
A Business Protocol Unit Testing Framework

for Web Service Composition

Jian Yu1, Jun Han1, Steven O. Gunarso1, and Steve Versteeg2

1 Faculty of Information and Communication Technologies
Swinburne University of Technology

Hawthorn, 3122, Melbourne, Victoria, Australia
{jianyu,jhan}@swin.edu.au, 7253702@student.swin.edu.au

2 CA Labs
380 St. Kilda Rd, Melbourne, VIC 3004, Australia

steve.versteeg@ca.com

Abstract. Unit testing is a critical step in the development lifecycle
of business processes for ensuring product reliability and dependabil-
ity. Although plenty of unit testing approaches for WS-BPEL have been
proposed, only a few of them designed and implemented a runnable unit
testing framework, and none of them provides a technique to systemat-
ically specifying and testing the causal and temporal dependencies be-
tween the process-under-test and its partner services. In this paper, we
propose a novel approach and framework for specifying and testing the
inter-dependencies between the process-under-test and its partner ser-
vices. The dependency constraints defined in the business protocol are
declaratively specified using a pattern-based high-level language, and
a FSA-based approach is proposed for detecting the violation of con-
straints. A testing framework that integrates with the Java Finite State
Machine framework has been implemented to support the specification
of both dependency constraints and test cases, and the execution and
result analysis of test cases.

Keywords: unit testing, WS-BPEL, temporal patterns, Finite State
Automata.

1 Introduction

In recently years, the service-oriented architecture (SOA) is steadily gaining
momentum as the dominant technology in developing cross-organisational dis-
tributed applications with the estimation of its usage in more than 80% of the
applications by the year 2015 [7,16]. SOA promotes creating applications by
composing open, autonomous, and internet accessible software components in a
loosely coupled manner. Currently, Web services [1] is the main implementation
technology for SOA.

TheWeb Services Business Process Execution Language (WS-BPEL, or BPEL
in short) [4] is the de facto industry standard for composing Web services. BPEL
is a XML-based workflow language that facilitates the description of process logic

C. Salinesi, M.C. Norrie, and O. Pastor (Eds.): CAiSE 2013, LNCS 7908, pp. 17–34, 2013.
© Springer-Verlag Berlin Heidelberg 2013



18 J. Yu et al.

and the message interactions between Web services. A BPEL composition/pro-
cess is also exposed as a Web service. Another partner Web service (or BPEL
process) may send messages to this process, receive messages from it, or partic-
ipate in a two-way interaction with it.

Unit testing [8] has been recognised as an important step in the software
development lifecycle to ensure software quality especially with the prevalence
of Test-Driven Development methodology [2], and BPEL unit testing is gradu-
ally gaining the attention of the research community since 2005 [15]. Although
dozens of studies have been made on BPEL unit testing, most of them focus on
the issue of test case generation [21]. Only a few efforts are devoted to creat-
ing unit testing frameworks for BPEL [12,11,13]. In particular, all these efforts
recognised that ensuring the correctness of the casual and temporal dependencies
among the interactions between the Process Under Test (PUT) and its partner
services/processes is an important part of the testing. But unfortunately, none
of the frameworks provides necessary support to this issue: inter-process depen-
dency testing is only implicitly supported by programming such dependencies in
the test case, which is tedious, error prone, and lacks of maintainability.

In this paper, we present a BPEL unit testing approach for specifying and
testing the inter-process dependencies among the PUT and its partner services.
The dependency constraints defined in the business protocol are declaratively
specified using a pattern-based high-level language called PROPOLS [18]. These
constraints can be automatically translated to finite state automata. The incon-
sistency between the PUT and the constraints will be detected if an execution
of the process drives an automaton to a non-accepting state, i.e., a dependency
constraint is violated. We have implemented a BPEL unit testing framework
that integrates the Java Finite State Machine Framework [5] to support the
specification of both dependency constraints and test cases, and the execution
and result report of test cases. To validate the viability and effectiveness of this
approach, we have successfully applied it on testing the interaction protocol of
a purchase business process in the e-commerce domain.

The main contribution of this paper is twofold: i) We propose a novel ap-
proach to specifying and testing the inter-process dependencies in BPEL unit
testing based on temporal patterns and finite state automata; ii) We implement
a framework for conducting the inter-process dependency testing in BPEL unit
testing. The main functionality of this framework includes the specification of
both dependency constraints and test cases, and the execution and result anal-
ysis of test cases.

