
Inference of Global Progress Properties
for Dynamically Interleaved Multiparty Sessions

Mario Coppo1, Mariangiola Dezani-Ciancaglini1,
Luca Padovani1, and Nobuko Yoshida2

1 Università di Torino, Dipartimento di Informatica
2 Imperial College London, Department of Computing

Abstract. Conventional session type systems guarantee progress within single
sessions, but do not usually take into account the dependencies arising from the
interleaving of simultaneously active sessions and from session delegations. As a
consequence, a well-typed system may fail to have progress, even assuming that
helper processes can join the system after its execution has started. In this paper
we develop a static analysis technique, specified as a set of syntax-directed infer-
ence rules, that is capable of verifying whether a system of processes engaged in
simultaneously active multiparty sessions has the progress property.

1 Introduction

A system of multiparty sessions has the global progress property if all processes in the
system that are involved in ongoing sessions do not get stuck waiting for a message that
is never sent and if every message sent is eventually consumed. On the one hand, this
notion of progress is stronger than requiring that a non-terminated system can always
reduce. For example, a system containing two processes engaged in an “infinite chatter”
(like two non terminating threads which communicate with each other) does not have
the progress property if some other process involved in an open session is stuck and un-
able to complete its own task. On the other hand, this notion of progress is weaker than
requiring that all processes in the system must be able to reduce. For example, a system
with an incomplete session, i.e. a session that has not been initiated and for which some
participants are missing, does have the progress property if it can be completed with the
missing participants to a system that has the progress property.

Communication type systems such as those introduced in [12,6] can check that pro-
cesses behave correctly with respect to the protocols associated with the single sessions.
The same type systems can also assure a local progress property within the single ses-
sions, but they fall short in assuring the global progress property when several multi-
party sessions are interleaved with each other or the communication topology of the
system changes as a consequence of delegations across these sessions.

In previous work [6] we have defined an interaction type system that, when used in
conjunction with the communication type system, can assure the global progress prop-
erty for processes in a calculus of asynchronous multiparty sessions. The interaction
type system pivots around three different typing rules for service initiations. To build
the type deduction for a process, provided that one exists, it is crucial, for each service

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 45–59, 2013.
c© IFIP International Federation for Information Processing 2013

46 M. Coppo et al.

occurring in the process, to choose the right typing rule. In practice, this means that
the interaction type system can be efficiently used only for verifying whether a given
process has a given type. A naive type inference algorithm based directly on the rules
of the type system would require backtracking, resulting in an exponential explosion
of the search space. The contribution of the present paper is the definition of a deter-
ministic, compositional inference algorithm which is proved to be sound and complete
with respect to the interaction type system of [6]. The algorithm is presented in a “nat-
ural deduction” style, as a set of inference rules that can be evaluated in a single-pass
analysis according to the structure of processes. The complexity is quadratic in the size
of processes, since the application of the rules requires evaluations of linear functions.
The basic idea is to devise a suitable data structure that stores the information about
all the possible ways a service initiation can be typed in the interaction type system,
postponing the commitment to a specific typing rule as long as possible. The inference
algorithm refines the information in this data structure discarding the typing rules of
service initiations that are found to be incompatible with the structure of the processes
being analyzed.

In §2 we define syntax and reduction semantics of the calculus of multiparty ses-
sions. In §3 we illustrate, through a number of smaller examples, various behavioral
patterns that we want to consider and how and when these may cause deadlocks. This
tutorial informally hints at the information available to the inference algorithm that
helps preventing deadlocks and how such information can be inferred from the struc-
ture of processes. The inference algorithm and the data structures it uses are described
in §4, which ends by showing the algorithm at work on a few examples. Related work
is discussed in §5, while §6 concludes with a summary of the results and an account of
ongoing and future work.

2 The Calculus of Multiparty Sessions

Syntax. We begin by fixing some notation for the following sets: service names are
ranged over by a, b, . . . ; value variables are ranged over by x, x′, . . . ; identifiers, i.e.,
service names and variables, are ranged over by u, w, . . . ; channel variables are ranged
over by y, z, t, . . . ; labels, functioning like method selectors, are ranged over by l, l′, . . . ;
we write S for the set of all service names and V for the set of all channel variables.
Processes, ranged over by P, Q, . . . , and expressions, ranged over by e, e′, . . . , are
given by the grammar in Table 1, where the syntax occurring only at runtime appears
shaded.

The process u [p](y).P initiates a new session through an identifier u with the other
participants, each of the form u[q](y).Qq where 1 ≤ q ≤ p− 1. The (bound) variable
y is the channel used for the private communications inside the session. We call p, q,
. . . (ranging over natural numbers) the participants of the session and we use Π, Π′ to
denote finite, non-empty sets of participants.

