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Abstract. We propose a scheme for watermarking cryptographic functions. In-
formally speaking, a digital watermarking scheme for cryptographic functions
embeds information, called a mark, into functions such as (trapdoor) one-way
functions and decryption functions of public-key encryption. It is required that a
mark-embedded function is functionally equivalent to the original function and
it is difficult for adversaries to remove the embedded mark without damaging
the function. In spite of its importance and usefulness, there have only been a
few theoretical studies on watermarking for functions (or program), and we do
not have rigorous and meaningful definitions of watermarking for cryptographic
functions and concrete constructions.

To solve the above problem, we introduce a notion of watermarking for cryp-
tographic functions and define its security. We present a lossy trapdoor function
(LTF) based on the decisional linear (DLIN) problem and a watermarking scheme
for the LTF. Our watermarking scheme is secure under the DLIN assumption in
the standard model. We use the techniques of dual system encryption and dual
pairing vector spaces (DPVS) to construct our watermarking scheme. This is a
new application of DPVS.

Keywords: digital watermarking, dual pairing vector space, dual system encryp-
tion, vector decomposition problem.

1 Introduction

1.1 Background

Digital watermarking is a method of embedding information, called a “mark”, in digital
objects such as images, movies, and audio files. Marked objects look similar to the orig-
inal objects and it is difficult to remove embedded marks without destroying the object.
One of the applications of watermarking is protecting copyright, i.e., we can prevent
unauthorized copying of digital content by detecting watermarks. Another application
is tracing and identifying owners of digital content, that is, if we find illegally copied
digital content, we can detect a watermark and identify the owner who distributed the il-
legal copy. Most watermarking methods have been designed for perceptual objects, such
as images, and only a few studies have focused on watermarking for non-perceptual ob-
jects (e.g., software, program). Software is digital content, so it can be easily copied.
Software piracy is a serious problem today. Watermarking for programs is one of tools
to solve the problem and has very useful, attractive, and practical applications, but they
are little understood.
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We briefly explain related studies on program watermarking below. Naccache,
Shamir, and Stern introduced the notion of copyrighted functions and proposed a method
for tracking different copies of functionally equivalent algorithms containing “marks”
[14]. This is related to watermarking schemes for program (functions), but their se-
curity definition is a bit weak and not sufficient for program watermarking. Barak,
Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang considered the notion of
software watermarking (program watermarking) from a cryptographic point of view in
their seminal work [1]. They proposed a formalization of software watermarking and its
security definition, but the definition is simulation based and too strong. They gave an
impossibility result for general-purpose program watermarking by using impossibility
results of general-purpose program obfuscation [1]. “General-purpose” means that pro-
gram watermarking/obfuscation can be applied to any program. Their security require-
ments cannot be achieved, so they leave positive theoretical results about watermarking
(achieving concrete constructions for specific function families by using a game-based
security definition) as an open problem. Yoshida and Fujiwara introduced the notion of
watermarking for cryptographic data and a concrete scheme for signatures [23]. Their
idea is very exciting, but they did not propose a formal security definition of watermark-
ing for cryptographic data and their scheme is not provably secure. They claim that the
security of their scheme is based on the vector decomposition (VD) problem, which
was introduced by Yoshida, Mitsunari, and Fujiwara [24], but their proof is heuristic
and they showed no reduction.

Hopper, Molnar, and Wagner proposed a rigorous complexity-theoretic (game-based)
definition of security for watermarking schemes, but they focused on watermarking for
only perceptual objects [8]. They gave no concrete construction that satisfies their se-
curity definition.

1.2 Motivations and Applications

As explained in the previous section, there is no watermarking scheme for (crypto-
graphic) functions that is provably secure in a complexity-theoretic definition of secu-
rity. We consider functions as a kind of program. Copyrighted functions by Naccache et
al. are provably secure based on the factoring assumption, but their definition of secu-
rity is weaker than that of watermarking, and their construction can embed a bounded
number of marks [14].

Traceable Cryptographic Primitives. One application of watermarking for cryptographic
functions (we sometimes call it cryptographic watermarking) is constructing various
traceable cryptographic primitives. If we have a watermarking scheme for crypto-
graphic functions, for example, trapdoor one-way functions, collision-resistant hash
functions (CRHF), and decryption functions, we can construct a variety of traceable
primitives or copyrighted cryptographic primitives since private-key encryption, public-
key encryption (PKE), digital signatures, and so on are constructed from trapdoor one-
way functions and often use CRHFs in their algorithms.

As pointed out by Naccache et al., watermarked functions have the following appli-
cations [14]:
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– If we consider software or program that generates ciphertexts of the Feistel cipher
based on a one-way function [13], signatures of Rompel’s signature scheme [21],
or decrypted values of ciphertexts under PKE schemes based on a trapdoor one-
way function, and a malicious user illegally makes copies of such software and
distributes them, then a company that sold the software can trace them and identify
the guilty users.

– If a company sells MAC-functions based on watermarked one-way functions to
users and records user IDs and marked functions in a database and the users use
them to log-in a member web site, then they do not need to disclose their identity
since all marked functions are functionally equivalent. However, if a malicious user
distributes an illegal copy and it is discovered, then the company can identify the
guilty identity by detecting an embedded mark.

Black-box Traitor Tracing. Kiayias and Yung proposed a method of constructing black-
box traitors tracing schemes from copyrighted PKE functions [10]. When we want to
broadcast digital content to a set of legitimate subscribers, we can use broadcast encryp-
tion schemes. If some of the subscribers leak partial information about their decryption
keys to a pirate, who is a malicious user in broadcast encryption systems, then the pi-
rate may be able to construct a pirate-decoder. Traitor tracing enables us to identify such
malicious subscribers called traitor [3]. Our cryptographic watermarking scheme can be
seen as a generalized notion of copyrighted functions and our construction is based on
identity-based encryption (IBE) schemes whose private keys for identities are marked
(these are copyrighted decryption functions of PKE), so our construction technique
can be used to construct black-box traitor tracing schemes and it has a quite powerful
application.

