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Abstract. Many index calculus algorithms generate multiplicative rela-
tions between smoothness basis elements by using a process called Siev-
ing. This process allows us to quickly filter potential candidate relations,
without spending too much time to consider bad candidates. However,
from an asymptotic point of view, there is not much difference between
sieving and straightforward testing of candidates. The reason is that even
when sieving, some small amount of time is spent for each bad candidate.
Thus, asymptotically, the total number of candidates contributes to the
complexity.

In this paper, we introduce a new technique: Pinpointing, which al-
lows us to construct multiplicative relations much faster, thus reducing
the asymptotic complexity of relations’ construction. Unfortunately, we
only know how to implement this technique for finite fields which con-
tain a medium-sized subfield. When applicable, this method improves
the asymptotic complexity of the index calculus algorithm in the cases
where the sieving phase dominates. In practice, it gives a very inter-
esting boost to the performance of state-of-the-art algorithms. We illus-
trate the feasability of the method with discrete logarithm records in two
medium prime finite fields, the first of size 1175 bits and the second of
size 1425 bits.

1 Introduction

Index calculus algorithms form a large class of algorithms for solving hard num-
ber theoretic problems which are often used as a basis for public key cryp-
tosystems. They can be used for factoring large integers [19] and for computing
discrete logarithms in finite fields [2[TTJI] and in some elliptic or hyperelliptic
curve groups [7I9GITOIR].

All index calculus algorithms have in common two main algorithmic phases.
The first of these phases is the generation of multiplicativ relations, which are
converted into linear or affine equalities involving the logarithms of the elements

! In the case of curves, the relation are denoted additively, but the principle remains.
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which appear in the multiplicative relations. The second phase is the linear
algebra phase, which solves the resulting system of equations. For factoring,
the linear algebra is performed modulo 2. For discrete logarithms, it is done
modulo the order of the relevant group. In addition to these two common phases,
several other phases also appear: these extra phases heavily depend on the exact
algorithm being considered. They can be further classified as preparatory or
final phases. The preparatory phases search for a good representation of the
structure being considered in order to speed-up the main phases. For example,
polynomial selection is a typical preparatory phase which appears when factoring
with the number field sieve [20]. The final phases transform the raw output of
the linear algebra phase into a solution of the considered problem. Typically,
this includes the so-called square root phase of factoring algorithms and the
individual logarithm phase encountered in many discrete logarithm algorithms.
It should be noted that the computational cost of these prepatory and final
phases is usually much smaller than the cost of the main phases.

In most cases, the designers of index calculus algorithms aim at balancing the
theoretical complexity of the two main phases, since this usually yields the best
global effectiveness. However, this is not always possible as illustrated by the
function field sieve for the medium prime case introduced in [I§]. In this specific
case, the exact asymptotic complexity varies depending on the relative contri-
bution of the base field and of the extension degree to the total size of the finite
field being considered (see Section B]). In practice, the two main phases are usu-
ally much less balanced. This is due to the fact that the generation of relations
phase can, in general, be distributed among machines in a straightforward way.
On the contrary, the linear algebra requires a tightly coordinated computation
and is generally performed on a centralized super-computer (or sometimes on
a few super-computers). Since centralized computations that require tight com-
munications are more expensive than distributed computations, implementers
usually generate an extremely large number of linear equations compared to the
number of unknowns. We can various techniques such as filtering, rebalancing or
structured Gaussian elimination, in order to reduce the size of the linear system
which is eventually solved and thus the cost of the linear algebra phase. This
may increase the total computing power used for the computation, but trad-
ing expensive centralized computations for cheaper distributed computations is
usually worthwhile.

As a consequence of these considerations, we see that the generation of re-
lations is a very important phase of index calculus algorithms. Up to now, two
main techniques are usually used. The simplest approach is direct trial where
one simply checks whether a potential candidate turns into an effective relation
by testing whether an integer or a polynomial splits into a product of “small”
elements. In theory, the parameters of index calculus are selected to make sure
that the cost of testing a candidate has a negligible contribution to the over-
all complexity. However, in practice, factoring these objects has a non-neglibible
cost. Thus, the other approach called sieving is usually prefered. The basic idea of
sieving is to proceed backward and mark all multiples of small elements. Clearly,
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an object which receives many marks is much more likely to generate a useful
multiplicative relation that an object which receives few marks. Note that, from
a theoretic point of view, sieving does not change the complexity of the sieving
phase. Indeed, all the potential candidates still need to be considered and even
reducing the cost of considering a candidate to a unit cost would not be enough
to lower the overall asymptotic complexity.

