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Abstract. Preneel et al. (Crypto 1993) assessed 64 possible ways to
construct a compression functions out of a blockcipher. They conjectured
that 12 out of these 64 so-called PGV constructions achieve optimal se-
curity bounds for collision resistance and preimage resistance. This was
proven by Black et al. (Journal of Cryptology, 2010), if one assumes that
the blockcipher is ideal. This result, however, does not apply to “non-
ideal” blockciphers such as AES. To alleviate this problem, we revisit
the PGV constructions in light of the recently proposed idea of random-
oracle reducibility (Baecher and Fischlin, Crypto 2011). We say that the
blockcipher in one of the 12 secure PGV constructions reduces to the one
in another construction, if any secure instantiation of the cipher, ideal or
not, for one construction also makes the other secure. This notion allows
us to relate the underlying assumptions on blockciphers in different con-
structions, and show that the requirements on the blockcipher for one
case are not more demanding than those for the other. It turns out that
this approach divides the 12 secure constructions into two groups of equal
size, where within each group a blockcipher making one construction se-
cure also makes all others secure. Across the groups this is provably not
the case, showing that the sets of “good” blockciphers for each group
are qualitatively distinct. We also relate the ideal ciphers in the PGV
constructions with those in double-block-length hash functions such as
Tandem-DM, Abreast-DM, and Hirose-DM. Here, our results show that,
besides achieving better bounds, the double-block-length hash functions
rely on weaker assumptions on the blockciphers to achieve collision and
everywhere preimage resistance.

1 Introduction

The design of hash functions (or compression functions) from blockciphers has
been considered very early in modern cryptography. Preneel, Govaerts, and Van-
dewalle [27] initiated a systematic study of designing a compression function
F : {0, 1}n×{0, 1}n → {0, 1}n out of a blockcipher E : {0, 1}n×{0, 1}n → {0, 1}n
by analyzing all 64 possible ways to combine the relevant inputs and outputs
using xors only. Preneel et al. conjectured only 12 out of these 64 PGV construc-
tions to be secure, including the well-known constructions of Matyas–Meyer–
Oseas (MMO) and Davies–Meyer (DM). The idea continues to influence hash-
function design till today. Indeed, one of the former five final candidates in the
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SHA-3 competition, Skein [13], explicitly refers to this design methodology, and
other former candidates like Grøstl [15] are based on similar principles.

The conjecture about the 12 secure PGV variants was later shown to be true
in the ideal-cipher model (ICM) by Black et al. [9,10]. Roughly speaking, Black
et al. show that assuming E implements a random blockcipher, the 12 secure
PGV compression functions achieve optimal security of Θ(q2 · 2−n) for collision
resistance and Θ(q·2−n) for preimage resistance, where q is the number of queries
to the ideal cipher (and its inverse). Black et al. also discuss 8 further variants
which, if used in an iteration mode, attain optimal collision resistance and sub-
optimal preimage resistance of Θ(q2 · 2−n). The remaining 44 PGV versions are
insecure.

Idealized models. As pointed out by Black et al. [10], security proofs for the
PGV schemes in the ICM should be treated with care. Such results indicate that
in order to break the security of the PGV scheme one would need to take advan-
tage of structural properties of the blockcipher. Yet blockciphers such as AES,
or the Threefish blockcipher used in Skein, clearly display a structure which is
far from an ideal object. For instance, IDEA seems quite unsuitable to base a
compression function on [33], while for AES recent related-key attacks [7,8] cast
some shadow on its suitability for this purpose. Indeed, Khovratovich [20, Corol-
lary 2] states unambiguously that “AES-256 in the Davies–Meyer hashing mode
leads to an insecure hash function,” but remarks that it is not known how to
attack, for instance, double-block-length constructions. Moreover, it is currently
still unknown how to exploit these weaknesses in AES-256 to break the stan-
dard collision or preimage security of any AES-instantiated PGV compression
function. Consequently it may well be that AES makes some of the 12 PGV
constructions secure, whereas others turn out to be insecure, despite a proof
in the ICM. Unfortunately, it is very hard to make any security claims about
specific PGV constructions with respect to a “real” blockcipher, or to even de-
termine exactly the necessary requirements on the blockcipher for different PGV
constructions to be secure.

Recently, a similar issue for the random-oracle model, where a monolithic
idealized hash function is used, has been addressed by Baecher and Fischlin [4]
via the so-called random-oracle reducibility. The idea is to relate the idealized
hash functions in different (primarily public-key) schemes, allowing to conclude
that the requirements on the hash function in one scheme are weaker than those
in the other scheme. That is, Baecher and Fischlin consider two cryptographic
schemes A and B with related security games in the random-oracle model. They
define that the random oracle in scheme B reduces to the one in scheme A, if any
instantiation H of the random oracle, possibly through an efficient hash function
or again by an oracle-based solution, which makes scheme A secure, also makes
scheme B secure. As such, the requirements on the hash function for scheme
B are weaker than those for the one in scheme A. To be precise, Baecher and
Fischlin allow an efficient but deterministic and stateless transformation T H for
instantiating the random oracle in scheme B, to account for, say, different input
or output sizes of the hash functions in the schemes. Using such transformations
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they are able to relate the random oracles in some public-key encryption schemes,
including some ElGamal-type schemes.