Theoretical Treatment of Watermarking. There are many heuristic methods for software
watermarking [4], but there have only been a few studies that theoretically and rigor-
ously treat the problem in spite of its importance. Functions can be seen as a kind of
software (and program) and a large amount of software uses cryptographic functions,
especially in a broadcast system, users must use software with decryption functions
to view content. We believe that our scheme is an important step toward constructing
practical software watermarking.

1.3 Our Contributions and Construction Ideas

We introduce the notion of watermarking for cryptographic functions, a game-based
security definition of them, and a concrete construction. Our watermarking scheme
is provably secure under the decisional linear (DLIN) assumption. To the best of our
knowledge, this is the first provably secure watermarking scheme for functions (pro-
gram) in terms of theoretical cryptography.

Our security notion is based on the notion of strong watermarking introduced by
Hopper et al. [8]. Their definition takes into account only perceptual objects and they
modeled the notion of similarity by a perceptual metric space on objects that mea-
sures the distance between objects. Therefore, to construct watermarking schemes for
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cryptographic functions, we should modify their definition. We define the similarity
by preserving functionality, that is, if a marked function is functionally equivalent to
an original function, then we assume the marked function is similar to the original
function. Watermarking schemes should guarantee that no adversary can generate a
function which is functionally equivalent to a marked function but unmarked, that is,
no adversary can remove embedded marks without destroying functions.

We propose a watermarking scheme for lossy trapdoor functions (LTFs) [20]. LTFs
are quite powerful cryptographic functions. They imply standard trapdoor one-way
functions, oblivious transfers, CRHFs, and secure PKE schemes against adaptive cho-
sen ciphertext attacks (CCA) [20]. The watermarking scheme consists of four algo-
rithms, key generation, mark, detect, and remove algorithms. Marked function indices
are functionally equivalent to the original ones, that is, for any input, outputs of marked
functions are the same as those of the original function. The construction can be used
to construct an IBE scheme that can generate marked private keys for identities and
marked signatures since our LTFs are based on IBE schemes, as explained in the next
paragraph. That is, we can construct decryption algorithms in which watermarks can be
embedded.

Key Techniques and Ideas Behind Our Construction. Our construction is based on the
dual pairing vector space (DPVS) proposed by Okamoto and Takashima [16,17,19]. We
use the IBE scheme of Okamoto and Takashima [19] (which is a special case of their
inner-product predicate encryption (IPE) scheme) and that of Lewko [11] to construct
LTFs. Loosely speaking, LTFs are constructed from homomorphic encryption schemes,
and the IBE schemes of Okamoto-Takashima and Lewko are homomorphic. There are
many other homomorphic encryption schemes but we selected Okamoto-Takashima
and Lewko IBE schemes because they are constructed by DPVS and the dual system
encryption methodology introduced by Waters [22]. The methodology is a key tech-
nique to achieve a watermarking scheme.

We apply the dual system encryption technique to not only security proofs but
also constructions of cryptographic primitives. In the dual system encryption, we can
use semi-functional ciphertexts and semi-functional keys. Semi-functional ciphertexts
can be decrypted using normal keys and normal ciphertext can be decrypted using
semi-functional keys, but semi-functional ciphertexts cannot be decrypted using semi-
functional keys. Normal ciphertexts/keys are computationally indistinguishable from
semi-functional ciphertexts/keys. In most cases, function indices of LTFs consist of ci-
phertexts of homomorphic encryption [5, 7, 20], so, intuitively speaking, if we can con-
struct a function index by using not only (normal) ciphertexts but also semi-functional
keys, then the function index is functionally equivalent to a function index generated
by (normal ciphertexts and) normal keys as long as normal ciphertexts are used. More-
over, if we use semi-functional ciphertexts, we can determine whether a function index
is generated by semi-functional keys or not since semi-functional ciphertexts cannot
be decrypted using semi-functional key. Thus, a function index that consists of semi-
functional keys can be seen as a marked index and semi-functional ciphertexts can be
used in a detection algorithm of a watermarking scheme. This is the main idea. Note
that our construction technique can be used to construct an IBE scheme whose private
keys can be marked because our LTFs are based on such an IBE scheme.
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Our watermarking scheme is based on DPVS. We can set a hidden linear subspace
by concealing the basis of a subspace from public parameters due to a nice property
of DPVS. A pair of dual orthonormal bases, B and B

∗, are generated using a random
linear transformation matrix. We use a hidden linear subspace spanned by a subset of
B/B∗ for semi-functional ciphertexts/keys (We denote the subset by ̂B ⊂ B, ̂B∗ ⊂ B

∗,
respectively). A hidden linear subspace for semi-functional ciphertexts and keys can be
used as a detect key and a mark key of our watermarking scheme, respectively. Thus, we
can embed “marks” into the hidden linear subspace and they are indistinguishable from
non-marked objects because the decisional subspace problem is believed to be hard
[15, 17]. Informally speaking, the decisional subspace problem is determining whether
a given vector is spanned by B (resp, B∗) or B \ ̂B (resp, B∗ \ ̂B∗).

Okamoto and Takashima introduced complexity problems based on the DLIN prob-
lem to prove the security of their scheme [17,19] and these problems are deeply related
to the VD problem [24] and the decisional subspace problem. The VD problem says
that it is difficult to decompose a vector in DPVS into a vector spanned by bases of a
subspace. Lewko also introduced the subspace assumption [11], which is implied by the
DLIN assumption and highly related to the decisional subspace assumption introduced
by Okamoto and Takashima [15] and the VD problem. All assumptions introduced
by Okamoto-Takashima [17, 19] and Lewko [11] are implied by the standard DLIN
assumption.