The rest of the paper is organised as follows: In Section 2, we introduce the
background of this research work by explaining some basic concepts in BPEL unit
testing and introducing a motivating business scenario. In Section 3, we explain
in detail our approach to specifying the inter-dependencies between the PUT
and its partner services including the pattern-based declarative specification
language and how to use it to define the inter-dependencies in the example
scenario. Section 4 presents the overall process of conducting BPEL unit testing



A Business Protocol Unit Testing Framework for Web Service Composition 19

using our framework. Section 5 introduces the implementation details of the
framework. Section 6 discusses related work, and Section 7 concludes the paper.

2 Background

In this section, we first introduce the basic concepts that are used in the context
of this paper including unit testing, BPEL unit testing, and inter-process depen-
dencies. Then we introduce a motivating scenario in the e-commerce domain to
highlight the need for a systematic approach for the specification and testing of
BPEL inter-process dependencies.

2.1 Unit Testing and BPEL Unit Testing

Unit testing is a software development process in which the smallest testable
parts of an application, called units, are individually and independently scru-
tinised for proper operation [17]. Similar to a hardware unit, a software unit
needs to have clearly defined interfaces, and testing is carried out around inter-
faces. In Java, a unit is usually a class, which may implement several interfaces.
Because a BPEL process is exposed as a Web service and communicates with
its partner services through standard Web service invocations, a BPEL process
naturally becomes a unit with its interfaces defined in the WSDL descriptions
of this process.

BPEL interfaces are described using port types and operations in WSDL. An
operation could be asynchronous (one-way) or synchronous (two-way), and an
asynchronous operation could either receive a data flow, or send a data flow.
Based on the interfaces defined in the corresponding WSDL description, unit
testing of a BPEL process is performed by providing a series of inputs and
observing the outputs. The following three types of errors in the process under
test can be detected [12]:

1. Incorrect output message content
2. Output absence, i.e., an expected output is not produced by the PUT
3. Output surplus, i.e., an unexpected output is produced by the PUT

Fig. 1. An example of process dependencies



20 J. Yu et al.

However, WSDL syntax lacks the ability to describe the actual business pro-
tocol, or dependencies, involved in the interaction between the PUT and the
partner services, e.g., which operation must be invoked after or before which
other operations [13]. Such violation of protocol error may not be detected by
just observing the outputs. For example, in [12], the authors described the fol-
lowing case as shown in Figure 1, which shows an interaction segment between
the PUT and two partner processes A and B. The numbers denote the sequenc-
ing of the message flows. Figure 1(a) shows a correct PUT definition according
to the requirements, and Figure 1(b) shows a wrong implementation that moves
Message#4 in Figure 1(a) up to next to Message#1 (as the dashed line indi-
cates). A test process that simulates A and B running in parallel and without
synchronisation may not detect such an error in situations that both the send-
receive behaviour of A and the receive-send behaviour of B complete their own
logic successfully. It is necessary for a BPEL testing framework to provide a way
for the software engineering to specify the interaction protocol between the PUT
and its partner services, and to follow it in the testing [13].

2.2 Motivating Business Process Scenario

Next we describe a purchase business process in the e-commerce domain as
a motivating business scenario. This process will be used to demonstrate our
approach throughout this paper. Suppose a manufacturer wants to provide an
online purchasing service. The key requirements to this service are sketched as
follows:

1) The customer may log into the system and place orders online. Login
can only be tried three times. After three unsuccessful login, the process will
abort. Any order should be checked before being processed. For a valid one, the
customer will get a confirmation. For an invalid order, the customer will get a
rejection notification.

2) The transactions between customers and the manufacturer follow a hard
credit rule. That is, on the one hand, the customer pays to the manufacturer
only when the ordered product has been received. On the other hand, the manu-
facturer processes the order only when it is confirmed that the customer will pay
if the order is fulfilled. A third party, the bank, is introduced as the mediator.
For the manufacturer to start processing the order, the customer must deposit
the payment to the bank in the first place. After that, the bank will notify the
manufacturer that the payment for the order has been deposited in the bank.
When the order is fulfilled, the bank ensures that the payment is transferred to
the manufacturer.