Communications that take place inside an established session are represented using
the next three pairs of primitives: the sending and receiving of a value; the sending and
receiving of a session channel (where the sender delegates the receiver to participate
in a session by passing a channel associated with the session); selection and branching

Inference of Global Progress Properties 47

Table 1. Calculus of multiparty sessions (syntax)

P ::= 0 Inaction
| u [p](y).P Service request
| u[p](y).P Service accept
| c!〈Π,e〉.P Send value
| c?(p,x).P Receive value
| c!〈〈p,c′〉〉.P Send channel
| c?((q,y)).P Receive channel
| c⊕〈Π, l〉.P Select
| c&(p,{li : Pi}i∈I) Branch
| if e then P else Q Conditional
| P | Q Parallel
| (νa : G)P Restricted service
| (νs)P Restricted session
| s : h Named queue

v ::= a | true | false Value

e ::= x | v | · · · Expression

c ::= y | s[p] Channel

m ::= (q,Π,v) Value in transit
| (q,p,s[p′]) Session in transit
| (q,Π, l) Label in transit

h ::= � | h ·m Queue

(where the former chooses one of the branches offered by the latter). All these oper-
ations specify the channel and the index of the sender or the receiver. Thus, c!〈Π,e〉
sends a value on channel c to all the participants in Π, while c?(p,x) denotes the inten-
tion of receiving a value on channel c from the participant p. The same holds for del-
egation/reception (but the receiver is only one) and for selection/branching. We write
c!〈p,e〉.P and c⊕〈p, l〉.P in place of c!〈{p},e〉.P and c⊕〈{p}, l〉.P. An output action is
a value sending, session sending or label selection. An input action is a value reception,
session reception or label branching; an input process is a process prefixed by an in-
put action. The service restrictions are decorated with the global types of the services.
Global types describe the communication protocol followed by the session participants;
we omit their syntax and refer the interested reader to [6] for the details. Conditional
processes and parallel composition are standard.

Queues and channels with role are generated by the operational semantics (see
Table 2). A channel with role is a pair s[p] representing the runtime endpoint of ses-
sion s used by participant p. As in [12], we model TCP-like asynchronous communi-
cations (where the message order is preserved and send actions are non-blocking) with
unbounded queues of messages in a session, denoted by h. A message in a queue can
be a value message (q,Π,v), indicating that the value v was sent by participant q to the
recipients in Π; a channel message (delegation) (q,p,s[p′]), indicating that q delegates
to p the role of p′ on the session s (represented by the channel with role s[p′]); and a
label message (q,Π, l) (similar to a value message). By � and h ·m we respectively de-
note the empty queue and the queue obtained by concatenating m to the queue h. With
some abuse of notation we will also write m ·h to denote the queue with head element
m. By s : h we denote the queue h of the session s. In (νs)P all occurrences of s[p] and
the queue name s are bound.

We write fs(P), fc(P) respectively for the sets of service names and channel names
occurring free in P. We define fn(P) = fs(P)∪ fc(P). A user process is a process which
does not contain runtime syntax.

48 M. Coppo et al.

Table 2. Reduction (selected rules)

∏n
i=1 a[i](y).Pi | a [n+1](y).Pn+1 → (νs)(∏n

i=1 Pi{s[i]/y} | Pn+1{s[n+1]/y} | s : �) [INIT]

s[p]!〈Π,e〉.P | s : h → P | s : h · (p,Π,v) (e ↓ v) [SEND]

s[p]!〈〈q,s′[p′]〉〉.P | s : h → P | s : h · (p,q,s′[p′]) [DELEG]

s[p]⊕〈Π, l〉.P | s : h → P | s : h · (p,Π, l) [SEL]

s[p]?(q,x).P | s : (q,p,v) ·h → P{v/x} | s : h [RCV]

s[p]?((q,y)).P | s : (q,p,s′[p′]) ·h → P{s′[p′]/y} | s : h [SRCV]

s[p]&(q,{li : Pi}i∈I) | s : (q,p, lk) ·h → Pk | s : h (k ∈ I) [BRANCH]

Operational Semantics. The operational semantics is defined as the combination of
reduction rules expressing actual computation steps and structural equivalence rules
that rearrange terms so as to enable reductions. Structural equivalence is almost standard
(and therefore omitted). The only peculiar rules allow rearranging the order of messages
in a queue when the senders or the receivers are not the same and for splitting a message
targeted to multiple recipients. Table 2 shows a selection of the relevant rules for the
process reduction relation P → P′. We briefly comment the rules in what follows.

Rule [INIT] describes the initiation of a new session involving n+1 participants that
synchronize over the service name a. Here we use ∏n

i=1 Pi to denote P1 | · · · | Pn. The
last participant a [n+ 1](y).Pn+1, distinguished by the overbar on the service name, de-
termines the number n+ 1 of participants. After the initiation, the participants share a
private session name s and the queue associated with s, which is initially empty. The
variable y in each participant p is replaced by the corresponding channel with role s[p].
The output rules [SEND], [DELEG], and [SEL] respectively push values, channels and
labels into the queue of the session s (in rule [SEND], the side condition e ↓ v denotes
the evaluation of the expression e to the value v). The input rules [RCV], [SRCV] and
[BRANCH] perform the corresponding complementary operations. Note that these opera-
tions check that the sender of the message matches the expected one so that the message
is actually meant for the receiver. Reduction is closed under evaluation contexts, which
are special terms with holes [] generated by the grammar below:

E ::= [] | P | (νa : G)E | (νs)E | (E | E)

We write E [P1, . . . ,Pn] for E where the i-th (left-to-right) hole has been filled with Pi.

The Communication Type System. The communication type system checks that pro-
cesses use service names and channels according to the global types associated with
them. It ensures that messages are exchanged in the right order and have the right types
within sessions. The communication type system also guarantees progress within a sin-
gle session, if this session is not interleaved with other sessions, but it cannot guar-
antee progress when multiple sessions are interleaved. We omit the specification of
the communication type system because it is well understood (see [12,6] for details).
In fact all processes in this paper are (assumed to be) well typed with respect to the
communication type system.