Our results for the PGV constructions. We apply the idea of oracle
reducibility to the ideal-cipher model and the PGV constructions. Take any two
of the 12 PGV constructions, PGVi and PGVj , which are secure in the ICM. The
goal is to show that any blockcipher (ideal or not) which makes PGVi secure, also
makes PGVj secure. Here, security may refer to different games such as standard
notion for collision resistance, preimage resistance, or everywhere preimage re-
sistance [30]. Although we can ask the same question for indifferentiability from
random functions [25], the PGV constructions, as pointed out in [11,21], do not
achieve this level of security.1

Our first result divides the 12 secure PGV constructions into two groups G1
and G2 of size 6, where within each group the ideal cipher in each construction
reduces to the ideal cipher in any other construction (with respect to collision re-
sistance, [everywhere] preimage resistance, and preimage awareness). We some-
times call these the PGV1-group and the PGV2-group respectively: these two
schemes are representatives of their respective groups. Across different groups,
however, and for any of the security games, starting with the ideal cipher we
can derive a blockcipher which makes all schemes in one group secure, whereas
any scheme in the other group becomes insecure under this blockcipher. This
separates the PGV1-group and the PGV2-group in terms of direct ideal-cipher
reducibility. In direct reducibility we use the blockcipher in question without any
modifications in another construction. This was one of the reasons to investigate
different PGV constructions in the first place. For free reductions allowing arbi-
trary transformations T of the blockcipher, we show that the PGV constructions
can be seen as transformations of each other, and under suitable T all 12 PGV
constructions reduce to each other.

Preneel et al. [27] already discussed equivalence classes from an attack per-
spective. Our work reaffirms these classes and puts them on a solid theoretical
foundation. Dividing the 12 constructions into two groups allows us to say that,
within each group, one can use a blockcipher in a construction under the same
qualitative assumptions on the blockcipher as for schemes; only across the groups
this becomes invalid. In other words, the sets (or more formally, distributions)
of “good” blockciphers for the groups are not equal, albeit they clearly share the
ideal cipher as a common member making both groups simultaneously secure.
We note that our results are also quantitatively tight in the sense that the block-
ciphers within a group are proven to be tightly reducible to each other in terms
of the number of queries, running times, and success probabilities.

PGV and double-block-length hashing. Double-block-length (DBL) hash
or compression functions aim at surpassing the 2n/2 upper bound for collision
resistance of the PGV constructions by using two “PGV-like” constructions in
parallel, doubling the output length. There are three major such compression

1 This mainly motivates why we chose the oracle reducibility notion of [4] rather than
the indifferentiability reducibility notion in [25].
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functions, namely, Tandem-DM (TDM, [22]), Abreast-DM (ADM, [22]), and
Hirose’s construction (HDM, [19]). Several results underline the optimality of
collision-resistance [19,23,24] and preimage-resistance bounds [2] for these func-
tions in the ICM.

We next establish a connection between the basic PGV constructions and the
double-block-length compression functions. Since all the DBL constructions have
a “PGV1-part” (with twice the key size) built in, it follows that any collision for
any of the DBL functions immediately yields a collision for PGV1 built from a
blockcipher with 2n-bit key. In other words, the ideal cipher in the DBL con-
structions directly reduces to the one in double-key PGV1. We also prove that
there is a free reduction to single-key PGV1 from this double-key variant, thereby
relating DBL functions to PGV1 for free transformations. It follows, via a free
reduction to PGV1 and a free reduction from PGV1 to PGV2, that DBL functions
reduce to PGV2 for free transformations. An analogous result also applies to the
everywhere preimage-resistance game, but, somewhat curiously, we show such a
result cannot hold for the (standard) preimage-resistance game.

When it comes to free reducibility from PGV to DBL functions, we present
irreducibility results for the collision-resistance and [everywhere] preimage-resist-
ance games.We achieve this by making use of an interesting relationship to (lower
bounds for) hash combiners [17,16,26]. Namely, if one can turn a collision (or
preimage) for, say, PGV1 into one for a DBL compression function, then we can
think of PGV1, which has n-bit digests, as a sort of robust hash combiner for
the DBL function (which has 2n-bit outputs). However, known lower bounds for
hash combiners [26] tell us that such a combiner (with tight bounds and being
black-box) cannot exist, and this transfers to ideal-cipher reducibility. More in
detail, by combining Pietrzak’s techniques [26] with a lower bound on generic
collision finders by Bellare and Kohno [5] on compression functions, we confirm
the irreducibility result formally for the simple case of black-box reductions
making only a single call to the PGV collision-finder oracle (as also discussed
in [26]). We leave the analysis of the full case to the final version. In summary, not
only do the DBL functions provide stronger guarantees in terms of quantitative
security (as well as efficiency and output length), but they also provably rely on
qualitatively weaker assumptions on the blockcipher for the collision-resistance
and everywhere preimage-resistance games.