In this paper, we introduce a new technique to generate relations which is
much faster that sieving. In some cases, the cost of relation generation becomes
essentially optimal: we only require a small number of arithmetic operations per
generated relation. To indicate that this technique sometimes allows to directly
access the relations, we name it Pinpointing. Unfortunately, we only know how
to achieve this for a limited number of index calculus algorithms. More precisely,
we show how to use pinpointing for the medium prime case as described in [18].

2 A Refresher on the Medium Prime Case

The medium prime discrete logarithms proposed in [I8] works as follows. In
order to compute discrete logarithms in Fgn, a degree n extension of the base
field Fy, it starts by defining the extension field implicitly from two bivariate
polynomials in X and Y:

HXY)=X=-q(Y), f(X,)Y)=-g(X)+Y,

where g1 and go are univariate polynomials of degree d; and ds. In order to
define the expected extension, this requires that the polynomial —g2(g1(Y))+Y
has an irreducible factor F(Y) of degree n over F,. As explained in [18], it is
easy to find polynomials g; and go that satisfy this requirement.

The relative degrees of d; and do in this case are controlled by an extra
parameter D, whose choice is determined by the size of ¢ compared to ¢". More
precisely, we have di ~ v/ Dn and dy ~ \/n/D

Starting from this definition of the finite field, the medium prime field algo-
rithms consider objects of the form A(Y) X+B(Y), where A and B are univariate
polynomials of degree D and A is unitary. Substituting g1 (Y") for X on one side
and g2(X) for Y on the other, we obtain an equation:

AY) g1 (Y) +B(Y) = A(g2(X)) X + B(g2(X)).
This relates a polynomial of degree d; + D in Y and a polynomial of degree
Dds +1in X.

To use the equations as index calculus relations, the algorithm of [I8] selects
the set of all unitary polynomials of degree at most D in X or Y, with coefficients
in F, as its smoothness basis and keeps pairs of polynomials (a,b) such that the
two polynomials a(Y) g1(Y) + b(Y) and a(g2(X)) X + b(g2(X)) both factor into
terms of degree at most D. These good pairs are found using a classical sieving
approach.

Writing @ = ¢", to analyze the complexity of the medium prime discrete
logarithms, [I8] chooses to write ¢ = Lq( 3, « D), where as usual:

Lo(B.¢) = exp((c + o(1))(log Q) (log log Q) 7).
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In this setting, the (heuristic) asymptotic complexity of the sieving phase is
Lq(3,c1) and the complexity of the linear algebra is Lg (3, c2), with:

2
c1 = 4+ aD and ¢ = 2aD.
' 3vaD ?
Note that the algorithm with parameter D only works under the condition:
2
D+1)a> . 1
( ) 3vaD @

Otherwise, the number of expected relations is too small to relate all elements of
the smoothness basis. For a finite field Fy», [I8] indicates that the best complexity
is obtained choosing the smallest acceptable value for the parameter D.

2.1 Individual Discrete Logarithms Phase

Another very important phase that appears in many index calculus based algo-
rithms is the individual discrete logarithms phase which allows to compute the
logarithm of an arbitrary field element by finding a multiplicative relation which
relates this element to the elements of the smoothness basis whose logarithms
have already been computed.

In [I8], this is done by first expressing the desired element as a product of
elements which can be represented as low degree polynomials in X or Y. These
polynomials can in turn be related to polynomials of a lower degree and so on,
until hitting degree one, i.e. elements of the smoothness basis. For this reason,
the individual logarithm phase is also called the descent phase.

As analyzed in [18], the asymptotic complexity of the descent phase is

1 1
L ) )
© (3 3u\/ozD)
where © < 1 is an arbitrary parameter. Moreover, any choice of p in the in-

terval ] é; 1[ ensures that the complexity of the descent phase is asymptotically
negligible compared to (at least one of) the main phases.