Inference of Global Progress Properties 49

Progress. Informally, we intend that a process has the progress property if each session,
once started, is guaranteed to satisfy all the requested interactions. A formal definition
of the progress property is not straightforward and the definition in [1] is unsatisfactory
in presence of infinite computations. We explain the key ideas and problems separately.

A natural requirement for progress in the case of communication protocols is that
an input process can always read a message in the expected queue and vice versa a
message in a queue is always read by an input process. Hence, we must assure that any
request of interaction on a session channel will always be satisfied. For instance, take
the processes:

P1 = a[1](y).b[1](z).y?(2,x).z!〈2,x〉 Q1 = a [2](y).b [2](z).z?(1,x′).y!〈1,x′〉
The problem of P1 | Q1 is that it reduces to a process in which the output actions of both
sessions are prefixed by input actions of the other session. Indeed, P1 | Q1 reduces to

(νs)(νs′)(s[1]?(2,x).s′[1]!〈2,x〉 | s′[2]?(1,x′).s[2]!〈1,x′〉)
where the private sessions s and s′ respectively established for the a and b services have
replaced the channel variables y and z in P1 and Q1. This configuration is stuck because
the two processes are blocked mutually waiting for a message from restricted channels.
Instead, the process P1 | Q′

1 where:

Q′
1 = a [2](y).b [2](z).y!〈1, true〉.z?(1,x).0

has progress and reduces to 0.
Building on Kobayashi’s definition of lock-freedom [13] and on the definition of

communication safety of [8] we require that each input process will always be able to
receive an appropriate message along some computation and that each message in a
queue will always be received by an appropriate input process along some computa-
tion. However, we must also consider that an incomplete session (i.e., without all the
required participants) on service a occurring in a process P can always be allowed to
start by composing P with a process containing the missing participants for a. For this
reason, we use catalyser processes to provide the missing participants to sessions and
to make sure that rule [INIT] can always be applied, so that session accept and session
request prefixes are never blocking. We omit here the precise definition of catalysers
which requires a number of auxiliary definitions (see [6] for the details). Intuitively, a
catalyser is a parallel composition of processes where each process implements the be-
havior of a single participant. In particular, in a catalyser it is never the case that actions
pertaining to different sessions are interleaved with each other in the same sequential
thread. Therefore, catalysers cannot generate deadlocks.

The last notion we need before defining progress is a natural duality between input
processes and message queues, which only takes into account top inputs in processes
and leftmost messages in queues.

Definition 2.1 (Duality). The duality between input processes and message queues is
the least symmetric relation defined by:

s[p]?(q,x).P �� s : (q,p,v) ·h
s[p]?((q,y)).P �� s : (q,p,s′[p′]) ·h

s[p]&(q,{li : Pi}i∈I) �� s : (q,p, lk) ·h (k ∈ I)

50 M. Coppo et al.

We are now able to define progress as follows:

Definition 2.2 (Progress). A process P has the progress property if for all catalysers Q
such that P | Q is well typed in the communication system, if P | Q →∗ E [R], where R
is an input process or a non-empty message queue, then there are a catalyser Q′, and
E ′,R′ such that E [R] | Q′ →∗ E ′[R,R′] and R � R′.

3 A Tutorial to Progress Inference

Service dependencies. The basic idea for preventing deadlocks is to forbid mutual de-
pendencies between services. A dependency between two services originates when an
input action pertaining to one of the services guards (hence potentially blocks) any ac-
tion of the other service. A paradigmatic example of process without progress is P1 | Q1

that we have already examined in §2. Observe that in process P1 we have an input ac-
tion on service a that guards an output action on service b. This dependency can be
recorded as the relation a ≺ b associated with process P1. In process Q1 the situation is
reversed, determining b ≺ a. If we take P1 and Q1 in isolation, then no circular depen-
dency is detected. However, when considering P1 | Q1, the relations associated with this
composition result into the circular dependency a ≺ b ≺ a.

The idea of avoiding circular dependencies between services breaks apart as soon
as service names are first-class entities that can be sent as messages. When this hap-
pens, the actual dependencies between services may dynamically change as the system
evolves and it might happen that a system without circular dependencies turns into one
with circular dependencies. To illustrate the issue, consider the processes

P2 = c[1](t).t?(2,x).x[1](y).b[1](z).y?(2,x′).z!〈2,x′〉 Q2 = c [2](z).z!〈1,a〉

and observe that Q2 sends to P2 the name of service a. The analysis of process P2 may
determine the relation x ≺ b, because there is an action pertaining to service x that
blocks another action pertaining to service b. However, since x is a bound variable in
P2, there is no obvious way to associate this dependency with P2. On the other hand, the
analysis of process Q2 yields no apparent dependencies for a. Overall, no dependency
is inferred for P2 | Q2, even though at runtime the system will reduce to a configuration
that yields the relation a ≺ b. Then, if P2 | Q2 is composed with a process that yields the
inverse dependency b ≺ a, a deadlock can occur. Indeed P2 | Q2 | Q1 reduces to P1 | Q1

which leads to a deadlock, as we have seen in §2.
The idea then is to identify a class of services which do not cause deadlocks even

when they are involved into circular dependencies, and to allow a service name to be
sent as a message only if it refers to a service in this class. A practically relevant class
of services with this property is that of nested ones, which are characterized by the fact
that they can only be blocked by actions pertaining to nested invocations of services
that are themselves nested. As an example, consider the processes