If we can decompose a vector in DPVS into each linearly independent vector, then
we can convert semi-functional ciphertexts/keys into normal ciphertexts/keys by elimi-
nating elements in hidden linear subspaces, that is, we can remove an embedded mark
from a marked function index. Galbraith and Verheul and Yoshida, Mitsunari, and Fu-
jiwara argued that the VD problem is related to computational Diffie-Hellman prob-
lem [6, 24]. It is believed that the VD problem is hard. Therefore, no adversary can
remove marks of our watermarking scheme (this is a just intuition). However, we do
not directly use the VD problem but the DLIN problem to prove the security of our
scheme. On the other hand, if we have a linear transformation matrix behind dual or-
thonormal bases of DPVS, then we can easily solve the VD problem [15,17], that is, we
can remove a mark if we have the matrix. Such an algorithm was proposed by Okamoto
and Takashima [15].

Our construction is a new application of DPVS. DPVS has been used to con-
struct fully secure functional encryption, IPE, IBE and attribute-based signatures
[11, 12, 16–19], but to the best of our knowledge, a linear transformation matrix for
dual orthonormal bases in DPVS has never been explicitly used for algorithms of cryp-
tographic schemes. This is of independent interest.

Remark. In this extended abstract, we do not have enough space to give complete proofs
and all definitions, so we omitted some of them.

2 Preliminaries

Notations. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}. When D is a random
variable or distribution, y

R← D means that y is randomly selected from D according to
its distribution. If S is a set, then x

U← S means that x is uniformly selected from S. We
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denote y is set, defined or substituted by z by y := z. When b is a fixed value,A(x)→ b
(e.g., A(x) → 1) denotes the event that probabilistic polynomial-time (PPT) machine
(or algorithm) A outputs a on input x. We say that function f : N→ R is negligible in
λ ∈ N if f(λ) = λ−ω(1) (We write f < negl(λ)). We denote the finite field of order
q by Fq, and Fq \ {0} by F

×
q . A bold face small letter denotes an element of vector

space V, e.g., x ∈ V. Set GL(n,Fq) denotes the general linear group of degree n over
Fq. Let Gbm be a parameter generation algorithm that takes as input security parameter
λ and outputs (q,G,GT , e, g). If we use g/G to denote a generator in G, then we use
multiplicative/additive notation, respectively.

2.1 Function Family of Lossy Trapdoor Functions

Definition 1 (Lossy Trapdoor Functions [20]). A lossy trapdoor function LTF with
domain D consists of four efficient algorithms satisfying three properties

Injective Key Generation: LTF.IGen outputs (ek , ik) where ek /ik is an
evaluation/inversion key.

Evaluation: LTF.Evalek (X) (X ∈ D) outputs an image Y = fek(X).
Inversion: LTF.Invertik (Y ) outputs a pre-image X = f−1

ik (Y ).
Lossy Key Generation: LTF.LGen outputs (ek ′,⊥).
Correctness: ∀(ek , ik ) R← LTF.IGen(1λ) and ∀X ∈ D, f−1

ik (fek (X)) = X .
Indistinguishability: Let λ be a security parameter. For all PPT A, AdvIND

LTF,A(λ) :=
∣

∣Pr[A(1λ, [LTF.IGen(1λ)]1)]− Pr[A(1λ, [LTF.LGen(1λ)]1)]
∣

∣ < negl(λ).
Lossiness: We say that LTF is �-lossy if for all ek ′ generated by using LTF.LGen(1λ),

the image set fek′(D) is of size at most |D| /2�.

We define a function family of LTF, LTFλ := {LTF.Evalek (, ·)|(ek , ik ) R←
LTF.Gen(1λ, b), b ∈ {0, 1}} where LTF.Gen(1λ, 0) := LTF.IGen(1λ) and
LTF.Gen(1λ, 1) := LTF.LGen(1λ).

2.2 Dual Pairing Vector Space [12, 16, 17]

Definition 2. “Dual pairing vector space (DPVS)” (q,V,GT ,A, e) by a direct product
of symmetric pairing groups (q,G,GT , e, G) are a tuple of prime q, N -dimensional
vector space V := G

N over Fq , cyclic group GT of order q, canonical basis A :=
(a1, . . . ,aN ) of V, where ai := (0, . . . , 0, G, 0, . . . , 0) (only the i-th coordinate is G),
and pairing e : V× V→ GT . The pairing is defined as e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈

GT where x := (G1, . . . , GN ) ∈ V and y := (H1, . . . , HN ) ∈ V. This is non-
degenerate bilinear, i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V,
then x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and
0 otherwise, and e(G,G) �= 1. DPVS also has linear transformations φi,j on V s.t.
φi,j(aj) = ai and φi,j(ak) = 0 if k �= j, which can be easily achieved by φi,j(x) :=
(0, . . . , 0, Gj , 0, . . . , 0) (only the i-th coordinate is G) where x := (G1, . . . , GN ). We
call φi,j canonical maps. DPVS generation algorithm Gdpvs takes input 1λ and N ∈ N

and outputs a description of pp′
V

:= (q,V,GT ,A, e) with security parameter λ and
N -dimensional V. It can be constructed using Gbm.
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Canonical basis A is changed to dual orthonormal bases B := (b1, . . . , bN ) and B
∗ :=

(b∗1, . . . , b
∗
N ) of V. We describe random dual orthonormal bases generator Gob(1λ, N):

Generate pp′
V
:= (q,V,GT ,A, e)

R← Gdpvs(1λ, N), X := (χi,j)
U← GL(N,Fq), ψ

U←
F
×
q , (ϑi,j) := ψ(X�)−1, gT := e(G,G)ψ , ppV := (pp′

V
, gT ), bi :=

∑N
j=1 χi,jaj ,B:=

(b1, . . . , bN ), b∗i :=
∑N

j=1 ϑi,jaj ,B
∗ := (b∗1, . . . , b

∗
N ), return (ppV,B,B

∗). It holds
that e(bi, b

∗
j ) = (gT )

δi,j .

