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Abstract. With the introduction of multicore hardware to embedded systems
their vulnerability to race conditions has been drastically increased. Therefore,
sufficient methods and techniques have to be developed in order to identify this
kind of runtime errors. In this paper, we demonstrate an approach employing a
formal technique in the verification process. We use MEMICS, which is a spe-
cialized constraint solver able to identify general runtime errors as well as race
conditions. We show how this tool can be embedded into an existing software
analysis tool chain. In particular, we describe the process of deriving the formal
input model for the solver from C code. The advantage of using constraint solv-
ing techniques is that we can offer an entire trace leading to a race condition.
The ongoing development of MEMICS is part of our work inside the ARAMiS
project.

1 Introduction

One of the main goals of the ARAMiS project — “Automotive, Railway and Avionics
Multicore Systems” — [BS] is to enhance on safety issues for multicore embedded
technologies in vehicles. In terms of embedded systems a safety aspect is the assurance
that the software running on them is free of any kind of runtime error, which they may
suffer and fault from. Software can suffer from a lot of different runtime errors, like an
arithmetic overflow, a division by zero, an index out of bound access, a null dereference,
a race conditions and a stack overflow. A detailed list of runtime errors can be found in
Table 1 in Section 3. The nastiest of these runtime errors are the race conditions, as they
might only occur sporadically and are therefore very hard to detect or trace. With the
current introduction of multicore hardware to embedded systems, their vulnerability to
race conditions has increased drastically. To get this problem under control new tools
and techniques are required.

In [NT12] we introduced the static software analysis tool MEMICS, which is able to
detect race conditions as well as common runtime errors in C/C++ source code. Com-
mon static analysis tools like Astrée [CCF+05], Polyspace [pol], and Bauhaus [RVP06]
are able to analyse large code fragments but do suffer from potential false positives
which requires an extensive manual postprocessing of their results. MEMICS is based
on constraint solving techniques which eliminate the problem of false positives. How-
ever, the complexity of constraint solving algorithms is very high which means that the
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code fragments MEMICS can analyse are not too large. We believe that a combination
of both approaches, approximative and precise techniques, together in one tool chain
lead to a significant improvement of the analysis of concurrent code. In this paper we
describe how MEMICS fits into a static analysis workflow. Moreover, we give a detailed
description of the conversion of C code to the MEMICS input model.

Within the ARAMiS project there are two possible scenarios discussed, in which the
MEMICS tool can be used to provide safety:

1. Migration to multicore hardware, and
2. Development for multicore hardware.

Both scenarios have the same origin. Lets assume an OEM has decided to replace the
hardware of one of its ECU’s — e.g. due to new features, optimized power consumption,
or need for more performance — and the replacement hardware contains a multicore
CPU, whereas the old one was a singlecore system. In this case the OEM has to decide,
either to port the current software version to match all the new features of the multicore
hardware or to entirely restart and build a new software from scratch. Still, no matter
which of the two choices are picked, it is clear that the possibility of potential races has
increased with the new hardware. Therefore MEMICS can be used to determine and
eliminate races during the development process.

The MEMICS tool is described in Section 2, where we mainly focus on the MEMICS
frontend. Section 3 provides current results of the MEMICS tool. In Section 4 we dis-
cuss the role and possible use cases of MEMICS inside the ARAMiS project. Finally
we conclude our paper in Section 5 and give a perspective for the future.

2 The MEMICS Tool

In [NT12] we introduced MEMICS, while mainly focusing on the overall tool and the
proof engine. The current paper is dedicated to the preprocessing engine in MEMICS,
the MEMICS frontend, which is introduced in detail in Section 2.1. Figure 1 shows
the architectural overview of MEMICS. The input to MEMICS is C/C++ source code,
which in the first step is preprocessed in the MEMICS frontend and results in the
MEMICS model. This model is then passed to the core of MEMICS, the actual proof
engine, which checks if the model suffers from any runtime error.