Finally, we demonstrate that for none of the aforementioned DBL construc-
tions the ideal cipher directly reduces to the one in either of the other schemes.
That is, starting with the ideal cipher, for each target DBL function we construct
a blockcipher which renders it insecure but preserves collision resistance for the
other two functions. We are not aware of an analogous result for free reductions,
but can exclude transformations which are involutions.

2 Preliminaries

Notation. We write x← y for assigning value y to variable x. We write x←$ X
for sampling x from (finite) set X uniformly at random. If A is a probabilistic
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algorithm we write y ←$ A(x1, . . . , xn) for the action of running A on inputs
x1, . . . , xn with coins chosen uniformly at random, and assigning the result to y.
We use “|” for string concatenation, denote the bit complement of x ∈ {0, 1}�
by x. We set [n] := {1, . . . , n}. We say ε(λ) is negligible if |ε(λ)| ∈ λ−ω(1).

Blockciphers. A blockcipher with key length k and block length n is a set of
permutations and their inverses on {0, 1}n indexed by a key in {0, 1}k. This set
can therefore be thought of as a pair of functions

E : {0, 1}k × {0, 1}n → {0, 1}n and E−1 : {0, 1}k × {0, 1}n → {0, 1}n .

We denote the set of all such blockciphers by Block(k, n). A blockcipher is effi-
cient if the above functions can be implemented by an efficient Turing machine.

Ideal and idealized (block)ciphers. An idealized (block)cipher with key
length k and block length n is a distribution E on Block(k, n). We often consider
an E-idealized model of computation where all parties are given oracle access to
a blockcipher chosen according to E . The ideal-cipher model is the E-idealized
model where E is the uniform distribution on Block(k, n). We denote the set
of all idealized ciphers with key length k and block length n (i.e., the set of
all distributions on Block(k, n)) by Ideal(k, n). Below, when saying that one has
oracle access to an idealized cipher E it is understood that a blockcipher is
sampled according to E and that one gets oracle access to this blockcipher.

Compression functions. A compression function is a function mapping {0, 1}l
to {0, 1}m where m < l. We are primarily interested in compression functions

which are built from a blockcipher. In this case we write FE,E−1

: {0, 1}l →
{0, 1}m. A compression function is often considered in an idealized model where
its oracles are sampled according to an idealized cipher E .

2.1 Security Notions for Compression Functions

We now recall a number of fundamental security properties associated with
blockcipher-based hashing.

Definition 1 (Everywhere preimage and collision resistance [30]). Let

FE,E−1

: {0, 1}l → {0, 1}m be a compression function with oracle access to a
blockcipher in Block(k, n). Let E denote an idealized cipher on Block(k, n). The
preimage- (resp., everywhere preimage-, resp., collision-) resistance advantage

of an adversary A in the E-idealized model against FE,E−1

are defined by

Advpre
F,E(A) := Pr

[
FE,E−1

(X ′) = Y :
(E,E−1)←$ E ;X ←$ {0, 1}l;
Y ← FE,E−1

(X);X ′ ←$ AE,E−1

(Y )

]
,

Advepre
F,E (A) := Pr

[
FE,E−1

(X) = Y : (E,E−1)←$ E ; (Y, st)←$ A1;X ←$ AE,E−1

2 (st)
]
,

Advcoll
F,E(A) := Pr

[
X0 �= X1 ∧ FE,E−1

(X0) = FE,E−1

(X1) :
(E,E−1)←$ E ;

(X0, X1)←$ AE,E−1

]
.
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For the set Sq of all adversaries which place at most q queries to their E or E−1

oracles in total we define

Advpre
F,E(q) := max

A∈Sq

{
Advpre

F,E(A)
}

,

and similarly for the everywhere preimage-resistance and collision-resistance
games. We note that although a compression function cannot be collision-resist-
ant nor everywhere preimage-resistance with respect to a fixed blockcipher, re-
ducibility arguments still apply [29].

Some of our results also hold for “more advanced” properties of hash or com-
pression functions like preimage awareness [12]. (The definition can be found in
the full version of the paper.) If so, we mention this briefly.

2.2 Reducibility

In order to define what it means for an idealized cipher to reduce to another, we
begin with a semantics for security games similar to that in [6]. We capture the
three security properties above by our notion, but can also extend the framework
to cover a larger class of security games, such as complex multi-stage games and
simulation-based notions. In the simpler case, we will consider a game between
a challenger or a game Game and a sequence A1,A2, . . . of admissible adver-
saries (e.g., those which run in polynomial time). When the game terminates
by outputting 1, this is deemed a success for the adversary (in that instance of
the game). To determine the overall success of the adversaries, we then measure
the success probability with respect to threshold t (e.g., 0 for computational
games, or 1

2 for decisional games). We present our formalism in the concrete set-
ting. However, our definitions can be easily extended to the asymptotic setting
by letting the game, its parameters, and adversaries to depend on a security
parameter.