3 Pinpointing
3.1 Basic Framework

In order to improve the generation of relations, we first consider the simple case
with parameter D = 1 and we construct our finite field extension using two
polynomials that have the following restricted form:

X =YY" and
Y = gQ(X)a
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where g is a polynomial of degree ds. To generate relations, since D = 1, we
consider the space spanned by XY, X, Y and 1, i.e., after renormalization we
are thus considering the following candidates:

YU oY h 4 bY +e= X go(X)+aX +bga(X) +c,

where a, b and c are arbitrary coefficients in F,. A candidate yields a valid
multiplicative relation when both sides factor into linear polynomials.

We now use a simple trick and remark that the left-hand side Y141 4 gY %
bY + c splits into linear terms, if and only if, U+ +U% +ba=h U 4+ ca=h 1
factors into linear terms. Indeed, the polynomial in U can be obtained from the
polynomial in Y by performing the change of variable Y = aU and dividing by
a® 1. As stated in the following theorem, this change does not affect the way
the polynomial factors.

Theorem 1. Let f(Y) be a monic polynomial of degree D over F, and let
g(U) = a=Pf(aU) with a € F,. Write the factorization of f into monic ir-
reducible polynomials as f(Y) = Hle F;(Y)e, then the factorization of g into
monic irreducible factors is given by:

E?r

*degF‘F aU))

z=1

Proof. Tt suffices to show that the image of an irreducible polynomial I(Y) by
the change of variable is also irreducible. Write J(U) = a~ ¢! [(al), if J is not
irreducible, we have a non-trivial factorization J(U) = J1(U)J2(U). Reversing
the change of variable, we find that:

I(Y) = a1 J(Y/a) = a®& ' J,(Y/a)J2(Y/a).

Since I is irreducible, this would be a contradiction.
Thus J is irreducible and the theorem follows. a

3.2 One-Sided Pinpointing

Using the change of variable trick, we obtain a first form of pinpointing which
only focuses on the Y side. This form searches for smooth polynomials in U of
the form UM+ + U% + BU + C, with B and C in F,. This can be done either
by directly testing candidates or by sieving. We need to consider approximately
(d1 + 1)! candidates to find a good polynomial.

Once we have obtained one such smooth polynomial, we can amplify it (using
a change of variable U = Y/a) into many polynomials Y#+! 4+ aY% 4+ bY + ¢,
where a is an arbitrary non-zero element in F,, b = Ba® and ¢ = Ca%*1. This
amortizes the cost of finding the initial polynomial, distributing this cost among
many candidates. Indeed, we expect to obtain approximately (¢ — 1)/(dz + 1)!
relations by testing the right-hand sides corresponding to ¢ — 1 different values
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of a. Adding to this the cost of finding the initial smooth polynomial, we find
an amortized cost per relation close to:

(di+ 1)+ (g—1)  (di+1)!(do+1)!
(¢ —1)/(d2+1)! qg—1
This is clearly better than the cost of classical sieving which, in this case, amounts

to (da + 1)!(dy + 1)! operations per relation. More precisely, this improves the
cost of the relation by a factor of, at least, min(q — 1, (d1 + 1)!)/2.

+ (dg + 1)!

3.3 Kummer Extensions, Frobenius and Advanced Pinpointing

With some specific extension fields, it is possible to achieve an even better im-
provement over sieving, using a two-side approach to pinpointing. Moreover, this
can be done while taking into account the action of Frobenius which allows us
to reduce the size of the linear system.

We illustrate this using Kummer extensions of degree n = dyds — 1. We recall
that a Kummer extension of degree n is defined over a finite field F; which
contains n-th roots of unity by a polynomial P(X) = X™ — k, where & has no
root of prime order m|n in Fy. Let 1 denote a primitive n-th root of unity in F,
and x denote an n-th root of x in Fg», then we have:

I:IX ,ux
i=0

As a consequence, there exists an ig, prime to n such that 9 = p’x. By changing
our choice of primitive root u, we can ensure that ig = 1. Thus, throughout the
sequel, we have z¢ = p x.

Such a Kummer extension can be obtained in our framework by defining:

X=Y"/k and (2)
Y =X%
Substituting one equation in the other, we find X %9 — x X = 0. Thus dividing
by X we obtain the desired Kummer extension If  denotes as above the image
of X in Fyn, the image of Y is y = 22. Once again, since we are considering
D =1, our smoothness basis contains all the linear polynomials z 4+ a and y + a
with a in F,.
The Frobenius acts on the smoothness basis as follows:
(z+a)!=24+a=px+a=plz+a/pn) and
(y+a)! =y'+a=p"y+a=p"(y+a/uh).