Vector Decomposition Problem. The VD problem was originally introduced by Yoshida,
Mitsunari, and Fujiwara [24]. We present the definition of a higher dimensional version
by Okamoto and Takashima [15] to fit the VD problem into DPVS. Note that a specific
class of the CVDP instances that are specified over canonical basis A are tractable.

Definition 3 (CVDP: (�1, �2)-Computational Vector Decomposition Problem [15]).
For �1 > �2 and all λ ∈ N, we define the advantage

AdvCVDP
A,(�1,�2)(λ) := Pr

⎡

⎢

⎣
ω =

�2
∑

i=1

xibi

∣

∣

∣

∣

∣

∣

∣

(ppV,B,B
∗) R← Gob(1λ, �1),

(x1, . . . , x�1)
U← (Fq)

�1 ,

v :=
∑�1
i=1 xibi, ω

R← A(1λ, ppV,B,v)

⎤

⎥

⎦
.

The CVDP(�1,�2) assumption : For any PPTA, AdvCVDP
A,(�1,�2)(λ) < negl(λ).

Trapdoor. If we have a trapdoor, matrix X behind B, then we can efficiently de-
compose vectors in DPVS, i.e., solve CVDP(�1,�2) by using the efficient algorithm
Decomp given by Okamoto and Takashima [15]. The input is (v, (b1, . . . , b�2),X,B)

such that v :=
∑�1
i=1 yibi is a target vector for decomposition, (b1, . . . , b�2) is a

subspace to be decomposed into, X is a trapdoor, and B := (b1, . . . , b�1) is a ba-
sis generated by usingX . Algorithm Decomp(v, (b1, . . . , b�2),X,B): computes u :=
∑�1

i=1

∑�2
j=1

∑�1
κ=1 τi,jχj,κφκ,i(v) where φ is the canonical map in Definition 2,

(χi,j) =X and (τi,j) := (X)−1.

Lemma 1 (Okamoto-Takashima [15]). Algorithm Decomp efficiently solves
CVDP(�1,�2) by usingX := (χi,j) such that bi :=

∑�1
j=1 χi,jaj .

Multiplicative Notation of DPVS by Lewko [11]. We introduce a multiplicative no-
tation by Lewko [11]. For �v, �w ∈ F

n
q , a ∈ Fq, and g ∈ G, we define g�v :=

(gv1 , . . . , gvn), ga�v := (gav1 , . . . , gavn), g�v+�w := (gv1+wn , . . . , gvn+wn), and
e(g�v, g �w) :=

∏n
i=1 e(g

vi , gwi). Lewko defined algorithm Dual(Fnq ) as follows: It

chooses�bi,�b∗j ∈ F
n
q andψ

U← Fq such that�bi·�b∗j = 0 mod q for i �= j,�bi·�b∗i = ψ mod q

for all i ∈ [n] and outputs (B,B∗) where B := (�b1, . . . ,�bn) and B∗ := (�b∗1, . . . ,�b
∗
n).

We use the notation (B,B∗) to express dual orthonormal bases in Fq to distinguish

from bases (B,B∗) in V. We can consider bi = g
�bi , b∗j = g

�b∗j , �bi = (χi,1, . . . , χi,n),
�b∗i = (ϑi,1, . . . , ϑi,n) whereX = (χi,j) and ψ(X−1)

�
= (ϑi,j).

2.3 Complexity Assumptions

Definition 4 (DLIN Assumption). Let Gdlinb (1λ) be an algorithm that generates Γ :=

(q,G,GT , e, g)
R← Gbm(1λ), chooses ξ, κ, δ, σ, ζ

U← Fq, lets Q0 := gδ+σ , Q1 := gζ ,
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and outputs I := (Γ, f, h, f δ, hσ, Qb). The advantage is AdvdlinA (λ) := |Pr[A(I) →
1|I R← Gdlin0 (1λ)] − Pr[A(I) → 1|I R← Gdlin1 (1λ)]|. We say that the DLIN assumption
holds if for all PPT A, AdvdlinA (λ) < negl(λ).

Definition 5 (Subspace Assumption). Let Gdssb (1λ) be an algorithm that generates

Γ
R← Gbm(1λ), chooses η, β, τ1, τ2, τ3, μ1, μ2, μ3

U← Fq, (B,B∗) R← Dual(Fnq ), for

i ∈ [k] where 3k ≤ n lets Ui := gμ1
�bi+μ2

�bk+i+μ3
�b2k+i , Vi := gτ1η

�b∗i +τ2β�b
∗
k+i , Wi :=

gτ1η
�b∗i +τ2β�b

∗
k+i+τ3

�b∗2k+i , D := (g
�b1 , . . . , g

�b2k , g
�b3k+1 , . . . , g

�bn , gη
�b∗1 , . . . , gη

�b∗k , gβ
�b∗k+1 ,

. . . , gβ
�b∗2k , g

�b∗2k+1 , . . . , g
�b∗n , U1, . . . , Uk, μ3),Q0 := (V1, . . . , Vk),Q1 :=(W1, . . . ,Wk),

and outputs I := (Γ,D,Qb). The advantage is AdvdssA (λ) := |Pr[A(I) → 1|I R←
Gdss0 (1λ)]− Pr[A(I)→ 1|I R← Gdss1 (1λ)]|. We say that the subspace assumption holds
if for all PPT A, AdvdssA (λ) < negl(λ).