P3 = a [2](y).y?(1,x).a [2](z).z?(1,x′).z!〈1, true〉.y!〈1, false〉
Q3 = a[1](y).y!〈2, false〉.a[1](z).z!〈2, true〉.z?(2,x′).y?(2,x)
R3 = a[1](y).y!〈2, false〉.a[1](z).y?(2,x).z!〈2, true〉.z?(2,x′)

Inference of Global Progress Properties 51

and observe that P3 represents the request of two nested invocations of service a. Ob-
serve also that in P3 there is an input action on channel z that guards an output action
on channel y and that both actions pertain to the service a. As a consequence, these
dependencies result in the relation a ≺ a that denotes a circular dependency. However,
P3 has a peculiar structure in that all the actions related to the innermost invocation
of a are completely nested within the ones related to the outermost invocation of a.
More generally, there is no blocking action of the outermost invocation of a that is
interleaved with actions of the innermost invocation of a. In fact, this interaction struc-
ture closely resembles an ordinary function call of a sequential programming language,
where a caller function is suspended until the callee has terminated. The point is that if
all request and accept operations concerning service a follow this pattern (i.e., they are
not interleaved with blocking actions from other sessions), then the process P3 cannot
deadlock even if its structural analysis establishes the circular dependency a ≺ a. For
example, also Q3 gives rise to the same circular dependency, but it follows the same
structure as P3 and the composition P3 | Q3 is deadlock free. By contrast, in R3 we no-
tice that, after the innermost invocation of a has been accepted, there is an input action
on y, which pertains to the outermost invocation, blocking the actions pertaining to the
innermost one. Indeed, the composition P3 | R3 yields a deadlock.

Relative and Nested services. To promote P3 (and Q3) among the safe processes, we
associate services with different features and we impose different constraints on the
structure of services depending on the features they have. We say that a service that is
never involved in circular dependencies with other services has the R (for Relative) fea-
ture. A service a where no action from other sessions can block the sessions initiated on
a has the N (for Nested) feature. This is precisely the case of the innermost invocation of
a in P3 and Q3. But there is more: if the innermost session cannot deadlock, it becomes
“unobservable” as far as the dependency analysis is concerned so we can say that also
the outermost invocation of a in P3 and Q3 is not blocked by actions of other sessions.
As a consequence, the outermost service a has the N feature as well.

The N feature may also be used for dealing with circular dependencies between dif-
ferent services. As an example, consider the processes

P4 = a [2](y).b [2](z).z?(1,x).y?(1,x′) Q4 = b [2](z).a [2](y).y?(1,x).z?(1,x′)

representing two clients which, for unspecified reasons, request the two services a and
b in different orders. If P4 and Q4 run within the same system, then they immediately
yield the circular dependencies a ≺ b ≺ a. Still, if the processes implementing a and b
(not shown here) are independent, in the sense that they do not rely on each other, then
there is no danger of deadlock. The fundamental observation here is that neither service
seems to have the N feature if considered in isolation: each service request is blocked
by an action from the other service. However, if b is assumed to have the N feature,
then a has the N feature also, and vice versa. In other words, the circular dependency
a ≺ b ≺ a identifies a clique of services that is safe (i.e., deadlock-free) if every service
in the clique has the N feature under the hypothesis that all the others do as well.

In general, the same service may have both the R and the N features at the same
time. This is the case of a and b in P4 and Q4 above when each process is considered

52 M. Coppo et al.

in isolation. However, note that the b service in P1 has the R feature but not the N one,
while neither a nor b has the R feature in P4 | Q4. This observation is crucial for the
inference algorithm because the fact that a service a does not have a particular feature
may affect other services related to a by the dependency relation. In particular, if a ≺ b
and b does not have the R feature (hence it has the N one), then a cannot have the R

feature (and it must have the N one). Dually, if a does not have the N feature, then b
cannot have the N feature.

Bounded services. The next usage pattern that we wish to consider concerns private
services. Take for example the process

b[1](y).(νa : 1 → 2 :〈bool〉)(a [2](z).z?(1,x).y!〈2, false〉)
where the a service has been restricted and is therefore inaccessible from the outside.
Even if the a service has both the R and N features, the fact that it is restricted makes
it observably equivalent to the idle process. This has severe consequences on the outer
service b, because the output action on channel y cannot be executed. In essence, we
devise a third feature B (for Bounded) associated with services that can be restricted and
that prevents them to be followed by any communication action on free channels.

Wrap up. To summarize, when we analyze a system of interleaved multiparty sessions
we associate services in the system with (a combination of) three features R, N, and B:

– A service has the R feature if it never generates circular dependencies with other
services it is interleaved with.

– A service has the N feature if it is never interleaved with blocking actions from
other services not having the N feature.

– Finally, a service has the B feature if it has the N feature and it is never followed by
any action on free communication channels.

Overall there are eight feature combinations. One of these corresponds to the fact that a
service has none of the features outlined above. In this case, the service will be rejected
by our system as being ill typed. Furthermore, having the B feature implies having the
N feature. Therefore, each well-typed service may be classified into one of five feature
combinations. Note that, in the informal definitions above, “never” means both “for
no occurrence of the service in the system” and “at any time during the evolution of
the system”. The inference algorithm has to find a trade off between flexibility (the
number of systems for which progress can be guaranteed) and feasibility (the analysis is
solely based on the initial state of the system). In fact, when discussing first-class service
names we have already seen a case in which the algorithm is forced to act conservatively
due to the lack of precise information about the runtime evolution of a system.