Definition 2 (Secure E-idealized games). An E-idealized game consists of
an oracle Turing machine Game (also called the challenger) with access to an
idealized cipher E and n adversary oracles, a threshold t ∈ [0, 1], and a set S
of n-tuples of admissible adversaries. The game terminates by outputting a bit.
The advantage of adversaries A1, . . . ,An against Game is defined as

AdvGame
E (A1, . . . ,An) :=

∣∣∣∣Pr
[
GameE,E

−1,AE,E−1

1 ,...,AE,E−1

n = 1

]
− t

∣∣∣∣ ,

where the probability is taken over Game, A1, . . . ,An, and (E,E−1)←$ E. For
bounds ε ∈ [0, 1] and T,Q ∈ N we say Game is (Q, T, ε)-secure if

∀(A1, . . . ,An) ∈ S : AdvGame
E (A1, . . . ,An) ≤ ε

and Game together with any set of admissible adversaries runs in time at most
T and makes at most Q queries to the sample of the idealized cipher, including
those of the adversaries.
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For example, the above notion captures everywhere preimage resistance by hav-
ing A1 terminate by outputting (Y, st) with no access to the blockcipher, and

AE,E−1

2 (st) return someX ; the challenger then outputs 1 if and only if FE,E−1

(X) =
Y . Note that in particular, the construction F is usurped, together with the ev-
erywhere preimage experiment, in the general notation Game. We also note that
with the above syntax we can combine multiple games into one by having a “mas-
ter” adversary A first send a label to the challenger deciding which sub-game to
play and then invoking the corresponding parties and game. Note also that as
in [4] we assume that an idealized cipher can be given as an entirely ideal object,
as a non-ideal object through a full description of an efficient Turing machine
given as input to the parties, or a mixture thereof.

Ideal-cipher transformations. A transformation of ideal ciphers is a func-
tion T which maps a blockcipher from Block(k, n) to another blockcipher in
Block(k′, n′). Typically, we will only be interested in efficient transformations
i.e., those which can be implemented by efficient oracle Turing machines in the
E-idealized model, written T E. Note that the requirement of T being a func-
tion implies that, algorithmically, the oracle Turing machine is deterministic
and stateless. Below we envision the (single) transformation T to work in dif-
ferent modes Enc,Dec to provide the corresponding interfaces for a blockcipher
(E′,E′−1). Slightly abusing notation, we simply write T and T −1 for the corre-

sponding interfaces E′ and E′−1 (instead of T E,E−1

Enc for E′ and T E,E−1

Dec for E′−1).
The transformation is written as

E′(K,M) := T E,E−1

(K,M) and E′−1
(K,M) := T −1E,E

−1

(K,M) .

Any transformation T also induces a mapping from Ideal(k, n) to Ideal(k′, n′).
When E is sampled according to E , then T induces an idealized cipher E ′ ∈
Ideal(k′, n′) which we occasionally denote by T E .

Definition 3 (Ideal-cipher reducibility). Let Game1 and Game2 be two ide-
alized games relying on blockciphers in Block(k, n) and Block(k′, n′) respectively.
We say the idealized cipher in Game2 reduces to the idealized cipher in Game1,
if for any E1 ∈ Ideal(k, n) there is a deterministic, stateless, and efficient trans-
formation T : Block(k, n)→ Block(k′, n′) such that if

∀(A1,1, . . . ,A1,n1) ∈ S1 : AdvGame1
E1

(A1,1, . . . ,A1,n1) ≤ ε1 ,

whenever Game1 runs in time at most t1 and makes at most Q1 queries to the
block cipher sampled according to E1, then setting E2 := T E1 , we have that

∀(A2,1, . . . ,A2,n2) ∈ S2 : AdvGame2
E2

(A2,1, . . . ,A2,n2) ≤ ε2 ,

where Game runs in time at most t2 and makes at most Q2 queries to the block-
cipher sampled according to E2. In this case we say the reduction is (Q1/Q2, T,
t1/t2, ε1/ε2)-tight, where T is an upper bound on the number of queries that T
places to its oracle per invocation. When k = k′, n = n′, and T is the identity
transformation, we say the reduction is direct; else it is called free.
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Definitional choices. In this work, our focus is on reducibility among block-
cipher-based hash functions. In this setting, there are often no assumptions be-
yond the idealized cipher being chosen from a certain distribution. In this case,
the strict, strong, and weak reducibility notions as discussed in [4] all collapse
to the one given above. Of particular interest to us are two types of trans-
formations. First, free transformations which can be arbitrary, and second the
identity/dummy transformation which does not change the cipher. This latter
type of direct reducibility asks if any idealized cipher making one construction
secure makes the other secure too. The former type, however, apart from appro-
priately modifying the syntactical aspects of the blockcipher (such as the key
or the block size), asks if the model for which one primitive is secure can be
reduced to the model for which the other is secure.