Figure 2 shows a possible process design of the above requirements, which
includes three parties: the customer, the manufacturer, the bank, and their in-
teracting messages. We assume that the manufacturer process is the process
under test.



A Business Protocol Unit Testing Framework for Web Service Composition 21

Customer Manufacturer (PUT) Bank

Place Order Check Order

Confirm Order
Reject Orderxor

Deposit Payment

Notify Payment Arrival

Process OrderNotify Order 

Fulfilled

Login (max 3 tries)

Notify Payment

Order Received

Fig. 2. The motivating business process

3 Specification of Inter-process Dependencies

From the example in Figure 1, we can see that the inter-process dependencies
determine the sequence of interacting messages between processes. One approach
to checking the dependency is to hard-code the testing logic in a test case. For
example, a test case may check whether Message B appears after Message A
but before Message C to ensure the correct sequence of the three messages. But
such approach is rather rudimentary and lacks of the capability to formally and
systematically specify the logical relationships between process messages that
are derived from the actual requirements of the business process. To properly
address this issue, we adopt the PROPOLS (Property Specification Pattern On-
tology Language for Service Composition) language [18], which is a high-level
declarative language with formal semantics defined in FSA (Finite State Au-
tomata). Next we give a brief introduction to PROPOLS, and also give some
examples of how to use it to specify some inter-process dependencies in the
motivating business process.

3.1 The PROPOLS Language

The PROPOLS language is based on property specification patterns [3], which
include a set of patterns that represent frequently used temporal logic formulae.
The main feature of the PROPOLS language is that it is a high-level declarative
language that facilitates common users (such as software engineer or business
analyst) to define the temporal and causal relationships between messages. Be-
cause it also has a formal semantics, relationships (or constraints) defined using
PROPOLS can be automatically verified.

The main constructs of the PROPOLS language is shown in the class diagram
in Figure 3. As we can see, every PROPOLS statement is composed of a Pattern
and a Scope. The pattern specifies what must occur and the scope specifies when
the pattern must hold.



22 J. Yu et al.

PROPOLS Statement

Pattern Scope

Order Pattern Occurrence PatternComposite Pattern

Precedes LeadsTo IsAbsent Exists IsUniversal

BoundedExists

BetweenGlobal After

Before Until

Fig. 3. Main constructs of the PROPOLS language

Patterns are classified into order patterns, occurrence patterns, and composite
patterns, where composite patterns are the composition of patterns. Below we
briefly describe the meaning of each pattern below (the symbol P or Q represents
a given message).

– P IsAbsent: P does not occur within a scope
– P IsUniversal: P occurs throughout a scope
– P Exists: P must occur within a scope
– P Bounded Exists: P occurs at most k times within a scope
– P Precedes Q: P must always precede Q within a scope.
– P Leadsto Q: P must always be followed by Q within a scope
– Composite Pattern: combining two patterns using one of the followingBoolean

logic operator: And, Or, Xor, Imply

It is worth noting the difference between P Precedes Q and P Leadsto Q: if P
Precedes Q, then whenever Q occurs, P must occur preceding Q, but P may
exist in a scope without the occurrence of Q. On the other hand, if P Leadsto
Q, then whenever P occurs, Q must occur after P, but Q may exist in a scope
without the occurrence of P.

A scope defines a starting and an ending message for a pattern, and a pattern
is not applicable outside its scope. There are five types of scope:

– Globally: the pattern must hold during the entire system execution
– Before P: the pattern must hold up to the first occurrence of a given P
– After P: the pattern must hold after the first occurrence of a given P
– Between P And Q: the pattern must hold from an occurrence of a given P

to an occurrence of a given Q
– After P Until Q: the same as between-And, but the pattern must hold even

if Q never occurs



A Business Protocol Unit Testing Framework for Web Service Composition 23

Fig. 4. FSA semantics of three types of statements

Usually for a process that has a single globally defined protocol, the Globally
scope is used on all the patterns. But other scopes may be used when there are
local protocols inside a business process.