As a consequence, in the quotient group I}, /Fy, we have:

log(z + a/u) = qlog(x + a) and
log(y +a/pu™) = qlog(y + a).
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These relations allow us to divide the number of unknowns in the linear system
that we need to solve by a factor essentially equal to n. Indeed, all elements in the
factor base except x and y have precisely n conjuguates (including themselves).
Moreover, since (9~ = 1 and y™(@~1) = 1, the logarithms of  and y are equal
to 0 modulo any large prime dividing the order of the quotient group.

Advanced Pinpointing: Generating Equations in Kummer Extensions.
As in the one-sided case, we consider the space of candidates generated by XY,
X, Y and 1. Due to our specific choices, the renormalized candidates can be
rewritten in a slightly simpler form:

XY +aY +0X +c=
Xt 4 gxd 4 pX +e=YIH k4 bY M /K +aY +e.

We now remark that the polynomial on the X side splits, if and only if, U%+1! +
U +ba=% U + ca=%~" splits. Moreover, the polynomial on the Y side splits,
if and only if, VUH /k + V& [k + ab= 4 V + cb~h~1 gplits.

Let A = ¢/(ab), then the polynomials in U and V' can respectively be rewrit-
ten as:

pdatl 4 de 4 pg—d2 (U+ ) and (Vd1+1 —&—le)//@—l—ab_dl(V—&-)\).

Conversely, choose a triple (A4, B, \), with A # 0 and B # 0 and AB% an n-th
power in F, such that:

ULt LU L AU+ ) and (VAP 4 V) /g 4+ BV + A)

both split. Then, we can recover a unique (up to Frobenius action) triple (a, b, ¢)
corresponding to a candidate that yields an equation in the finite field. We first
recover a and b. Putting together the two equations A = ba~% and B = ab~ %,
we find b" = bh192~1 = 1/(AB%). Since, by hypothesis, AB? is an n-th power
this equation has n distinct solutions. Choose one arbitrary solution for b, then
we necessarily have a = Bb% and ¢ = Aab. We thus obtain a valid candidate
(a,b,c). To show the unicity up to Frobenius action, we start from another
solution z°b and obtain the triple (u®?, u’b, u(¥1+1ic). Now, let the Frobenius
act j times on:
Xt 4 gX%2 4 bX + ¢

and renormalize to obtain:
Xd2+1 + alu*jd2Xd2 + bM*jd1d2X + Cﬂfjd1(d2+1).

Since dids = 1 (mod n), we see that for j = —¢ (mod n), the action of Frobenius
yields that same equation as the new choice for b.

Note. Once M is fixed, finding the triples (A, B, A) which satisfy the property
that AB? is an n-th power is a simple matter. Indeed, it suffices to partition
the list of possible values for A and B in n sublists depending on the discrete
logarithms of A (resp. B) modulo n. Since n is small, these values are easily
computed by comparing A"~/ (resp. B(qnfl)/”) with the possible n-th root
of unity in Fg.
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The did2+1 Variant. For a Kummer extension of degree n with n = d1da+1,
we can proceed in a very similar way defining the finite field by the relations:

X =kr/Y" and
Y = X%,

where x again denotes a non n-th power. It is easy to adapt the action of Frobe-
nius and the generation of equations to deal with this variant. See Section
for an example.

Further Generalization. We can also remark that the advanced form of pinpoint-
ing can also be used for some extension fields which are not Kummer extension.
Indeed, when dids & 1 does not divide the order of F,, choosing X = Y% /x
(resp. X = k/Y%) and Y = X% cannot define an extension of degree dyds + 1
because the polynomial X%92 — kX has two roots in F,. However, it can yield
a extension of lower degree, depending on the factorization of the polynomial
Xdad2El _ iy F,. The main drawback compared to the case of Kummer exten-
sions is that we can no longer use the action of Frobenius to reduce the size of
the smoothness basis.