3 Reducibility among the PGV Functions

We start by recalling the blockcipher-based constructions of hash functions by
Preneel et al. [27,10]. The PGV compression functions rely on a blockcipher
E : {0, 1}n × {0, 1}n → {0, 1}n, and map {0, 1}2n to {0, 1}n:

PGVE
i : {0, 1}2n → {0, 1}n for E : {0, 1}n × {0, 1}n → {0, 1}n .

There are 64 basic combinations to build such a compression function, of which
12 were first believed [27] (under category “�” or “FP”) and later actually
proven to be secure [10] (under category “group-1”). We denote these secure
compression functions by PGV1, . . . ,PGV12 and adopt the s-index of [10] (as
defined in Figure 2 there); they are depicted in Figure 1. The PGV1 and PGV5

functions can be instantiated with a blockcipher whose key length and message
length are not equal. The remaining function, however, do not natively support
this feature but they can be generalized such that they do [32].

1 4 5 8 9 12

2 3 6 7 10 11

Fig. 1. The 12 optimally secure PGV constructions PGVE
i for i ∈ [12]. A triangle

denotes the location of the key input. When used in an iteration mode, the top input
is a message block and the left input is the chaining value. The first (resp. second) row
corresponds to the PGV1-group (resp. PGV2-group).
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For i ∈ [12] and q ≥ 0, the security bounds for uniform E according to [9,32,10]
are

Advcoll
PGVi,E(q) ≤

q2

2n
, Advpre

PGVi,E(q) ≤
2q

2n
, and Advepre

PGVi,E(q) ≤
2q

2n
.

These bounds also hold when the key length and block length are not equal.
Furthermore, for uniform E , there exist adversaries A and B making q queries
to their E and E−1 oracles in total such that [10]2

Advcoll
PGVi,E(A) ≥

1

8e

q2 + 1

2n
, Advpre

PGVi,E(B) ≥
q + 1

2n+1
, and

Advepre
PGVi,E(B) ≥

q + 1

2n+1
.

As we will show in the two following theorems, when it comes to ideal-cipher
reducibility, the 12 secure PGV constructions can be further partitioned into
two subgroups as follows, which we call the PGV1-group and PGV2-group, re-
spectively.

G1 := {PGV1,PGV4,PGV5,PGV8,PGV9,PGV12}
G2 := {PGV2,PGV3,PGV6,PGV7,PGV10,PGV11}

The PGV1 and PGV2 functions will be representative of their respective groups.
The next proposition shows that, within a group, the compression functions

are ideal-cipher reducible to each other in a direct and tight way (i.e., with
the identity transformation and preserving the security bounds). It is worth
pointing out that Preneel et al. [27] already discussed equivalence classes from
an attack perspective. Present work reaffirms these classes and puts them on
a solid theoretical foundation. As noted before, we cannot hope that any PGV
compression function construction is indifferentiable from random (given access
to E and E−1), so we do not cover this property here; we can, however, include
the notion of preimage awareness [12] to the games which are preserved.

Proposition 1. Any two PGV constructions in G1 (resp., in G2) directly and
(1, 1, 1, 1)-tightly reduce the idealized cipher to each other for the [everywhere]
preimage-resistance, collision-resistance, and preimage-awareness games.

The proof of Proposition 1 appears in the full version of this paper.
Note that since we can combine the individual games into one, we can conclude

that any blockcipher making a scheme from one group secure for all games
simultaneously, would also make any other scheme in the group simultaneously
secure. Also, the above equivalence still holds for PGV1 and PGV5 in case they
work with a blockcipher with different key and message length.

The next theorem separates the two groups with respect to the collision-
resistance and [everywhere] preimage-resistance games.

2 The “plus one” terms are introduced in order to compactly capture the zero-query
lower bounds.
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Theorem 1. No PGV construction in G1 (resp., in G2) directly reduces to any
PGV construction in G2 (resp., in G1) for any of the collision-resistance and
[everywhere] preimage-resistance games.

For collision resistance and preimage resistance we assume the ideal cipher,
whereas for everywhere preimage resistance we only need the minimal prop-
erty that there exists some blockcipher making the schemes in one group secure,
in order to achieve the separation. Due to space constraints we present the proof
in the full version of this paper.

Proposition 2. Any two PGV constructions PGVi and PGVj for i, j ∈ [12]
(1, 1, 1, 1)-tightly reduce the idealized cipher to each other for the [everywhere]
preimage-resistance and collision-resistance games (under free transformations).

To prove this (which we do in the full version of this paper), we first show
that there is a transformation such that there is an inter-group reduction, i.e.,
PGV2 ∈ G2 reduces to PGV1 ∈ G1 and vice versa—indeed we will use the same
transformation for either direction. By transitivity we then obtain a reduction
for any two constructions through Proposition 1, where we view the identity
transformation as a special case of an arbitrary one.