2.1 The MEMICS Frontend

The MEMICS frontend describes the interface between the source input, which is
C/C++ source code, and the MEMICS model. We decided to use the Low Level Virtual
Machine (LLVM) [LA04] infrastructure as a base for this frontend, as it is currently one
the most advanced and user friendly compiler framework. In the first step, the C/C++
sources get compiled using the CLANG [Fan10] compiler and are linked together using
llvm-ld. The result is one bitcode file, which resides in the LLVM intermediate repre-
sentation (IR) [Lat]. The LLVM IR is a combination of the LLVM language, which is
based on the MIPS [Swe06] instruction set, and an unlimited set of virtual registers. In
order to simplify and reduce the input problem, we can optionally run a Program Slicer
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Fig. 1. An Overview of the MEMICS Architecture

[Wei81] directly on the LLVM IR. Due to the fact that this slice must not modify the
overall behaviour of the program, we can only apply specific slicing techniques. The IR
still features function- and variable-pointers as well as other specific types, which are
not straight forward dealable by common verification techniques. So, instead of hav-
ing to lower all the special features on our own, we decided to take advantage of the
LLVM backend, which is generating plain machine code. Therefore, we derived the
LLVM MEMICS backend from the MIPS backend and added some minor modifica-
tions to the instruction lowering. But instead of printing plain MIPS assembly code,
the LLVM MEMICS backend creates the MEMICS intermediate representation, which
is introduced in Section 2.2. Every machine instruction can be mapped one-by-one to
a MEMICS instruction and every global variable is on the one hand applied to the
MEMICS RAM and on the other hand assigned to the model.

Like almost any compiler infrastructure the LLVM MIPS backend supports three dif-
ferent relocation types [Lev99]: dynamic-no-pic, pic and static. Pic is short for “position
independent code” and even allows the temporal storage of jump destinations into reg-
isters. Both, pic and dynamic-no-pic allow libraries to be fetched dynamically, which
results in a smaller linked binary. Whereas in static relocation type all libraries are stat-
ically linked into the binary, which is therefore bigger. In the current development state
our MEMICS intermediate representation requires absolute jump destinations, which
forces us to either use dynamic-no-pic or static relocation type.

2.2 The MEMICS Intermediate Representation

The MEMICS intermediate representation (IR) or the MEMICS model is based on a
combination of a finite state machine definition and the MIPS instruction set. An in-
struction inside the IR is defined as the 4-tuple:

< si, c, a, s
′
i >, where:

si is the current program counter (PC), c is an optional condition (e.g. in a branch
instruction), a is the actual MIPS instruction, and s′i is the successor PC.
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Figure 2 shows a small example of the conversion from C source code to the MEMICS
IR. The source code shown in the first box is a simple function, which computes the di-
vision of the operandsa and b. Compiling this code using CLANG results in the LLVM
IR, which is shown in the second box of the figure. It is observable that the IR itself is
already more like a machine language, compared to the actual source code. First of all
local memory for the operands is allocated, which is afterwards assigned with the ac-
tual values of them. In the next step the values are read from the memory into the two
virtual registers %0 and %1. Next the division itself takes place and finally the result
is returned. The MEMICS IR, which is shown in the last box of Figure 2, is retrieved
from the LLVM IR via the LLVM MEMICS backend. The result is even closer to the
MIPS assembly language then the LLVM IR. The actual instruction has been embed-
ded between the current program counter and the following program counter, which
are both required in order to properly process the model. First of all in line 1 the local
stack pointer gets allocated. In line 2 and 3 the operands - respectively the registers 4
and 5 - are stored in the local memory. Now, the actual division takes part in line 4,
where the result is store in register lo and the remainder in register hi. In the next two
instructions the result is assigned to the return value register 2 and the stack pointer gets
freed. Finally the function returns to its caller, which is stored in the ra (return address)
register.