The inference of the progress property performs an analysis on the structure of pro-
cesses, keeping track of the dependencies between services and incrementally refining
the features associated with services, making sure that each service has at least one of
the features described above. Initially, each service has every feature. As the analysis
proceeds bottom up on the structure of processes, features are removed from services
that are found to be incompatible with them. In a nutshell, the most relevant refinement
steps taken by the algorithm occur at the following events:

Inference of Global Progress Properties 53

– As soon as a circular dependency is detected, all processes involved in the circular-
ity (and those preceding them in the dependency relation) lose the R feature.

– When a process of shape ã[p](y).P is encountered, where ã is either an accept action
a or a request action a , a loses the N feature if it is not minimal in the dependency
relation (meaning that it may be blocked by another session of a service not having
the N feature). Also, a loses the B feature if P has free channels other than y.

– When a process of shape y?(p,x).P is encountered, the dependencies are enriched
with relations y ≺ z for every channel z that occurs free in P. The same happens for
session receives and branching processes, since these are all blocking actions.

– When a process of shape P | Q is encountered, the dependencies computed for P
and those computed for Q are merged together, while the features for every service
in the overall process are those in common between P and Q. Similar operations
are performed when analyzing branching and conditional processes, where multiple
processes come together.

– When a process of shape y!〈p,a〉.P is encountered, the service a loses the R feature.
– Special measures must be taken when channels are communicated. These will be

detailed shortly.

The next section is devoted to formalizing all the concepts and procedures outlined in
this tutorial.

4 Progress Inference

In this section we introduce a deterministic, compositional type inference algorithm,
defined via a set natural semantics rules, assuring that a given user process has the
progress property. As we have anticipated in §3, the basic idea of the inference algo-
rithm is to keep track of dependencies between services.

A service qualifier is either a service name a or a channel variable y; we write Λ=
S ∪V for the set of all service qualifiers; we let λ range over elements of Λ and L
over subsets of Λ.

A dependency relation is a transitive relation D ⊆ Λ×Λ. We denote with λ ≺ λ ′
the elements of Λ×Λ. The meaning of λ ≺ λ ′ is, roughly, that an input action on the
channel (or on the channel bound by service) λ can block a communication action on
the channel (or on the channel bound by service) λ ′.

The inference algorithm makes use of some auxiliary operators for D that are intro-
duced below:

– D ↓ λ def
= {λ}∪ {λ ′ | λ ′ ≺ λ ∈ D} is the set of elements that are smaller than or

equal to λ in D, namely the set of service qualifiers having an input action that can
block a communication action on λ , plus λ itself.

– D ↑ λ def
= {λ}∪{λ ′ | λ ≺ λ ′ ∈ D} is the symmetric operation that determines the

set of service qualifiers that may be blocked by an input action on λ , plus λ itself.
– D \L

def
= {λ ≺ λ ′ ∈ D | λ �∈ L ∧λ ′ �∈ L } is the subset of D pertaining to all the

service qualifiers not occurring in L .
– D∞ def

= {λ | λ ≺ λ ∈ D} is the set of service qualifiers involved in circular depen-
dencies in D.

54 M. Coppo et al.

Table 3. Inference algorithm for the interaction type system

{INACT-I}
0 �⇒ /0;S ;S ;S

{INIT*-I}
P �⇒D;R;N;B

ã[p](y).P �⇒ F(D{a/y}+,R,N,B\{a | fc(P) �⊆ {y}})

{INITV-I}
P �⇒ D;R;N;B fc(P)⊆ {y}

x̃[p](y).P �⇒ F(D\{y},R\ (D ↓ y),N,B)

{NRES-I}
P �⇒D;R;N;B a ∈ B

(νa : G)P �⇒ D\{a};R\{a};N\{a};B\{a}

{SEND-I}
P �⇒D;R;N;B

y!〈Π,e〉.P �⇒ F(D,R\{e},N,B)

{RCV-I}
P �⇒D;R;N;B

y?(q,x).P �⇒ (pre(y, fc(P))∪D)+;R;N;B

{DELEG-I}
P �⇒D;R;N;B

y!〈〈p,z〉〉.P �⇒ ({y ≺ z}∪D)+;R;N;B

{SRCV-I}
P �⇒D;R;N;B D\S ⊆ {y ≺ z}

y?((q,z)).P �⇒D\{z};R;N;B

{SEL-I}
P �⇒D;R;N;B

y⊕〈Π, l〉.P �⇒D;R;N;B

{BRANCH-I}
Pi �⇒ Di;Ri;Ni;Bi

(i∈I) D = (pre(y,
⋃

i∈I

fc(Pi))∪
⋃

i∈I

Di)
+

y&(p,{li : Pi}i∈I) �⇒ F(D,
⋂

i∈I

Ri,
⋂

i∈I

Ni,
⋂

i∈I

Bi)

{PAR-I}
Pi �⇒Di;Ri;Ni;Bi

(i=1,2) D= (D1 ∪D2)
+

P1 | P2 �⇒ F(D,R1∩R2,N1 ∩N2,B1 ∩B2)

{IF-I}
Pi �⇒Di;Ri;Ni;Bi

(i=1,2) D= (D1 ∪D2)
+

if e then P1 else P2 �⇒ F(D,R1 ∩R2,N1 ∩N2,B1 ∩B2)

We extend ↓ and ↑ to sets L of service qualifiers in the natural way. We also write
D{a/y} for the relation obtained from D where every occurrence of y has been replaced
by a and R+ for the transitive closure of a generic relation R.