4 Double-Block-Length Hashing and PGV

4.1 Reducibility from DBL to PGV

In this section we study the relation between three prominent double-block-
length hash function constructions in the literature, namely, Hirose-DM [18,19],
Abreast-DM [22,23], and Tandem-DM [22,24,14], and the PGV constructions.
All the DBL compression functions under consideration here map 3n-bit inputs
to 2n-bit outputs, and rely on a blockcipher with 2n-bit keys and n-bit block.
More precisely, these constructions are of the form

FE : {0, 1}3n → {0, 1}2n where E : {0, 1}2n × {0, 1}n → {0, 1}n .

E

E

A2

B2

B1A3

c

A1

(2.a) Hirose-DM

E

B1

B2

A1

A2

E

A3

(2.b) Abreast-DM

E

E

B1

B2

A1

A2

A3

(2.c) Tandem-DM

Fig. 2. The three double-block-length compression functions. The hollow circle in
Abreast-DM denotes bitwise complement.
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We denote the Hirose-DM for a constant c ∈ {0, 1}n\{0n}, the Abreast-DM, and
the Tandem-DM compression functions by HDMc, ADM, and TDM, respectively.
These functions are defined as follows (see Figure 2 for pictorial representations).

HDME
c (A1, A2, A3) := (E(A1|A2, A3)⊕A3,E(A1|A2, A3 ⊕ c)⊕A3 ⊕ c)

ADME(A1, A2, A3) :=
(
E(A2|A3, A1)⊕A1,E(A3|A1, A2)⊕A2

)

TDME(A1, A2, A3) := (E(A2|A3, A1)⊕A1,E(A3|E(A2|A3, A1), A2)⊕A2)

The next proposition shows that collisions (resp., somewhere preimages) in
HDMc directly lead to collisions (resp., somewhere preimages) for the double-key
versions of PGV1 and PGV5 functions.

Proposition 3. The idealized ciphers in HDMc, for any c ∈ {0, 1}n \ {0n},
ADM, and TDM compression functions directly and (1, 1, 1, 1)-tightly reduce to
those in the (double-key versions of the) PGV1 and PGV5 functions for the ev-
erywhere preimage-resistance and collision-resistance games.

The proof of the proposition appears in the full version of this paper. Note that
despite the tightness of the reduction, a blockcipher that makes the schemes
PGV1 and PGV5 ideally secure is not guaranteed to make the double-block-
length compression functions secure beyond the implied single-length security
bound.

Curiously, the above argument fails for the preimage-resistance game as we
cannot extend a challenge value for PGV1 to a full challenge value for a DBL
construction. The proof of the following proposition appears in the full version.

Proposition 4. The idealized cipher in none of the DBL constructions directly
reduces to the idealized cipher in PGV1 (and hence neither to the one in PGV5)
for the (standard) preimage-resistance game.

Direct ideal-cipher reducibility to the other PGV constructions is not syntacti-
cally possible as only the PGV1 and PGV5 constructions can be natively instan-
tiated with a double-block-length blockcipher.3 Note that the above proposition
leaves open the (im)possibility of free reductions from DBL to PGV, which we
leave to future work.

We next show that under free transformations a double-block-length instan-
tiation of PGV1 reduces to a single-block-length instantiation of PGV1. By the
transitivity of reductions we obtain reducibility of the idealized cipher in the
DBL constructions to that in any of the PGV constructions.

Proposition 5. The idealized cipher in PGV1 instantiated with an idealized ci-
pher in Ideal(2n, n) (2, 2, 1, 1)-tightly reduces to the one in PGV1 when instanti-
ated with an idealized cipher in Ideal(n, n) for the everywhere preimage-resistance
and collision-resistance games.

3 There exist modifications of the PGV constructions which can be instantiated with
DBL blockciphers [32]. We leave their treatment to future work.
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For space reasons, we defer the proof to the full version of this paper.

Remark. Although Merkle–Damg̊ard chaining does not in general preserve the
preimage resistance of the underlying compression function, there exist more
sophisticated chaining rules, such as ROX [1], which do so. If such chaining
rules are used to compress the keys in the proposition above, we also obtain
reducibility for the preimage-resistance game.

4.2 Separations among the DBL Compression Functions

We now investigate direct reducibility among the DBL compression functions,
as well as PGV1 and DBL functions. We focus on collision resistance, but similar
techniques (for separations) may be applicable to the other security games. For
this game, there are twelve relations to be considered, three of which have already
been settled by Proposition 3. We study the remaining relations by providing
separations among all the possible pairs. In doing so, we give blockciphers E
such that one of the DBL constructions (and hence by Proposition 3 the PGV1

function, too) admits a trivial collision, whereas the other two constructions are
simultaneously secure.

We start with the HDMc compression function where c 	= 0n. Let E be a
blockcipher. Define a modified blockcipher Ẽ as follows.