The semantics of a basic statement is defined in FSA. For example in Figure 4
we illustrate the FSA semantics for three types of statements: Precedes, LeadsTo,
and Exists. In the Figure, symbol O denotes any message other than P and Q.
Figure 4(a) indicates that before P occurs, an occurrence of Q will drive the FSA
to a non-final state, and this non-final state can never reach a final state. We
call such a state an error state and error states are omitted in the FSA graphical
representations for brevity’s sake. Figure 4(b) states that if Q has occurred, an
occurrence of P is necessary to drive the FSA to a final state. Finally, Figure 4(c)
says that only the occurrence of P can drive the FSA to a final state. A complete
FSA semantics of all the basic statement types can be found in [19].

The semantics of a composite statement is derived by composing the FSAs of
its component statements. For example, Figure 5 shows the logical composition
of two basic statements: P1 exists globally and P2 exists globally. The states in
the FSA are the Cartesian product of the FSAs of the two basic statements.
The first number in a state label represents the state of the first FSA, while the
second represents the state of the second FSA. The final states of the composite
pattern are determined by the logic operator used. For example, the pairing of
one final state And one non-final state is a non-final state, and one final state
Xor one non-final state is a final state. The final states for different compositions
are also described in Figure 5. The full definition of the semantics of composite
statements can be found in [19].

Fig. 5. Composition of two Exists statements



24 J. Yu et al.

Requirements Engineer

define auto generated to ����

�����

����	
���

Run on

Software Engineer


���	��

�����������

setup the 

testing framework

�	������

����	
���


���

����

�	������

����

interact

Step 1:

Step 2:

Step 3:

Test Engineer

�	���������
define 

testing 

sequences


����	������

�	��	��	�generate

Run on

���� �	�

���


���	�����!

"��#�$

Mapping between constraint events and WSDL operations

Fig. 6. Overview of the testing approach

3.2 Specification of the Inter-process Dependencies

In the following we give a list of PROPOLS statements that specify the causal
and temporal inter-dependencies (or dependency constraints) among the three
parties/processes in the motivating scenario based on the requirements, from the
PUT (Manufacturer) perspective.

(S1) Manufacturer.Login boundedexist(3) Globally
(S2) Manufacturer.Login precedes Manufacturer.PlaceOrder Globally
(S3) Manufacturer.PlaceOrder leadsto Customer.OrderReceived Globally
(S4) (Customer.OrderConfirmed exists Globally) xor (Customer.OrderRejected

exists Globally)
(S5) Manufacturer.CheckOrder precedes Manufacturer.confirmOrder Globally
(S6) Manufacturer.CheckOrder precedes Manufacturer.RejectOrder Globally
(S7) Bank.DepositPayment leadsto Manufacturer.NotifyPaymentArrival

Globally
(S8) Customer.NotifyOrderFulfilled leadsto Bank.NotifyPayment Globally

In the list of statements, each message is preceded by the receiver, or the service
provider, of the message. For example, S1 is supposed to be received and processed
by the manufacturer. Among the list of statements, S1 is an occurrence pattern
that specifies that login can only be triedmaximally three times.We also have three
Precedes statements that specify the precondition of somemessages. For example,
S1 specifies that Loginmust be successfully performed to enable the PlaceOrder
message/operation. Three Leadsto statements are defined in the list. For exam-
ple, S3 specifies that if the order is successfully placed, the customer must receive
a notification that the order has been received by the manufacturer. Finally, we
use a composite statement S4 to specify that the customer either receive an order
confirmation or order rejection, but not both. It is worth noting that we apply the
scopeGlobally on all the statements because all the statements are used to specify
a global interacting protocol among the participating processes.



A Business Protocol Unit Testing Framework for Web Service Composition 25

Fig. 7. FSA for Customer.Login precedes Customer.PlaceOrder Globally

4 Testing of Inter-process Dependencies

We give an overview of the testing approach in Figure 6. In the rest of this
section we discuss each step in detail.

In Step 1, first the requirements engineer defines the inter-process depen-
dencies using PROPOLS. The details of this step and the example PROPOLS
statements defined based on the motivating scenario have been discussed in Sec-
tion 3. After that, every statement is automatically translated to a FSA. For
basic statements, there is a one-to-one mapping between it and a FSA template.
So what we need to do is to parameterize the corresponding FSA template. For
example, the statement Customer.Login precedes Customer.PlaceOrder globally
can be represented by the precedes FSA template as shown in Figure 7. Simi-
larly for a composite statement, we first compose the FSA templates based on
the definition given in [19], and then parameterize the composed FSA template.