The inference rules prove judgments of the form P �⇒ D;R;N;B, where D is a de-
pendency relation and R, N, and B are sets of service names. As a first approximation,
we can think of the services in these sets as those that respectively have the R, N, and
B feature. However, for services that are communicated in messages it is not easy to
statically guarantee that they will not be involved in a circular dependency at runtime.
Therefore, we conservatively remove communicated services from the R set even if they
are not explicitly involved in circular dependencies.

A judgment P �⇒ D;R;N;B is well formed if:

1. If a service a has the R feature, then all the services following a in D have R feature.
Also, no service involved in a circular dependency can have the R feature. This is
formally expressed as D ↑ R⊆ R\D∞∪V .

Inference of Global Progress Properties 55

2. If a service a has the N feature, then all service qualifiers preceding a in D must be
services with the N feature. That is, D ↓ N⊆ N.

3. The set of services having the B feature is included in those having the N feature.
That is, B⊆ N.

4. All services occurring free in P have at least the R or the N feature. If some service
in P has neither the R nor the N feature, then our inference algorithm does not
guarantee the progress property for P. That is, fs(P)⊆ R∪N.

In general, the inference rules add dependencies to the D relation and remove service
names from the R, N, B sets when these services lose features. To be sure that the
quadruple resulting from the application of an inference rule still satisfies the conditions
(1–3) above, we define a function F that, given a quadruple D, R, N, B, computes a new
one where services are removed from the sets R, N, B whenever they are found to be
incompatible with the corresponding feature:

F(D,R,N,B)
def
= D;R′;N′;B∩N′

where R′ = {a ∈ R | D ↑ a ⊆ R\D∞∪V } and N′ = {a ∈ N | D ↓ a ⊆ N}.
Table 3 defines the inference for the interaction type system. We implicitly assume

that an inference rule can be applied only if the judgment in the conclusion is well
formed. In the next paragraphs we describe each inference rule in detail.

{INACT-I} is by far the simplest inference rule, which yields no dependencies and
poses no constraints on the features of services. In particular, D is /0 and the R, N, and
B components are the full set S of service names.

{INIT*-I} is used for typing accept and request operations on a known service name a
(recall that we use ã for either a or a). The rule computes a new quadruple F(D{a/y}+,
R,N,B\{a | fc(P)\{y} �= /0}) from the one obtained by typing the continuation process
P, where D{a/y}+ replaces the channel variable y with a in D so that all the dependen-
cies already established for a are enriched with those computed for y. Also, a loses the
B feature if P contains free channels other than y.

{INITV-I} is analogous to {INIT*-I}, but considers the case in which the session is
initiated on an unknown service x. Because nothing is known on the service a that will
replace x at runtime, the rule acts conservatively assuming that a has both the N and the
B features. In particular, the continuation process P is required to have no free channel
other than y (this is necessary if a has the B feature) and all services preceding y in
D lose the R feature (this is necessary if a has the N feature but not the R one). Note
that it is not possible to keep track, in D, of all the dependencies related to y as we did
in {INIT*-I}. In fact, any dependency related to y in D is removed. This may prevent
the inference algorithm from statically detecting circular dependencies for services that
are communicated in messages. For this reason, we will require that all service names
communicated by rule {SEND-I} must have the N feature (Example 4.2 shows that this
is necessary for communicated services to prevent deadlocks).

When a service name a is restricted in a process P, rule {NRES-I} checks that a has
the B feature. Then, all dependencies related to a and a itself are removed from all the
components of the quadruple in the conclusion of the rule.

Rules {SEND-I} and {SEL-I} do not change the dependency relation because send
operations are non-blocking. In the case of {SEND-I}, however, we must check that if

56 M. Coppo et al.

the message sent e is a service name, then it cannot have the R feature. The application
of the F function makes sure that all the components of the quadruple remain consistent
after this removal.

Rule {RCV-I} is used for typing value receptions. In this case, only the dependency
relation is changed to record the fact that the input action on channel y may block subse-
quent actions on the free channels occurring in P. The function pre(y, fc(P)) creates the
dependency relation that contains the pairs y ≺ z for all z ∈ fc(P). Note that no depen-
dency is recorded between y and the free service names possibly occurring in P. This is
because these services can always be unblocked by adding suitable catalysers (see Def-
inition 2.2) provided that the communication occurring on y does not reach a deadlock.

Rule {BRANCH-I} is a natural generalization of rule {RCV-I} to a process with mul-
tiple branches. In this case, the dependencies inferred for each branch are merged
together and services lose those features that are not present in every branch.

Rule {DELEG-I} is similar to {SEND-I} and {SEL-I} in that it deals with a non-
blocking send operation. However, in this case the process is sending a channel variable
z over channel y, meaning that an action blocking a communication on y may also block
a communication on z, because z cannot be used by the receiver process until delegation
happens. Consequently, the dependency relation is enriched with the y ≺ z dependency.