Theorem 1 (Lewko [11]). The DLIN assumption implies the subspace assumption.

3 Definitions of Cryptographic Watermarking

We define watermarking schemes for cryptographic functions (one-way functions, hash
functions, etc.). Our definition of watermarking schemes can be extended to treat cryp-
tographic data introduced by Yoshida and Fujiwara [23]. We consider a family of func-
tions F := {Fλ}λ. For example, LTFs are cryptographic functions and function F is

sampled from family LTFλ := {fek(·)|(ek , ik) R← LTF.IGen(1λ)}. A watermarking
key generation algorithm takes as inputs security parameter λ and familyF and outputs
public parameter pk, secret key sk, mark key mk, detect key dk, and remove key rk.
That is, our watermarking schemes is an asymmetric key watermarking scheme. Public
parameter pk includes sampling algorithm SampF , which outputs a function F

R← Fλ
(note that we include the case in which the sampling algorithm takes sk as an input).
Note that the description of SampF does not include sk. Our cryptographic watermark-
ing scheme for cryptographic functions F uses public parameter pk and secret key sk
to choose a function F

R← Fλ from the function family. A mark key allows us to embed
a mark in function F . A marked function F ′ should be similar to original function F .
A detect/remove key allows us to detect/remove a mark in marked function F ′.

Definition 6. A watermarking scheme for family F is a tuple of algorithms CWMF :=
{WMGen,Mark,Detect,Remove} as follows:

WMGen: The key generation algorithm takes as input security parameter λ and
function family F , outputs public parameter pk (including sampling algorithm
SampF ), secret key sk, mark key mk, detect key dk, and remove key rk, that is,
(pk, sk,mk, dk, rk)

R←WMGen(1λ,F).
Mark: The mark algorithm takes as inputs mk and unmarked function F and outputs

marked function ˜F , that is, ˜F
R← Mark(pk,mk, F ) (hereafter, we often omit pk

from inputs).
Detect: The detect algorithm takes as inputs dk and function F ′ and outputs

marked (detect a mark) or unmarked (no mark), that is, Detect(pk, dk, F ′) →
marked/unmarked.
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Remove: The remove algorithm takes as inputs rk and marked function ˜F and outputs
unmarked function F := Remove(pk, rk, ˜F ), that is functionally equivalent to the
original one.

As Hopper et al. noted [8], we do not allow any online communication between the
Detect and Mark procedures. We sometimes use notation WM(F ) to denote a marked
function of F .

We define the security of cryptographic watermarking based on the definition of
strong watermarking with respect to the metric space proposed by Hopper et al. [8] and
software watermarking proposed by Barak et al. [1]. We borrow some terms from these
studies. Hopper et al. defined a metric space equipped with distance function d and say
that object O1 and O2 are similar if d(O1, O2) ≤ δ for some δ, but we do not use it
since we do not consider perceptual objects.

Basically, the following properties should be satisfied: Most objects F ∈ Fλ must
be unmarked. We define similarity by a functional preserving property, that is, for all
input x, output distributions F (x) and F ′(x) are identical. Given marked function F ′,
an adversary should not be able to construct a new function ˜F , which is functionally
equivalent to F ′ but unmarked without remove key rk.

Our definitions of the non-removability and unforgeability are game-based defini-
tions and based on the notion of strong watermarking by Hopper et al. [8]. Our def-
initions are specialized to focus on cryptographic functions (do not consider metric
spaces). The non-removability states that even if the adversary is given marked func-
tions, it cannot find a function that is similar to a marked function but does not contain
any mark. This is based on the security against removal introduced by Hopper et al. [8].
The unforgeability states that the adversary cannot find a new marked function. This is
based on the security against insertion introduced by Hopper et al. [8].

Experiment WMarkF,A(λ)

keys
R←WMGen(1λ,F);

kesy = (pk, sk,mk, dk, rk);
MList := ∅; CList := ∅;
(β, F )

R← AMO,CO,DO(1λ, pk);
If β = 0, then Detect(dk, F )→ b;
IdealDtc(F )→ B′;
if b = unmarked and B′ = {marked};
then return (0,win) else return lose
If β = 1, then Detect(dk, F )→ b;
IdealDtc(F )→ B′;
if b = marked, and B′ = {unmarked};
then return (1,win) else return lose

OracleMO(F )

F ′ R← Mark(mk,F );
MList := MList ∪ {F ′};
return F ′;

Oracle COFλ()

F
R← Fλ;

F ′ R← Mark(mk,F );
CList := CList ∪ {F ′};
MList := MList ∪ {F ′};
return F ′

Oracle DO(F )

Detect(dk, F )→ b;
return b

Procedure IdealDtc(F )

if
(∃F ′ ∈ CList : F ≡ F ′);
then return {marked}
else if
(∃F ′ ∈ MList : F ≡ F ′)
then return
{marked, unmarked}
else return {unmarked}

Fig. 1. Experiment for non-removability and unforgeability
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Definition 7 (Secure Watermarking for Functions). A watermarking scheme for func-
tion family F is secure if it satisfies the following properties.

Meaningfulness: It holds that for any F ∈ Fλ, Detect(dk, F )→ unmarked.
Correctness: For any F ∈ Fλ, (pk, sk,mk, dk, rk)

R← WMGen(1λ,F) and
WM(F )

R← Mark(mk,F ), it holds that Detect(dk,WM(F )) → marked and
Detect(dk,Remove(rk,WM(F )))→ unmarked.