In Step 2, we need to solve the issue of how to create a testing environment
for the PUT to interact with, while the partner services of the PUT are not
available or not implemented at all. As illustrated in Figure 8(a), a BPEL process
under test usually needs to interact with several partner services to implement a
business process such as the purchase process specified in Section 2.2. Because the
partner services are usually located and managed by the partner organisations,
they are out of the control of the organisation that owns the PUT. Such situation
brings difficulties to testing the PUT as the availability of the partner services
cannot be guaranteed, and also using external partner services may bring extra
cost. To solve this issue, a basic test model (as illustrated in Figure 8(b)) may
be adopted to use a test process to either serve as a mock object for a partner
service, or emulate the behaviour of a real partner service [11]. Alternatively, as
illustrated in Figure 8(c), if we use the emulation based approach, we may also
use a composite test process to emulate the behaviour of all the partner services
of the PUT. In our approach, we adopt the composite test process model. The
benefit of this approach is that we can focus on the behaviour of the PUT to
provision a single emulated test environment (the composite test process) instead
of focusing on the behaviour of individual partner services.

In Step 3, the test engineer specifies the test cases including testing data and
testing sequences. Each testing sequence specifies a behaviour of the composite
test process that is used to exercise the PUT. For example, a testing sequence
could be:



26 J. Yu et al.

Fig. 8. Process composition and test models

Seq1: Login(incorrect identity) →Login(incorrect identity) →Login(incorrect
identity) →Login(correct identity)

If this sequence is accepted by the PUT without throwing any exceptions, then
the PUT violates the requirement that Login can only be tried three times. But
this fault will be captured by the test framework as this sequence will drive the
FSA of S1 (a bounded exist statement specifying that Login can only be tried
three times) to an error state.

Another example is as follows:

Seq2: Login(correct identity) →PlaceOrder→OrderReceived→DepositPayment

If this sequence is accepted by the PUT without throwing any exceptions, then
the PUT violates S4 that it fails to either confirm or reject the order. As such,
this fault will also be captured by the FSA of S4.

5 Testing Framework Implementation

The BPEL unit testing framework contains four main functions: PUT to Java
mapping, mock objects setup, test cases definition and test case execution. In the
rest of this section, we discuss the technical details of each function one by one.

5.1 PUT to Java Mapping

In order for the PUT to interact with the testing framework, we map the web
service interface (WSDL) of the PUT into several Java interfaces. These Java
interfaces then serve as a bridge between the PUT web service and the testing
framework.

Figure 9 shows how the mapping is done. In this figure, the Web Service
block represents the WSDL structure of the PUT, while the Java Client block



A Business Protocol Unit Testing Framework for Web Service Composition 27

Fig. 9. Map Web service interface to Java interface

represents the results of the mapping. As seen in Figure 9, the mapping is done
for each port type in the WSDL. I.e., each port type is mapped to a Java in-
terface. Because each port type may contain a number of operations, and each
operation has its own name and parameters, we also map these operations into
Java methods to enable access to them. Also, similar to a Java class, each op-
eration requires inputs and produce outputs or exceptions (Faults), which are
represented as WSDL Messages. These messages themselves may contain sev-
eral variables, each with their own data types (such as int, float, string). In the
mapping process, these messages and data types are also represented as custom
Java classes and variables.

5.2 Mock Objects Setup

Mock objects are the instantiation of the Java interfaces mapped from the PUT.
As discussed in the previous section, the PUT to Java interface mapping results
in Java interface classes. These interface classes are the core of the mock/emula-
tion capabilities of our testing framework. By instantiating these interfaces, the
testing framework is able communicate with the specified web service and access
the operations contained inside it via the generated methods. In this section, we
use a Login operation from our case study as an example to demonstrate the
setup of the mock objects and their interaction with the PUT.



28 J. Yu et al.

As discussed in the motivating scenario, the customer is the one who initi-
ates the entire Order Processing by logging in to the system. To emulate this
behaviour, we use the generated login method inside the UnitTestingMain class
(as shown in the following code snippet). By calling the login() method, we can
send emulated login credentials to the PUT and observe the returning values.