Rule {SRCV-I} is similar to {RCV-I}, except that it is used for typing the reception of
a session channel. The rule is particularly restrictive because it is meant to prevent a dan-
gerous phenomenon called self-delegation, which happens when one process ends up
owning two (or more) endpoints of the same session. An example of this phenomenon
is shown in the processes

P5 = b[1](z).a[1](y).y!〈〈2,z〉〉 Q5 = b [2](z).a [2](y).y?((1,x)).x?(2,w).z!〈1, false〉
which, when executed in parallel, open two sessions on services a and b. Then, P5

sends the channel z related to the session on b over the channel y, which is related to
the session on a. At this point, Q5 owns both endpoints of the session on b and tries to
use them in an order that causes a deadlock. Indeed, P5 | Q5 reduces to

(νs)(s[1]?(2,w).s[2]!〈1, false〉)
which is stuck. Remarkably, the process P5 | Q5 is typable in the communication type
system hence it is the interaction type system that must detect the problem in this case.
The premise D\S ⊆ {y ≺ z} requires that the continuation process P5 cannot perform
any potentially blocking action on any channel other than y, and that if a potentially
blocking action is performed on y then it must necessarily block a communication ac-
tion on z. This restriction prevents self-delegation and, in general, suffices to guarantee
progress. Note that P5 is still allowed to open new sessions on other services.

{PAR-I} and {IF-I} conclude the inference system by suitably combining dependen-
cies and features, similarly to what we have already seen for the {BRANCH-I} rule.

The algorithm is quadratic in the size of processes, being defined on their structure, if
we use appropriate data structures to represent the dependency relation and the service
sets, getting linear complexity for the evaluation of the required functions.

The algorithm is sound, namely:

Theorem 4.1. If P �⇒D;R;N;B, then P has the progress property.

Inference of Global Progress Properties 57

This theorem can be proved by showing that the inference algorithm is sound and com-
plete with respect to the interaction type system defined in [6].

We end with the application of the inference algorithm on two examples used earlier.

Example 4.1. Below are two executions of the inference algorithm on P1 and Q1 of §2.
For the sake of readability, we develop the inference bottom up assuming S = {a,b}.

P1 D R N B

z!〈2,x〉 /0 {a,b} {a,b} {a,b} {SEND-I}
y?(2,x) {y ≺ z} {a,b} {a,b} {a,b} {RCV-I}
b[1](z) {y ≺ b} {a,b} {a} {a} {INIT*-I}
a[1](y) {a ≺ b} {a,b} {a} {a} {INIT*-I}

Q1 D R N B

y!〈1,x′〉 /0 {a,b} {a,b} {a,b} {SEND-I}
z?(1,x′) {z ≺ y} {a,b} {a,b} {a,b} {RCV-I}
b [2](z) {b ≺ y} {a,b} {a,b} {a} {INIT*-I}
a [2](y) {b ≺ a} {a,b} {a,b} {a} {INIT*-I}

From the above table it turns out that both P1 and Q1 are well typed in isolation, in par-
ticular we have P1 �⇒ {a ≺ b};{a,b};{a};{a} and Q1 �⇒ {b ≺ a};{a,b};{a,b};{a}
but the application of rule {PAR-I} fails since F(D,{a,b},{a},{a})= (D, /0, /0, /0) where
D = {a ≺ b,b ≺ a}+, and the resulting judgment would not satisfy condition 4 of the
definition of well formedness. In particular the circular dependency removes the R fea-
ture from both a and b and the N feature is removed from b in P1 and then also from a
in the composition P1 | Q1 because of b ≺ a (see the definition of F). �

Example 4.2. The inference algorithm is not always able to statically determine a vi-
olation of the R feature, therefore it is unsafe to leave service names that are sent as
messages in the R set. Below is the result of the inference algorithm on the processes
P2 and Q2 of §3 assuming S = {a,b,c}:

P2 D R N B

z!〈2,x′〉 /0 {a,b,c} {a,b,c} {a,b,c} {SEND-I}
y?(2,x′) {y ≺ z} {a,b,c} {a,b,c} {a,b,c} {RCV-I}

b[1](z) {y ≺ b} {a,b,c} {a,c} {a,c} {INIT*-I}
x[1](y) /0 {a,b,c} {a,c} {a,c} {INITV-I}
t?(2,x) /0 {a,b,c} {a,c} {a,c} {RCV-I}
c[1](t) /0 {a,b,c} {a,c} {a,c} {INIT*-I}

Q2 D R N B

t!〈1,a〉 /0 {b,c} {a,b,c} {a,b,c} {SEND-I}
c [2](t) /0 {b,c} {a,b,c} {a,b,c} {INIT*-I}

Note that the dependency y ≺ b in P2 is erased because it concerns an unknown ser-
vice x that is bound in P2. This means that b is actually involved in dependencies
a ≺ b for every service a that is sent to P2, which is precisely what Q2 does. Indeed
we have P2 | Q2 �⇒ /0;{b,c};{a,c};{a,c} but P2 | Q2 | Q1, where Q1 is defined in
Example 4.1, cannot be typed. In fact, adding c to the set of services we get immedi-
ately Q1 �⇒ {b ≺ a};{a,b,c};{a,b,c};{a,c} but rule {PAR-I} cannot be applied since
F({b ≺ a},{b,c},{a,c},{a,c}) = ({b ≺ a},{b,c},{c},{c}) does not satisfy the con-
dition 4 of the definition of well-formedness for service a. Indeed we have the reduction
P2 | Q2 | Q1 →∗ P1 | Q1 which leads to a deadlock, as we have seen in §3. �

5 Related Work

Our notion of progress is strongly related to, and partly inspired from, the notion of
lock-freedom in [13], where Kobayashi develops a type system to enforce it. Intuitively,

58 M. Coppo et al.

a process is lock-free if, no matter how it reduces, every top-level prefix can be eventu-
ally consumed. In our case this roughly corresponds to the property that no process gets
stuck on an input action and that every message in a queue can be received. Kobayashi’s
type system seems capable of a much more fine-grained analysis than our type system.
However, despite the similarities between progress and lock-freedom, the two type sys-
tems are difficult to compare, because of several major differences in both processes
and types. In addition to the fact that we consider progress modulo the availability of
catalysers, our type system is given for an asynchronous language with a native notion
of (multiparty) session, while Kobayashi’s type system is defined for a basic variant
of the synchronous, pure π-calculus. A natural way for comparing these analysis tech-
niques would require compiling a session-based process into the pure π-calculus [7],
and then using Kobayashi’s type system for reasoning on progress of the original pro-
cess in terms of lock-freedom of the one resulting from the compilation.