Mc := E−1(0n|0n,E(0n|0n, 0n)⊕ c) , C0 := E(0n|0n, 0n) , Cc := E(0n|0n, c) .

Ẽ(K1|K2,M) :=

⎧
⎪⎨
⎪⎩

C0 ⊕ c if (K1|K2,M) = (0n|0n, c) ;
Cc if (K1|K2,M) = (0n|0n,Mc) ;

E(K1|K2,M) otherwise.

Ẽ−1(K1|K2, C) :=

⎧
⎪⎨
⎪⎩

c if (K1|K2, C) = (0n|0n, C0 ⊕ c) ;

Mc if (K1|K2, C) = (0n|0n, Cc) ;

E−1(K1|K2, C) otherwise.

Note that Ẽ and Ẽ−1 above define a blockcipher and we have c 	= 0n. Hence,

HDMẼ
c (0

n, 0n, 0n) = (Ẽ(0n|0n, 0n)⊕ 0n, Ẽ(0n|0n, c)⊕ c) = (C0, C0) ,

HDMẼ
c (0

n, 0n, c) = (Ẽ(0n|0n, c)⊕ c, Ẽ(0n|0n, 0n)⊕ 0n) = (C0, C0) .

and the pair ((0n, 0n, 0n), (0n, 0n, c)) thus constitutes a non-trivial collision for

HDMẼ
c . However, the next lemma shows that ADM and TDM remain collision-

resistant for this cipher. The proof appears in the full version of this paper.

Lemma 1. Let Ẽ be a blockcipher as above with a distribution according to

(E,E−1)←$ Block(2n, n). Then ADMẼ and TDMẼ are both collision-resistant.

Due to space constraints we also provide the remaining separating examples in
the full version of this paper.
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Theorem 2. Let c ∈ {0, 1}n \ {0n}. Then among the compression functions
HDMc, ADM, and TDM neither one directly reduces the idealized cipher in either
one of the other two functions for the collision-resistance game.

As a corollary of the above results we get that there is no direct reduction from
PGV to any of the DBL compression functions: otherwise we also obtain direct
reducibility to any other DBL compression function via Theorem 3, which we
have shown to be impossible in the above theorem. In the next section we will
extend this irreducibility result to free reductions.

4.3 Irreducibility of PGV to DBL

We now turn our attention to the converse of Propositions 3 and 5: can one
convert any idealized cipher which makes a DBL construction secure to one
which makes a PGV construction secure? We show strong evidence towards the
impossibility of such a reduction. To this end, we restrict the class of reductions
under the construction to black-box ones [28]. Such a reduction is a pair of oracle
Turing machines (T ,R). Both machines have access to a blockcipher, T is a
transformation which implements an idealized cipher, andR is a reduction which
given oracle access to an algorithm B breaking the security of a PGV construction
when instantiated with T E, breaks the security of a DBL construction with
respect to E (for random E). As it will become apparent from the proof of
the theorem, the type of reductions that we actually rule out allow both the
transformation and the reduction to depend on the blockcipher and hence, in
the terminology of [28], the class of reductions that we rule out lies somewhere in
between fully black-box and ∀∃semi-black-box reductions. More concisely, this
class is captured as an NBN reduction in the CAP taxonomy of [3], meaning
that the Construction may make non-black-box use of primitive, and that the
reduction makes black-box use of the Adversary resp. non-black-box use of the
Primitive.

We make two further simplifications on the structure of the reduction. First
we assume that R queries its break oracle B once. We call this a single-query
reduction. Second, we require the reduction to succeed with a constant probabil-
ity whenever B is successful. Now, the intuition behind the impossibility of the
existence of such a reduction follows that for lower bounds on the output size of
hash combiners [26]. The underlying idea is that the collision-resistance security
of any of the DBL constructions is beyond that of the PGV constructions. More
precisely, around Θ(2n) queries are needed to break the collision resistance of
any of the DBL constructions with noticeable probability, whereas this bound is
only Θ(2n/2) for the PGV constructions. To derive a contradiction, we may sim-
ulate the break algorithm B for the reduction with only Θ(2n/2) queries, and the
reduction will translate this collision efficiently to a DBL construction collision,
which contradicts the Θ(2n) collision-resistance bound.

We are now ready to state our irreducibility theorem. Since we are dealing
with an impossibility result, for the sake of clarity of the presentation we present
the theorem in asymptotic language. The proof appears in the full version.
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Theorem 3. There is no single-query fully black-box ideal-cipher reduction from
any of the PGV constructions to any of the DBL constructions for the collision-
resistance and [everywhere] preimage-resistance games as long as the reduction
is tight: when the number of queries, run times, and success probabilities are
parameterized by a security parameter, the reduction is (O(1),O(1),O(1),O(1))-
tight.

It is conceivable that the techniques of [26] can be leveraged to derive a more
general theorem which rules out reductions that call the break oracle multiple
times. Furthermore, one might also be able to extended the result to arbitrary
games for two given constructions, as long as a lower bound on the success
probability of an attack on the security of the first construction is noticeably
higher than an upper bound on the security of the second.

