
T

problem: minw >0 J§;c(W) = & >4 (V% DV‘[/,VL"’“, subject to Y, Wy, = 1 for all

. . . 8TRe 1 z(Dmf)i (WTDW) . .

i. The gradient to W is 8&};5 =N ( 5, Wa: -, Wak)k“’k , with which we can

construct multiplicative updates for W as described in Section Bl The iterative

HW_WoldHF 10—5
wie < :

We first generated a synthetic data set with five clusters: four “pie” clusters
and a circular cluster surrounding the pies (Fig. 2 top left sub-figure). Each
cluster has 300 data points. A typical run of the compared NIC algorithms is

algorithms terminate when
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Table 2. Comparison of convergence time and final objective on synthetic clusters

Methods greedy norm.-NIC repa.-NIC rela.-NIC k-means

Time (s) 80.83+17.75  535.11 + 37.25 7.22 + 7.06 6.98 + 6.94 0.03 4+ 0.05

Objective —2.60 x 10% £ 0 —2.53 x 10% 4+ 204 —2.60 x 10> % 0.01 —2.60 x 10® + 0.01 —1.79 x 10° % 490
Purity 0.99 £ 0 0.97 + 0.06 0.99 £ 0 0.99+0 0.72 £0.14

Table 3. Clustering performance for the five compared methods on datasets i) ecoli,
ii) glass, iii) parkinsons, iv) iris, v) wine, vi) sonar, and vii) pima. Each cell shows
the mean and standard deviation of clustering purity (the first line) and converged
time (the second line, in seconds). The abbreviations norm., repa., and rela. stand for
normalization, reparameterization, and relaxation, respectively. Bold numbers indicate
the best in each row.

Data  greedy norm. repa. rela. rela.+greedy
i) 0.80+0.02 0.514+0.02 0.804+0.03 0.80+0.03 0.80+0.03
4.05+1.06 3.83+1.33 1.70£2.12 2.14+3.22 2.63%1.14
ii) 0.644+0.05 0.444+0.01 0.64+0.05 0.64+0.05 0.64+0.05
1.2940.28 1.20£0.50 0.48+0.31 0.47+0.32 0.8940.42
0.754+0.00 0.75+0.00 0.75+0.00 0.75+0.00 0.75+0.00
0.424+0.13 0.40%+0.03 0.55+0.07 0.49£0.05 0.3440.11
0.724+0.04 0.47+0.05 0.72+0.07 0.72£0.07 0.734+0.06
0.26+0.09 0.74+0.17 0.20£0.29 0.164+0.10 0.18+0.11
0.774+0.16 0.40+0.01 0.65+0.13 0.65+0.13 0.814+0.18
0.58+0.21 0.56+0.30 0.56+0.11 0.50£0.11 0.42+0.16
0.554+0.00 0.534+0.01 0.554+0.02 0.55+0.02 0.55+0.00
0.324+0.04 0.41+0.00 0.57+£0.02 0.54£0.00 0.30+0.05
0.67+0.00 0.654+0.00 0.66+0.01 0.66+£0.01 0.67+0.01
19.65+5.67 5.44£0.38 4.46+0.17 4.60+0.16 12.74+6.42

iii)
iv)
v)
vi)

vii)

shown in Fig.[3 (left). We can see that the normalization method gets stuck and
returns a high objective. The other three methods can find better NIC scores,
whereas the greedy algorithm requires much more time to converge. By contrast,
reparameterization and relaxation achieve nearly the same efficiency. We have
repeated the compared algorithms 50 times with different random initializations.
The means and standard deviations of the running time and objective are shown
in Table 2, which again shows the efficiency advantage of the algorithms using
the proposed methods.

We validate the converged estimates by checking their corresponding clus-
tering results. From Fig. Bl k-means and normalization methods split the large
circle into several parts and fail to identify the four pies in the middle. The NIC
algorithms can correctly identify the five clusters. The clustering performance is
quantified by the purity measurement, which is calculated by 117 Do MaxXi<i<q nfc,
with nfc the number of samples in kth cluster that belong to true class [. A larger
purity usually corresponds to better clustering performance. The last row in Ta-
ble Plindicates that the new algorithms are not only fast but are able to produce
satisfactory clustering results.

We have also tested the compared algorithms for NIC on several real-world
datasets selected from the UCI Machine Learning Repositor. The results are
shown in Table[Bl We can see that in six out of seven datasets, the reparameteri-
zation and relaxation methods can achieve similar purity as the greedy algorithm

!http://archive.ics.uci.edu/ml/
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Table 4. Comparison of convergence time, final objective and purity on pen digits
dataset

Methods greedy norm.-NIC repa.-NIC  rela.-NIC k-means

Time (s) - 4509 + 328 1276 =41 1274+£38 0.7+0.4
Objective  — 36445 + 51 30457 £ 177 30457 £ 177 30812 £ 285
Purity — 0.37+£0.001 0.73+0.04 0.734+0.04 0.68+£0.04

but with less learning time. For the wine dataset, though the purities obtained
by the proposed methods are inferior to those by the greedy algorithm, we can
use the relaxation (or reparameterization) method as initialization, followed by
the greedy approach. This way we can achieve satisfactory purity but still with
reduced learning time. Surprisingly, this hybrid method produces even better
clustering purities for the datasets iris and wine. By contrast, the normalization
method is again unstable and its clustering purity is much lower than the others
for four out of seven datasets.

The efficiency advantage brought by the proposed method is clearer for larger
datasets, e.g. pima. Furthermore, we applied the compared methods to an even
larger real world data set, “Pen-Based Recognition of Handwritten Digits Data
Set” also from the UCI Repository. This data set contains 10992 samples, each
of which is 16-dimensional. In clustering the digits, the two proposed methods
can achieve purity 0.73 except the normalization approach (purity 0.37), see
Table [l However, the greedy algorithm needs more than one day to converge,
while the proposed reparameterization and relaxation multiplicative updates can
converge within 20 minutes, as compared with the normalization method in the
right panel of Fig. Bl

4 Conclusions

We have introduced two methods, reparameterization and relaxation, for mul-
tiplicatively updating stochastic matrices. Both methods share the property of
good convergence speed and can fulfill the stochasticity constraints. They out-
perform the conventional normalization method in terms of stability. We have
applied the proposed algorithms to two applications, parameter estimation in
HMM and NIC clustering. Experimental results indicate that the proposed two
methods are advantageous for developing multiplicative algorithms for nonneg-
ative learning with stochastic matrices.

In future work, we would like to investigate the theoretical proof on the con-
vergence of reparameterization and relaxation methods, which can be handled by
constructing proper auxiliary functions. Moreover, the connection between the
proposed methods and the Dirichlet process prior deserves further investigation.

A Formulae for Left and Vectorized Stochastic Matrices

In reparameterization method, for left stochastic matrix,
sN4 . V:t I (UTV_)tt _ < V:t (UTV+)tt)

= +
aUst Za Uat (Za Uat)2

S U (5, Un)? ©)
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for vectorized stochastic matrix,

90T _ A\ > VanUas < Vi n > ab V:;)Uab). )
st Zab Uab (Zab Uap)? Zab Uab (Zab Uab)?

In relaxation method, for left stochastic matrix,

_|_

Wk V;
A =) Vik ., Bik=) Wa V{’ (8)

and for vectorized stochastic matrix,

Wap V.
Ak = E v By, = g Wab V+Z- 9)
ab a ab a
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