A strategy that is alternative to compiling/encoding session-based processes is to lift
the technique underlying Kobayashi’s type system to a session type system for reason-
ing directly on the progress properties of processes. Some preliminary experiments in
this sense are reported in [14].

Most papers on service-oriented calculi only assure that clients are never stuck inside
a single session [12,9,8]. The first papers considering progress for interleaved sessions
required the nesting of sessions in Java [11,5].

The papers more related to the present one are [10] and [3]. In both these papers
there are constructions of processes providing missing participants, which are simpler
than our catalysers since sessions are dyadic.

[2] proposes a sophisticated proof system which builds a well-founded ordering on
events to enforce progress for processes of the Conversation Calculus [15], also in pres-
ence of dynamic join and leave of participants. Their progress is guaranteed under the
assumption that all communications are matched with sufficient joiners.

Formal theories of contracts using multiparty interaction structures are studied in
[4]. Contracts record the overall behaviour of a process, and typable processes them-
selves may not always satisfy properties such as progress: it is proved later by checking
whether a whole contract satisfies a certain form. Proving properties with contracts re-
quires an exploration of all possible interleaved or non-deterministic paths of a protocol.

6 Conclusions and Future Work

We have presented a sound and complete inference algorithm for the interaction type
system defined in [6] restricted to finite processes. This system guarantees progress of
interleaved multiparty sessions with session delegation and service communication.

There is a number of extensions stemming from this work, we focus on two of them.
First of all, it appears that the algorithm can be easily adapted to deal with recursive
processes, although soundness and completeness of such extension remain to be formally
established. Second, we plan to investigate how the approach can be applied to concrete
programming languages. The point is that the inference algorithm (and the interaction
type system as well) makes the fundamental assumption that a process can be examined
in terms of the complete sequence of input/output operations it performs. In practice,

Inference of Global Progress Properties 59

programs are made of opaque structures (higher-order functions, methods, modules, etc.)
and it is currently unclear whether such structures can be faithfully encoded as processes
in our calculus, or if instead it is necessary to devise richer type constructs to describe
them and to reason on global progress of systems in a modular way.

Acknowledgments. The authors are grateful to the reviewers for their useful comments and
to Naoki Kobayashi for discussions on the notion of lock-freedom. This work was partially sup-
ported by EPSRC EP/G015635/1 and EP/K011715/1, NSF Ocean Observatories Initiative, MIUR
Project CINA and Ateneo/CSP Project SALT.

References

1. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida, N.:
Global Progress in Dynamically Interleaved Multiparty Sessions. In: van Breugel, F., Chechik,
M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg (2008)

2. Caires, L., Vieira, H.T.: Conversation types. Theoretical Computer Science 411(51-52),
4399–4440 (2010)

3. Carbone, M., Debois, S.: A graphical approach to progress for structured communication in
web services. In: Bliudze, S., Bruni, R., Grohmann, D., Silva, A. (eds.) ICE 2010. EPTCS,
vol. 38, pp. 13–27 (2010)

4. Castagna, G., Padovani, L.: Contracts for Mobile Processes. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009. LNCS, vol. 5710, pp. 211–228. Springer, Heidelberg (2009)

5. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous Session Types and Progress
for Object Oriented Languages. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007.
LNCS, vol. 4468, pp. 1–31. Springer, Heidelberg (2007)

6. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global Progress for
Dynamically Interleaved Multiparty Sessions. Mathematical Structures in Computer Science
(to appear)

7. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: De Schreye, D., Janssens,
G., King, A. (eds.) PPDP 2012, pp. 139–150. ACM Press (2012)

8. Deniélou, P.-M., Yoshida, N.: Dynamic Multirole Session Types. In: Ball, T., Sagiv, M. (eds.)
POPL 2011, pp. 435–446. ACM Press (2011)

9. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and Session Types: an Overview. In:
Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer, Heidelberg
(2010)

10. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On Progress for Structured Commu-
nications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 257–275.
Springer, Heidelberg (2008)

11. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session Types
for Object-Oriented Languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006)

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: Necula,
G.C., Wadler, P. (eds.) POPL 2008, pp. 273–284. ACM Press (2008)

13. Kobayashi, N.: A Type System for Lock-Free Processes. Information and Computation 177,
122–159 (2002)

14. Padovani, L.: From Lock Freedom to Progress Using Session Types. In: Yoshida, N.,
Vanderbauwhede, W. (eds.) PLACES (to appear, 2013)

15. Vieira, H.T., Caires, L., Seco, J.C.: The Conversation Calculus: A Model of Service-Oriented
Computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 269–283.
Springer, Heidelberg (2008)

	Inference of Global Progress Properties
for Dynamically Interleaved Multiparty Sessions

	1 Introduction
	2 The Calculus of Multiparty Sessions
	3 A Tutorial to Progress Inference
	4 Progress Inference
	5 Related Work
	6 Conclusions and Future Work
	References