Preserving Functionality: For any input x ∈ {0, 1}n and F ∈ Fλ, it holds that
WM(F )(x) = F (x). If function F ′ preserves the functionality of function F , then
we write F ≡ F ′.

Polynomial Slowdown: There exists a polynomial p such that for any F ∈ Fλ,
|WM(F )| ≤ p(|F |+ |mk|).

Non-Removability: We say that a watermarking scheme is non-removable if it holds
that AdvRemove

F ,A (1λ) := Pr[WMarkF ,A(λ) → (0,win)] < negl(λ). Experiment
WMarkF ,A(λ) is shown in Figure 1.

Unforgeability: We say that a watermarking scheme is unforgeable if it holds that
AdvForgeF ,A (1λ) := Pr[WMarkF ,A(λ)→ (1,win)] < negl(λ).

The adversary tries to find a function such that the outputs of the actual detection al-
gorithm and the ideal detection procedure are different. The ideal detection procedure
searches a database and outputs a decision by using online communication to the mark-
ing algorithm. The adversary has access to oracles, i.e., the mark, detect, and challenge
oracles. The mark oracle returns a marked function for a queried non-marked function.
The detect oracle determines whether a queried function is marked or not. The challenge
oracle generates a new (non-marked) function, embeds a mark in the new function, and
returns the marked function (the original non-marked function is hidden). Eventually,
the adversary outputs function F and bit β. When β = 0, it means that the adversary
claim that it succeeded in removing a mark from some marked function F ′ without the
remove key. This case is for security against removal. When β = 1, it means that the
adversary claim that it succeeded in embedding a mark in some original function F ′

without the mark key. This case is for security against forgery.
As Hopper et al. explained [8], we must introduce the challenge oracle because if it

does not exist, then a trivial attack exists. If the adversary samples an unmarked function
F ∈ Fλ, queries it to the mark oracle, and finally outputs them as solutions for β = 0.
The actual detect algorithm returns unmarked but the ideal detect procedure returns
{marked, unmarked} since an equivalent function is recorded in MList.

4 Proposed Watermarking Scheme

We present LTFs and a watermarking scheme for LTFs that are secure under the DLIN
assumption. Generally speaking, LTFs can be constructed from homomorphic encryp-
tion schemes as discussed in many papers [5, 20]. Lewko/Okamoto-Takashima pro-
posed an IBE/IPE scheme based on DPVS, which is homomorphic and secure under
the DLIN assumption. We can easily construct an LTF from the IBE scheme by ap-
plying the matrix encryption technique introduced by Peikert and Waters [20]. In this
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extended abstract, we present a scheme based on only the Lewko IBE scheme due to
page limitations (since cryptographers are used to multiplicative notation). See a full
version of this paper for a scheme based on the Okamoto-Takashima IPE scheme.

Basically, we use homomorphic PKE schemes to construct LTFs, but we use homo-
morphic IBE schemes to achieve watermarking scheme since we want to use identities
as tags for function indices and dual system encryption. To construct LTFs based on
IBE schemes, we use not only ciphertexts under some identity but also a private key for
the identity. If there is no private key (we call it conversion key in the scheme), then we
cannot obtain valid outputs that can be inverted by an inversion key of the LTF. Note
that the conversion key is not a trapdoor inversion key for the LTF. Our LTF LTFmult

based on the Lewko IBE is as follows:

LTF.IGen(1λ) : It generates (D,D∗) U← Dual(F8
q), chooses α, θ, σ

U← Fq, ψ :=

(ψ1, . . . , ψ�)
U← F

�
q, and sets gT := e(g, g)αθ

�d1·�d∗1 and gTj := g
ψj

T for all j ∈ [�].

It chooses si,1, si,2
U← Fq for all i ∈ [�] and generates ui,j := g

si,1
Tj
· gmi,j

T and

vi := gsi,1
�d1+si,1ID�d2+si,2 �d3+si,2ID�d4 for all i, j ∈ [�] where mi,i = 1 and

mi,j = 0 (if i �= j). For a conversion key, it chooses r1, r2
U← Fq and generates

kID := g(α+r1ID)θ�d∗1−r1θ�d∗2+r2IDσ�d∗3−r2σ�d∗4 . It returns ek := (U ,V ,kID) :=
({ui,j}i,j , {vi}i ,kID) (i, j ∈ [�]), ik := ψ. Note ek includes ID, but we omit it
for simplicity.

LTF.LGen(1λ) : This is the same as LTF.IGen except that for all i, j ∈ [�], mi,j = 0
and ik := ⊥.

LTF.Eval(ek , �x): For input �x ∈ {0, 1}�, it computes yj :=
∏

i u
xi

i,j = g�x·�s1Tj
g
xj

T ,

y�+1 :=
∏

i v
xi

i = g�x·�s1 �d1+�x·�s1ID�d2+�x·�s2 �d3+�x·�s2ID�d4 where �s1 := (s1,1, . . . , s1,�),

�s2 := (s2,1, . . . , s2,�), and y′�+1 := e(y�+1,k0) = e(g, g)αθ
�d1·�d∗1�x·�s1 and returns

output y := (y1, . . . , y�, y
′
�+1).

LTF.Invert(ik ,y): For input y, it computes x′j := yj/(y
′
�+1)

ψj = g�x·�s1Tj
g
xj

T /g
�x·�s1·ψj

T

and let xj ∈ {0, 1} be such that x′j = g
xj

T . It returns �x = (x1, . . . , x�).

Theorem 2. LTFmult is a lossy trapdoor function if the DBDH assumption holds.

We omit the proof and the definition of the DBDH assumption (this assumption is im-
plied by the DLIN assumption).