<portType name =" UnitTesting_Main ">

<operation name =" Login">

<input message="tns:LoginRequest "></input >

<output message ="tns:LoginResponse "></ output >

<fault name =" fault" message ="tns:ProcessOrderFault

"></fault >

</operation >

</portType >

↓mapsto

public interface UnitTestingMain {

public LoginResponse login(LoginRequest payload) throws

ProcessOrderFault_Exception;

}

As discussed in the previous subsection, each method requires specific mes-
sages for both the parameter and the return. In our login example, the method
uses LoginRequestmessage as parameter and LoginResponsemessage as return
type. The structure of the LoginRequest messages is shown in the code snippets
below.

<element name =" LoginRequest ">

<complexType >

<sequence >

<element name =" username " type =" string" />

<element name =" password " type =" string" />

</sequence >

</complexType >

</element >

↓mapsto

public class LoginRequest {

protected String username;

protected String password;

}

By manipulating the values inside these message classes and using them in
conjunction with the Java client methods, we can emulate the behaviour of the
partner services and perform the unit testing based on the returned results. The
following code snippet shows the manually defined emulation code for the login
method.



A Business Protocol Unit Testing Framework for Web Service Composition 29

try {

UnitTestingMain_Service service1 = new

UnitTestingMain_Service();

UnitTestingMain port1 = service1 .getUnitTestingMainPort()

;

LoginRequest request = new LoginRequest ();

request.setUsername (input1);

request.setPassword (input2);

LoginResponse response = port1.login(request);

return response;

catch (Exception e) {

return "Process Fault";

}

5.3 Test Case Definition

In the current implementation of the testing framework, we do not support
automatic test case generation. Instead, several graphical user interfaces have
been implemented to facilitate the definition of test cases.

(a) Patten specification (b) Test sequence specification

Fig. 10. GUI for test case definition



30 J. Yu et al.

There are mainly two steps in defining a test case: the first step is to specify
the set of constraints that are supposed to hold for this test case (it is worth
noting that there could be different sets of constraints depending on testing
purposes), and the second step is to define a running sequence of the PUT that
will be tested against the defined constraints.

The graphical interface for specifying the dependency constraints is shown
in Figure 10(a): a process definition can be loaded and then the operations
in this process will be automatically extracted and put in two drop-down lists
for selection (one for the first parameter of a constraint, and the other for the
second parameter). All the patterns are also put in another drop down list for
selection. Based on the three drop-down list, the set of dependency constraints
can be defined one by one, and the defined constraints will be displayed in the
information area in the centre bottom. When the set of constraints are saved,
they will automatically be converted to FSAs that will be executed by the Java
FSM framework.

The graphical interface for specifying the testing sequence is shown in Fig-
ure 10(b): in this step, the test engineer is able to specify which operations should
be inserted into the testing sequence. Aside from the operations sequence, the
testing engineer can also specify whether an operation is a valid or invalid one
using the GUI. When a valid operation is chosen, the framework will fill the
operation with valid values of the defined type classes. Otherwise, the frame-
work simply leaves the value of the type classes inside the operation as blank.
Invalid operations are necessary for testing certain logic/execution paths of the
PUT. For example, to test the constraints that Login can only be tried three
times, the testing engineer may specify a sequence with three invalid Login oper-
ations followed by one valid Login operation, if the PUT still accepts the fourth
Login operation and proceed to the Place Order operation, then it violates the
constraint and such fault will be captured by the testing framework.

5.4 Test Case Execution

To execute a test case, the framework sends the specified operations to the PUT
according to the sequence defined in the test case, and also examines the PUT
responses. The framework also drives the FSAs in the FSA Engine whenever
there is a match between the interaction messages and an enabled event in any
FSA. For example, when a Login message is sent from the mock object client to
the PUT, because it matches the enabled event of the FSA defined in Figure 7,
the framework will drive this FSA from state 0 to state 1.

A dependency error will be detected by the framework whenever any of the
FSAs is driven to an error state, or any of the FSAs is in a non-final state when
the test case finishes execution. For example as shown in Figure 11, if a PUT
executes the PlaceOrder operation without a preceding Login operation, then
this violates the prescribed constraints and will be reported as an error by the
testing framework.



A Business Protocol Unit Testing Framework for Web Service Composition 31

Fig. 11. Snapshot of the testing results

6 Related Work

Testing of Web service composition is still a new and immature area compared
to other Web service research areas such as service discovery, selection, and
composition [15]. In general, Web service composition testing approaches can
be divided into two categories: test case generation and unit testing framework.
Clearly, our work falls in the latter category. In the rest of this section, we first
briefly discuss the related work in BPEL test case generation, and then discuss
the related work in BPEL unit testing framework and also compare our work
with these approaches.