2.3 The MEMICS Core

The MEMICS Core is the actual verification engine of the MEMICS tool, which checks
if the MEMICS IR and its underlying C/C++ source code suffers from any runtime
error or not. The verification process is based on Bounded Model Checking (BMC)
[BCC+03]. Therefore, the MEMICS IR is unrolled step by step into a logic formula
in Static Single Assignment (SSA) form [AWZ88, RWZ88] and then passed to the
MEMICS Proof Engine. This proof engine is a self developed Interval Constraint Solver
(ICS), based on the ideas from HySAT and its successor ISAT [FHT+07]. The main dif-
ference between an ICS and common SAT-/SMT-Solvers [MMZ+01, dMB09] - e.g.
MiniSAT [ES03], Boolector [BB09], Z3 [dMB08] and many other - is, instead of
dealing with fix-point variable decisions during the internal search procedure, vari-
able ranges are deduced. Since the main purpose of our tool is software verification,
it contains many special features regarding the analysis of software. For details on these
features please refer to [NT12].

3 Results

In [NT12] we have tested MEMICS on an internal benchmark set, which contains dif-
ferent types of runtime errors, based on errors observed in real life. We used the Com-
mon Weakness Enumeration (CWE) [cwe] database to define the base classes for these
errors. As the CWE gathers almost any kind of error, which is observable in a com-
puter based environment, we do by far not match all error classes, but only show the
most relevant ones for static software analysis. The result of these tests is shown in
Table 1, where we have compared MEMICS with two analysis tools, CBMC [CKL04]
and LLBMC [SFM10], which are also operating based on BMC.
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C Code

int divide(int a, int b) {
return (a / b);

}
LLVM Intermediate Representation

define i32 @divide(i32 %a, i32 %b) nounwind {
entry:
%a.addr = alloca i32, align 4
%b.addr = alloca i32, align 4
store i32 %a, i32* %a.addr, align 4
store i32 %b, i32* %b.addr, align 4
%0 = load i32* %a.addr, align 4
%1 = load i32* %b.addr, align 4
%div = sdiv i32 %0, %1
ret i32 %div

}
MEMICS Intermediate Representation

1: PC = 1 -> malloc(sp_reg’ , 8) AND PC’ = 2;
2: PC = 2 -> sw(4_reg, (memadr(sp_reg, 4) AND __clk__))

AND PC’ = 3;
3: PC = 3 -> sw(5_reg, (memadr(sp_reg, 0) AND __clk__))

AND PC’ = 4;
5: PC = 4 -> (lo_reg’ = 4_reg / 5_reg)

AND (hi_reg’ = 4_reg % 5_reg)
AND PC’ = 5;

6: PC = 5 -> (2_reg’ = lo_reg) AND PC’ = 6;
7: PC = 6 -> free(sp_reg) AND PC’ = 7;
8: PC = 7 -> PC’ = ra_reg;

Fig. 2. From C Source Code via the LLVM IR to the MEMICS IR

With this results we have shown that our tool is already able to identify a lot of
runtime errors, as well common sequential as difficult concurrent ones.

4 MEMICS and the ARAMiS Multicore Platform

As in the introduction already mentioned the main goal of ARAMiS is to provide a
platform for multicore development. This platform should feature a seamless integration
of the development tools along the development process. For this purpose one current
development process is the creation of a global exchange format. This format should
help all tools along the development process to intercommunicate with each other and
pass on usable information or already computed results.

The MEMICS tool can intercommunicate and share information with common static
analysis tools like Astrée, Polyspace, and others as well as race detection tools like
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Bauhaus [RVP06] and others. Figure 3 illustrates the information sharing between those
tools alongside the ARAMiS exchange format. The main idea behind the combination
of these tools is to provide the best overall performance for all of them. Whereas tools
like Astrée and Polyspace have the ability to handle large amounts of source code, they
are based on abstract interpretation [CC77] and may therefore suffer from imprecision
in the results. Bauhaus can also handle a lot of input in terms of source code, but it still
suffers from false positives in the results, since it is working based on approximative
techniques. On the other hand BMC tools like MEMICS are limited due to the state
explosion problem, while offering enormous precision. In our case we even provide
a direct counterexample leading to an error. In Section 4.1 and 4.2 we describe three
different scenarios of possible tool intercommunication.