Next, we present our watermarking scheme. We added extra two dimensions of
DPVS to the original Lewko IBE scheme since we use the extra dimensions to embed
watermarks. Even if we add a vector spanned by �d∗7 and �d∗8 to kID, which is spanned
by �d∗1, . . . , �d

∗
4, it is indistinguishable from the original since vectors �d7, �d8, �d∗7, �d

∗
8 are

hidden. Moreover, the marked index works as the original non-marked index since V
is spanned by �d1, . . . , �d4 and components �d∗7, �d∗8 are canceled. However, if we have a
vector which is spanned by �d7, �d8, then we can detect the mark generated by �d∗7, �d

∗
8. If

we have complete dual orthonormal bases (D,D∗), then we can use the decomposition
algorithm introduced in Section 2.2 and eliminate the vector spanned by �d∗7, �d∗8, i.e.,
watermarks. Our watermarking scheme CWMmult for LTFmult is as follows:
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WMGen(LTFmult): It generates (D,D∗) U← Dual(F8
q), chooses α, θ, σ

U← Fq,

gT := e(g, g)αθ
�d1·�d∗1 , and sets ̂D := (gT , g

�d1 , . . . , g
�d4) pk := (̂D, Samp),

sk := (gαθ
�d∗1 , gθ

�d∗1 , gσ
�d∗2 , gσ

�d∗3 , g
�d∗4 ), mk := (g

�d∗7 , g
�d∗8), dk := (g

�d7 , g
�d8), and

rk := (D,D∗). The sampling algorithm Samp(ppV,
̂D, sk) chooses ψ

U← F
�
q,

�s1, �s2
U← F

�
q, and generates (ek, ik) := ((U ,V ,kID),ψ) as LTF.IGen. It com-

putes kID := g(α+r1ID)θ�d∗1−r1θ�d∗2+r2IDσ�d∗3−r2σ�d∗4 . Note that sk is not included in
the description of Samp. Keys sk, mk, and rk are secret. Key dk can be disclosed.

Mark(mk, ek): It parses ek = (U ,V ,kID), chooses t1, t2
U← Fq, and computes

˜kID := kID · gt1 �d∗7+t2 �d∗8 by using g �d
∗
7 and g �d

∗
8 . It outputs marked function index

WM(ek ) = (U ,V , ˜kID).
Detect(dk,˜ek ): It parses ˜ek = (U ,V , ˜kID), chooses z1, z2

U← F
×
q , and com-

putes c := gz1
�d7+z2 �d8 . Next, it computes Δ := e(c, ˜kID). If it holds that

Δ = e(c, ˜kID) �= 1, then it outputs marked. Else if, it holds that Δ = 1, then
it outputs unmarked.

Remove(rk,˜ek): It parses ˜ek = (U ,V , ˜kID), runs algorithm Decomp(ṽi, (g
�d∗1 ,

. . . , g
�d∗m),D∗, (g �d

∗
1 , . . . , g

�d∗8 )) for all m < 8, and obtains gzj
�d∗j for all j =

1, . . . , 8 where zj ∈ Fq . It holds ˜kID = gz1
�d∗1+···+z8�d∗8 . It computes k′ID :=

˜kID/g
z7�d

∗
7+z8

�d∗8 and outputs (U ,V ,k′ID) as an unmarked index.

Correctness, preserving functionality, and polynomial slowdown are easily followed.
Meaningfulness follows since (g

�d∗1 , . . . , g
�d∗8 ) are hidden. Note that if we do not have

secret key (g
�d∗1 , . . . , g

�d∗4 ), then we cannot compute a complete function index, that is,
we cannot compute conversion key kID. This seems to be a restriction, but in the sce-
nario of watermarking schemes, this is acceptable. We use watermarking schemes to
authorize objects, and such objects are privately generated by authors. For example,
movies, music files, and software are generated by some companies and they do not
distribute unauthorized (unmarked) objects. Moreover, in the experiment on security,
the adversary is given a oracle which gives marked function indices. Thus, it is reason-
able that unauthorized parties cannot efficiently sample functions by themselves.

4.1 Security Proofs for CWMmult

Our watermarking scheme CWMmult is secure under the DLIN assumption. We prove
this by proving Theorems 3 and 4.

Theorem 3. CWMmult is non-removable under the subspace assumption.

Proof. If A outputs (0, ek∗), where Detect(dk, ek) → unmarked and IdealDtc
(ek∗) → marked, then we construct algorithm B, which solves the subspace prob-

lem with k = 1 and n = 8. B is given Γ , D = (g
�b1 , g

�b2 , g
�b4 , . . . , g

�b8 , gη
�b∗1 ,

gβ
�b∗2 , g

�b∗3 , . . . , g
�b∗8 , U1), and Qb for b ∈ {0, 1}. We set Q0 := V1 = gτ1η

�b∗1+τ2β�b
∗
2

and Q1 :=W1 = gτ1η
�b∗1+τ2β�b

∗
2+τ3

�b∗3 . B sets
�d1 := �b∗3 �d2 := �b∗4 �d3 := �b∗5 �d4 := �b∗6 �d5 := �b∗7 �d6 := �b∗8 �d7 := �b∗1 �d8 := �b∗2
�d∗1 := �b3 �d∗2 := �b4 �d∗3 := �b5 �d∗4 := �b6 �d∗5 := �b7 �d∗6 := �b8 �d∗7 := �b1 �d∗8 := �b2
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B chooses θ, α′, σ U← Zp and can generate public key pk = (e(g, g)αθ
�d1·�d∗1 , g �d1 ,

. . . , g
�d4) := (e(g

�b∗2 , g
�b2)α

′μ3θ, g
�b∗3 , g

�b∗4 , g
�b∗5 , g

�b∗6 ) and mark key mk = (g
�d∗7 , g

�d∗8)

:= (g
�b1 , g

�b2). B has a detect key, which is essentially the same as g �d7 and g �d8 since

gη
�b∗1 , gβ

�b∗2 are given. Coefficients β and η do not affect the detect algorithm. B can have
(g
�d∗2 , . . . , g

�d∗8 ) but does not have g �d
∗
1 since g�b3 is not given. That is, B has the mark

key and perfectly simulates the mark oracle but the secret key is incomplete as follows:
sk = (⊥,⊥, gθ�d∗2 , gσ�d∗3 , gσ�d∗4 ) := (⊥,⊥, gθ�b4, gσ�b5 , gσ�b6).