6.1 Related Work in BPEL Test Case Generation

According to [15], there are mainly three categories of approaches to BPEL test
case generation: the model-checking approach, the graph search algorithm ap-
proach, and the path analysis constraint solver approach. The model-checking
approach is a model-based testing method in which model checkers are applied
to the abstract model of the Web service process under test in order to gener-
ate test cases. For example, Garcia-Fanjul et al. [6] transform a BPEL process
into PROMELA, the input language of model checker SPIN, and then use SPIN
to generate both positive and negative test cases. The graph search algorithm
approach transforms the composition specification into graph models and test
paths are derived by traversing the model. For example, Lallali et al. [10] trans-
form a BPEL process into an Intermediate Format (IF) model which is based
on timed automata, and then test cases are generated from the IF model. The
path analysis constraint solver approach generates test cases by analysing the
test paths which are constructed from graph models derived from depth-first
or breadth-first traverse of the composition specification. For example in [20],
the authors transform a BPEL process into an extension of Control Flow Graph



32 J. Yu et al.

called BPEL Flow Graph (BFG), and concurrent test paths are generated by
traversing the BFG using depth-first search, while test data for each path are
generated by using constraint solvers.

6.2 Related Work in BPEL Unit Testing Framework

To the best of our knowledge, there are only three published approaches to BPEL
unit testing framework. In [12], Li et al. introduce an implementation of a BPEL
unit testing framework. They use BPEL as the test specification language, and
require test engineers to create a BPEL test process for each partner service of
the PUT, as well as a central process as the coordinator of testing. However,
this work does not discuss the issue of how to actually run the tests as BPEL
itself does not allow user interactions. In [11], Li and Sun propose a new BPEL
unit testing framework based on their previous work in [12]. In this work, the
authors extend the object-oriented unit testing framework especially JUnit [9]
and MockObjects [14] to support BPEL unit testing. Process interaction via
Web service invocations are transformed to class collaboration via method calls,
and then the object-oriented test framework and methods are applied. In [13],
Mayer and Lubke propose a layer-based approach and framework for BPEL
unit testing. They use a specialised XML-based BPEL-level testing language to
describe interactions with the PUT in a test case. In the test case, literal XML
data are used as the data specification format and the interaction between the
PUT and its partner services is specified as testing sequences.

In all the above works, the authors unanimously mentioned the important
issue of testing the inherent business protocol between the PUT and the partner
services. [12] raised the issue but did not provide any solution. [11] proposed
to extend their implementation with a syncMethods() API to specify the oc-
currence order of method invocations. [13] also allowed test engineer to specify
sequences of the interactions in their test case specification language. It is clear
that existing support to testing message sequences, or inter-dependencies, stops
at the programming level. Also, there is a lack of a specification language and
approach to systematically conduct such test. This issue is actually what our
work aimed to solve.

7 Conclusion

In this paper, we have proposed a novel approach and framework to specify and
test the causal and temporal inter-dependencies between a BPEL process under
test and its partner Web services. A high-level declarative pattern language is
used to specify the interaction dependencies and a comprehensive framework
has been implemented for specifying the dependencies and the test cases, and
also for executing the test cases. Instead of using a basic test model in which
each partner service of the PUT is specified separately, we use a composite test
process to emulate the behaviour of all the partner services. To the best of our
knowledge our work is the first BPEL unit testing framework that is able to



A Business Protocol Unit Testing Framework for Web Service Composition 33

systematically specify and test the inherent business protocol between the PUT
and its partner services.

In the future, we intend to investigate into the business protocol related test
case generation issue. We also intend to integrate our work with the existing
BPEL unit testing frameworks, such as those discussed in [13] and [11], to provide
a comprehensive testing tool and then conduct case studies in real life Web
service composition projects.