Table 1. Results of MEMICS compared to CBMC and LLBMC, where a �represents a correct
verification result, - a false one and ◦ signals that the tool does not support the class of testcases

Class Benchmark CWE-ID MEMICS CBMC LLBMC

Arithmetic
DivByZeroFloat 369 � � ◦
DivByZeroInt 369 � � �

IntOver 190 � � �

Memory

DoubleFree 415 � � �
InvalidFree 590 � � �

NullDereference 476 � � �
PointertToStack 465 � - �

SizeOfOnPointers 467 � - �
UseAfterFree 416 � - �

Pointer Arithmetic
Scaling 468 � - �

Subtraction 469 � - �

Race Condition
LostUpdate 5671 � ◦ ◦

MissingSynchronisation 820 � ◦ ◦
Synchronization

DeadLock 833 � ◦ ◦
DoubleLock 667 � ◦ ◦

4.1 Combination: MEMICS ↔ Polyspace

The output of Polyspace is divided in three different groups: the green, orange and red
results. A green result states the given property is free of faults, whereas a red one is
an actual finding. All of the orange ones are not determinable and must therefore be
manually reviewed. One can use MEMICS to check if the error is “real” or not. The
definition of the check is acutally quite simple. Let us assume the indeterminable error
is a potential division by zero occurring in the example function “divide” of Figure
2. In that case using the definition of the according MEMICS IR from Figure 2, the
target-question MEMICS has to determine is:

PC == 4 ∧ 5 reg == 0
1 We did not find a straight forward ID for a lost update, but the example in this entry describes

one.
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4.2 Combination: Bauhaus ↔ MEMICS

In case of the Bauhaus race detector, two different scenarios can be considered. In the
first case Bauhaus can just pass its common output as well as the system description
- including the task definitions, their priorities and so on - to MEMICS in order to
determine, which of the detected race pairs can really occur in the system. Such a race
pair can either be a read operation from task A in conflict with a write operation from
task B on the same shared resource or a write-write conflict between task A and B. So
e.g. for a read/write conflict, given the read access occurs at PC = x, the write conflict
occurs at PC = y and the resource is located at address z in the memory, the target-
question for MEMICS is:

clk(load, z, A, PC = x) > clk(store, z, B, PC = y)

In the second case Bauhaus can use MEMICS to gather more information on the schedul-
ing of tasks. With this help Bauhaus can reduce the set of potential race conditions. Let
us assume that the initial program counter of task A is PC taskA = x and for task
B PC taskB = y. The target-question for MEMICS, if e.g. the two tasks can start
synchronously, is:

clk(PC taskA = x) == clk(PC taskB = y)

The MEMICS tool benefits from the first two scenarios described above, because adding
a target-question to input of the MEMICS IR has almost the same impact as Program
Slicing. It does not actually reduce the MEMICS IR, but reduces to search space only
to the required behaviour, which is shown in Figure 4. This reduction can have a large
impact on the overall time MEMICS requires to solve the input problem.
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5 Conclusions and Future Work

In this paper we have described, how the software verification tool MEMICS maps
C code to its input model. We have shown the advantages of using LLVM and that
especially the LLVM Backend is the most suitable solution for our purpose. Moreover,
we described the role of MEMICS inside a software analysis tool chain, in particular
within the ARAMiS project. This gives our perspective in which cases MEMICS can
enhance the development process.

Currently, we are running scalability tests of the MEMICS tool to test the limits
of our approach and push those. Another ongoing work is to embed techniques like
counterexample guided abstraction refinement (CEGAR) [CGJ+00] in order to improve
on MEMICS efficiency. In terms of the ARAMiS project, we will use the exchange
format, once it is available, for tying MEMICS into the tool chain. This will help us a
lot in case of direct knowledge sharing with other tools like e.g. Bauhaus and Polyspace.
The information we can retrieve from these tools is supposed to drastically reduce the
size of the input in most cases.
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