It implicitly holds α = α′μ3. To simulate the challenge oracle without the complete
sk, for ID, B chooses r′1, r2, t7, t8

U← Zp and computes

˜kID := (U1)
(α′+r′1ID)θg−r

′
1μ3θ�d

∗
2+r2IDσ

�d∗3−r2σ�d∗4+t7 �d∗7+t8 �d∗8

= g(α+r1ID)θ�d∗1−r1θ�d∗2+r2IDσ�d∗3−r2σ�d∗4+t′7 �d∗7+t′8 �d∗8

where t′7 = t7 − θ(α′ + r′1ID)μ1 and t′8 = t8 − θ(α′ + r′1ID)μ2 We set r1 :=
μ3r

′
1. This is a valid marked index. If A outputs valid unmarked index ek∗ =

(U∗,V ∗,k∗ID∗) where k∗ID∗ = g(α+r
∗
1ID

∗)θ�d∗1−r∗1θ�d∗2+r∗2ID∗σ�d∗3−r∗2σ�d∗4 , then B com-
putes Δ := e(Qb,k

∗
ID∗). If Δ = 1, then B outputs 0 (b = 0), otherwise, it outputs 1.

If Qb = gτ1η
�b∗1+τ2β�b

∗
2 = gτ1η

�d7+τ2β�d8 , then Δ = 1. If Qb = gτ1η
�b∗1+τ2β�b

∗
2+τ3

�b∗3 =

gτ1η
�d7+τ2β�d8+τ3 �d1 , then Δ = e(g, g)(α+r1ID)θτ3�d1·�d∗1 �= 1. That is, B breaks the

problem. �

Next, we prove unforgeability. Note that the adversary is not allowed to output a func-
tion index whose identity is equal to those of indices generated by the challenge oracle
or are queried to the mark oracle. This is justified by the following fact. If it is al-
lowed, then it means the adversary has already had a (functionally equivalent) marked
index for the given or queried identity, that is, an IBE private key for the same iden-
tity. This is unavoidable and in the experiment on unforgeability, IdealDtc always re-
turns marked for identities that oracles used. For simplicity, we prove the unforgeabil-
ity explained above, but we can extend it to stronger ones by using known techniques
that convert standard unforgeable signature schemes into strongly unforgeable signa-
ture schemes. We now define algorithm Xtr(pk, sk, ID). It chooses r1, r2

U← Fq and

outputs kID := g(α+r1ID)θ�d∗1−r1θ�d∗2+r2IDσ�d∗3−r2σ�d∗4 . We can consider kID be a signa-
ture for ID. In fact, Naor pointed out that signature schemes can be derived from IBE
schemes [2]. Thus, we can prove the unforgeability of our watermarking scheme by
using the unforgeability of signature schemes derived from IBE schemes of Okamoto-
Takashima and Lewko.

Huang, Wong, and Zhao proposed a generic transformation technique for convert-
ing unforgeable signature schemes into strongly unforgeable ones [9]. We can achieve
strong unforgeability of watermarking schemes by using their technique and the strongly
unforgeably property.

Theorem 4. CWMmult is unforgeable under the subspace assumption.

Proof. Let qM and qC be the number of queries to the mark oracle and the challenge
oracle, respectively. There are two types of conversion keys kID.
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Normal: g(α+r1ID)θ�d∗1−r1θ�d∗2+r2IDσ�d∗3−r2σ�d∗4+t7 �d∗7+t8 �d∗8
Semi-functional: g(α+r1ID)θ�d∗1−r1θ�d∗2+r2IDσ�d∗3−r2σ�d∗4+t5 �d∗5+t6 �d∗6+t7 �d∗7+t8 �d∗8 .

We can generate them if we have the secret key, mark key, and (g
�d∗5 , g

�d∗6 ).

Both types of conversion keys give a correct output (we can check this by simple cal-
culation). To show that our scheme satisfies unforgeability, we introduce the following
games: We consider gameGame-iwhere the challenge oracle generates semi-functional
conversion keys for the first i ∈ [qC] queries and semi-functional conversion keys for the
remaining qC − i queries. Note that the mark oracle does not generate function indices.
It only embeds marks for queried indices. Let Advforge-Ni (resp. Advforge-Si ) denote the
advantage of the adversary in Game-(i) for outputting a normal (resp. semi-functional)
conversion key for a non-given or non-queried ID.

Lemma 2. If A outputs a semi-functional marked index in Game-(0), then we can
break the subspace assumption with k = 2 and n = 8.

Lemma 3. If there exists A, that distinguishes Game-(i− 1) from Game-(i), then we
can break the subspace assumption with k = 2 and n = 8.

Lemma 4. If A outputs a normal marked index in Game-(qC), then we can break the
subspace assumption with k = 1 and n = 8.

By Lemmas 2, 3, and 4, we can show the following:

AdvForgeA (λ) = Advforge-N0 + Advforge-S0 < (qC + 2)AdvdssB .

The theorem follows from the lemmas and Theorem 1. �
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