5 Summary and Future Work

We summarize our reducibility results in Figure 3 and refer to the caption for
details. One important observation from these results is that we do not have
one single “Y” column, i.e., a compression function which reduces to all of the
other ones—or, equivalently, a compression function which is secure if any of the
others is secure. This would be a clear winner in the sense that it is the safest
choice for practice.

For the “n” entries of Table 3.b we can show that there is a separation for a
large class of potential transformation functions. More specifically, we show that
there is no surjective transformation T to reduce, say, ADM to HDM1n , as long as
the transformation also preserves HDM-security “backwards.” Here, surjectivity
means that T E varies over all possible blockciphers if E runs through all block-
ciphers, and backward security preservation means that E is secure for HDM if
T E is. Transformations which are covered by this include, for example, those of
the form T E

π1,π2
(K1|K2,M) = π2(E(K1|K2, π1(M))) for fixed involutions π1, π2

over {0, 1}n, or more generally, any transformation which is an involution (over
Block(2n, n)).4 The argument is as follows. Assume that there exists such a T .
Then for any blockcipher E which makes HDM secure, the blockcipher T E makes
ADM secure. However, we also know that there is a blockcipher E� such that E�

gives rise to a collision-resistant HDME�

1n but renders ADME�

collision-tractable
(see the full version of this paper). Now define E to be any blockcipher in the
preimage of E� under T (such an E exists as T is surjective). The transforma-
tion now maps E to E�, which means that it fails to provide security for ADM.
Furthermore, E makes HDME

1n collision-resistant by assumption about backward
security. This, however, contradicts the requirement of reducibility from ADM
to HDM, because E makes HDM secure but T E is insecure for ADM.

4 An example of a surjective transformation which is not backward-secure for PGV1

is T E(K,M) = E(K,M)⊕K, because it maps PGV1 for T E to PGV2 for E, and we
know that there are idealized ciphers making PGV2 secure but PGV1 insecure.
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(3.a) Results for the identity transfor-
mation.
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Y
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Y
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Y
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Y
�
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�
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�

TDM N
3
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3

Y n
2
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2
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3

N
3
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2

Y n
2

ADM N
3

N
3

n
2

n
2

Y

(3.b) Results for arbitrary transforma-
tions.

Fig. 3. Summary of our reducibility results for collision resistance. A “Y” or “N” in
a cell means that any cipher which makes the compression function corresponding to
the row collision-resistant also makes the compression function corresponding to the
column collision-resistant. A “–” in direct reductions indicates a syntax mismatch.
The number below an entry indicates the theorem/proposition supporting the claim.
An arrow “→” means that the result is implied by the left table. Reductions on the
diagonal of TDM, HDMc, and ADM trivially follow by self-reductions. Note that for
arbitrary transformations each cell might be using different transformations. The star
symbol “�” denotes reducibility by transitivity. An “n” is a separation for a restricted
class of transformations; see Section 5.

Open problems. Recall that we showed that one can transform a good blockci-
pher E (or rather distribution E) for the PGV1-group into a good one T E for the
PGV2-group. We also presented a transformation in the opposite direction. Ide-
ally, though, one would be interested in a single transformation T which, given E
making a PGV construction secure, turns it into T E which simultaneously makes
both the PGV1-group and the PGV2-group secure. Such a transformation would
be of interest because incorporating it into the compression function would result
in a construction that relies on a weaker assumption than either just PGV1 or
PGV2. Consequently, it would provide a handle to strengthen existing schemes
(in a provable way). Note that such a result would not contradict the separation
of direct reducibility between the PGV1-group and the PGV2-group, because si-
multaneous security looks for a (transformed) cipher in the intersection of good
(distributions over) blockciphers for both groups. This intersection is clearly non-
empty because it contains the ideal cipher; the question to address here is how
hard it is to hit a distribution when starting with the minimal security assump-
tion that (a potentially non-ideal) E is good for at least one PGV construction.
We remark our technique of separating the DBL constructions from PGV1 does
not seem to apply here, as the simultaneous security bound for PGV1 and PGV2

is Θ(q2/2n). However, surjective, backward-secure transformations are still ruled
out according to the same argument as in the HDM vs. ADM case.

Another direction of research left open here is the existence of reductions
among two compression functions for different games. For example, one might
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ask whether the collision resistance of one construction for a blockcipher gives
preimage resistance in another (or perhaps the same) construction with the same
cipher. In particular, using Simon’s result [31] one might be able to demonstrate
the impossibility of reducing collision resistance to preimage resistance for any
of the PGV constructions.

Finally, let us emphasize that all results in this work apply directly to com-
pression functions. Needless to say, in practice compression functions are iterated
in order to hash arbitrary lengths of data. This could extend the set of E that
provide security, potentially changing the scope for transformations between con-
structions. We leave the question of the existence of reductions among iterated
hash functions as an interesting open problem.
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