Cost Considerations. For each value of A, creating the list of A-values costs
O(gq) operations and the list contains about (¢ — 1)/(d2 + 1)! elements. Sim-
ilarly, the list of B-values costs O(q) operations and contains approximately
(g —1)/(d1 + 1)! elements. For a fixed A, the total number of (A, B) pairs that
yields a good triple (A, B, A) is approximately:

(¢—1)?
n(dy + 1)(dy + 1)1

As a consequence, the average cost of constructing one relation is:

n(dy +1)(d2 + 1)!
”O( (a-1) )

If we remember that the factor n in the second term is compensated by the
fact that we only need ¢/n relations instead of g, we see that the other term is
reduced from (d; + 1)! to 1. As a consequence, the gain compared to sieving is
at least (¢ — 1)/2.

An interesting side-effect of this advanced pinpointing is that once the list
of A and B values have been stored, the equations can be regenerated for a
constant cost. This is interesting, because these lists are smaller than the list
of equations. As a consequence, rather than storing the equations, it becomes
preferable to recompute them on the fly whenever they are needed, thus saving
disk space (and disk access time).

3)
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3.4 Complexity of Relation Construction Using Pinpointing

We first recall that the cost of sieving from [I§]:

I 1 +2
@\g @ 3Va )’

Moreover it is only applicable for oo > 3~ ;.

Using One-Sided Pinpointing. As in [18], we now consider the complexity
of computing discrete logarithms in a field Fg, with @ = ¢", assuming that the

parameter « defined as:
2
oo 1 log@Q \?3
~ n \loglog@

is fixed. In this setting, we have q = LQ(é,a). Since the smoothness basis has
size 2q, the cost of the linear algebra is the same as in [18§], i.e., it is LQ(;’,CQ)
with ¢o = 2a.

However, the complexity of collecting the relations is reduced compared to
sieving. Indeed, the cost of collecting approximately 2¢q relations becomes:

2(dy + 1)!(qg + (d2 + 1)1).

Using the usual choice for d; and ds, this can be written as:

a(aagn 7 (2 a0n))

Note that this can be further improved by choosing the degrees d; and ds as
follows:

1 log(Q) 5 N log(Q) 3
i~ 3a? <log log(Q)> and - dy ~ 3a <10g10g(Q)> '

For a > 3*5, this reduces the complexity to
1 1
L
@ (3’0‘ + 9a2)

Using Advanced Pinpointing. To determine the asymptotic complexity of
the advanced pinpointing method, we can ignore the action of Frobenius. Indeed,
despite offering a very useful practical improvement, it does not provide an
asympotic gain. The cost of collecting enough relations in this case is:

2(q + (di + 1)I(d2 + 1)1).

-1 log(Q) e
hrdrao <1og10g(Q)>

We choose:
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As a consequence, the cost of building the relations becomes:

g (omax (o, ).

Direct Access to Relations. When o > 3\2/a, i.e. a > (2/3)3, the cost of building
relations becomes equal to the number of relations. In other words, the right
summand in equation (@) becomes negligible and each relation can be built in
constant time. In this context, the pinpointing technique gives direct access to
multiplicative relations. It is weird to note that, in this best case for pinpointing,

there is no improvement on the full complexity, as shown in the next paragraph.

Impact on the Full Discrete Logarithm Complexity. In order to define the
asymptotic complexity of the discrete logarithm computation for the algorithm
with parameter D = 1, we also need to take into account the complexity of
the linear algebra LQ(é,Qa). For a > 373, this cost is higher than the cost of
pinpointing in either version. As a consequence, in this range, the full complexity
of discrete logarithm computation becomes L (3, 2a). When « is in the interval
[375;(2/3)3], this is better than the algorithm of [I8] whose cost is dominated
by sieving. In particular, for @ = 3*3, the cost is reduced from LQ(:lsv?’%) R
Lo(},1.44) to Lo(L,(2/3)%) ~ Lo(1,0.96).

4 Generalization to D > 1

The one-sided pinpointing technique presented above can be generalized to the
case where D > 1 in a straightforward way. More precisely, it suffices to remark

that a polynomial:
d—1

X944 Z a; X",
i=0
can be decomposed into a product of polynomials of degree at most D, if and
only if, the polynomial:

d—2
Ul +Uh 4+ Zai ag:iUi
i=0

can be decomposed into a product of polynomials of degree at most D.
As a consequence, we can essentially save a factor ¢ — 1 compared to a sieving
approach if we use a pinpointing approach in this general case.