References

1. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services - Concepts, Ar-
chitectures and Applications. Springer (2004)

2. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional
(2002)

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property Specification Patterns for
Finite-State Verification. In: Proc. of the 2nd Workshop on Formal Methods in
Software Practice, pp. 7–15 (1998)

4. Evdemon, J., Arkin, A., Barreto, A., Curbera, B., Goland, F., Kartha, G., Kha-
laf, L., Marin, K., van der Rijn, M.T., Yiu, Y.: Web Services Business Process
Execution Language Version 2.0. In: BPEL4WS Specifications (2007)

5. eVelopers Corporation. Java Finite State Machine Framework (2007),
http://unimod.sourceforge.net/fsm-framework.html

6. Garca-Fanjul, J., Tuya, J., de la Riva, C.: Generating Test Cases Specifications For
BPEL Compositions Of Web Services Using Spin. In: Proc. of the International
Workshop on Web Services Modeling and Testing (WS-MaTe 2006), pp. 83–94
(2006)

7. Georgakopoulos, D., Papazoglou, M.P.: Service-Oriented Computing. The MIT
Press (2008)

8. Hamill, P.: Unit Testing Frameworks. O’Reilly (2004)
9. JUnit, http://www.junit.org

10. Lallali, M., Zaidi, F., Cavalli, A.: Transforming BPEL Into Intermediate Format
Language For Web Services Composition Testing. In: Proc. of the 4th International
Conference on Next Generation Web Services Practices, pp. 191–197 (2008)

11. Li, Z.J., Sun, W.: BPEL-unit: JUnit for BPEL processes. In: Dan, A., Lamersdorf,
W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 415–426. Springer, Heidelberg (2006)

12. Li, Z.J., Sun, W., Jiang, Z.B., Zhang, X.: Bpel4ws unit testing: Framework and
implementation. In: ICWS, pp. 103–110 (2005)

13. Mayer, P., Lübke, D.: Towards a bpel unit testing framework. In: TAV-WEB, pp.
33–42 (2006)

14. MockObjects, http://www.mockobjects.com
15. Rusli, H.M., Puteh, M., Ibrahim, S., Hassan, S.G.: Comparative Evaluation of

State-of-the-Art Web Service Composition Testing Approaches. In: Proc. of the
6th International Workshop on Automation of Software Test (AST 2011), pp. 29–
35 (2011)

16. Vaughan, J.: Gartner: SOAWill Be Like Electricity For Architects Looking Toward
Cloud Computing. SOA News (2010), http://searchsoa.techtarget.com/news/
article/0,289142,sid26 gci1523670,00.html

17. Wikipedia. Unit testing (2002), http://en.wikipedia.org/wiki/Unit_testing

http://unimod.sourceforge.net/fsm-framework.html
http://www.junit.org
http://www.mockobjects.com
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1523670,00.html
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1523670,00.html
http://en.wikipedia.org/wiki/Unit_testing


34 J. Yu et al.

18. Yu, J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern Based Property
Specification and Verification for Service Composition. In: Aberer, K., Peng, Z.,
Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp.
156–168. Springer, Heidelberg (2006)

19. Yu, J., Phan, M.T., Han, J., Jin, J.: Pattern based Property Specification and Veri-
fication for Service Composition. Technical Report SUT.CeCSES-TR010. CeCSES,
Swinburne University of Technology (2006),
http://www.it.swin.edu.au/centres/cecses/trs.htm

20. Yuan, Y., Li, Z., Sun, W.: A Graph-Search Based Approach to BPEL4WS Test
Generation. In: Proc. of the International Conference on Software Engineering
Advances, ICSEA 2006 (2006)

21. Zakaria, Z., Atan, R., Ghani, A., Sani, N.: Unit Testing Approaches for BPEL: A
Systematic Review. In: APSEC, pp. 316–322 (2009)

http://www.it.swin.edu.au/centres/cecses/trs.htm

	A Business Protocol Unit Testing Framework
for Web Service Composition

	1 Introduction
	2 Background
	2.1 Unit Testing and BPEL Unit Testing
	2.2 Motivating Business Process Scenario

	3 Specification of Inter-process Dependencies
	3.1 The PROPOLS Language
	3.2 Specification of the Inter-process Dependencies

	4 Testing of Inter-process Dependencies
	5 Testing Framework Implementation
	5.1 PUT to Java Mapping
	5.2 Mock Objects Setup
	5.3 Test Case Definition
	5.4 Test Case Execution

	6 Related Work
	6.1 Related Work in BPEL Test Case Generation
	6.2 Related Work in BPEL Unit Testing Framework

	7 Conclusion
	References