Resulting Complexity. As in [I8], we consider the case where Equation () is
satisfied. The amortized cost of constructing one relation is:

Sp(di +D)+(g—1)  Sp(di +D)Sp(Dds + 1)
(¢=1)/Sp(Dd> +1) g—1 +Sp(Ddp +1),
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where Sp(T) denotes the inverse of the probability for a degree T polynomial
to decompose as a product of polynomials of degree at most D. We recall that
Sp(T) =~ exp((T/D)logT/D) (see [I8I21]). As a consequence, the runtime of
the relation collection is approximated by:

Sp(dy + D)Sp(Ddy + 1)gP~ + Sp(Ddy + 1)¢".

For the usual choice, d; ~ v/Dn and ds &~ /n/D and writing ¢ = Lq(3,aD)
this becomes:

1 1 1
Lg (3,D(D—1)a+ 3Dva + max <3D\/a7Da))'

Depending on the exact value of «, it can be re-optimized by changing the value
of d; and dy. When possible, the complexity becomes:

1
L ,D*a .
@ (3 * 9D2a2)
To test whether re-optimization is possible, it suffices to compare the two com-
plexities and keep the smaller.

4.1 Kummer Extensions with D > 1

In the case where D > 1, it is clear that using Kummer extensions allows us
to account for the action of Frobenius, as in the D = 1 case. However, it is
less clear that a dual-sided approach is also possible in this case. It turns out
that the method used for D = 1 remains applicable. More precisely, define the
relation between X and Y as in equation 2l and consider the space of candidates
A(Y) X + B(Y), where A and B are polynomials of degree D and A is unitary.
We write AY) =YP +aY P~ +... and B(Y) =bYP +cYP1 4 ...,
The X-side is:

XDd2+1 + bXDd2 _|_ aX(D—l)d2+1 + CX(D_l)d2 _|_ .
It splits, if and only if:
Pd2+1 | Ddz | Z (U(D—l)d2+1 4 ¢ U(D—l)dz) ..
bdz ab
also splits. Similarly, the Y-side is:
Yd1+D/K: + ayd1+D71/K/ IS bYD + cy(Dfl) NI
It splits, if and only if:

b c
di+D di+D-1 D (D-1)
VaTP s+ V /Rt g (V + Y )+

also splits. As a consequence, given A = ¢/(ab), A = b/a®* and B = a/b% such
that AB% is an n-th power, we can transform all smooth polynomials in U and
V into smooth polynomials in X and Y form with matching values for a, b and
c. If the other coefficients also match, we obtain a relation.

However, due to the cost of matching extra coefficients, this is not as favorable
as in the case D = 1.
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5 Application: Two Discrete Logarithm Records

In order to demonstrate the practicality of our algorithm, we give a x-couple of
new records for discrete logarithms in finite fields, in the particularly favorable
case of Kummer extensions. More precisely, we decided to improve on the discrete
logarithm record in F37ggo130 presented in [I7], using larger base fields and larger
extension degrees.

To the best of our knowledge, the previous discrete logarithm record in a finite
field concerned Fgss2, a 923-bit field (see [13]). Our two results thus increases the
size of the previous record by more than 500 bits. In order to illustrate the
running time improvements gained from our new technique, we compare in the
sequel our running times and the running times from [I3]. However, we wish to
warn the reader that this comparison should be analyzed with care. Indeed, the
finite fields we have chosen are especially well-suited to our new techniques.

5.1 A Finite Field of Size 1175 Bits

For this example, we decided to consider an extension field Fy4 given by a
Kummer extension of degree 47 = 8 x 6 — 1. We then chose p = 33553 771, with
p — 1 divisible by 47.

As a consequence, we can define the extension field using the relations Y = X
and Y® = 2X. This allows us to use advanced pinpointing and take advantage of
the action of Frobenius. We obtain a smoothness basis of 1.43M elements. The
cardinality of the finite field is:

p*T —1=47-2069-12409- (p — 1) - 132103049403319 - C,

where C' is a 1073-bit composite cofactor of unknow factorization

By construction, X has order 47(p — 1) and thus cannot serve as a base for
discrete logarithm. However, X — 3 is very likely to have order p*” — 1. Indeed,
none of the values (X — 3)(p47_1)/f is equal to 1, when f is chosen as one of the
known factors of p*” — 1. This choice is validated by our computation since we
can find logarithms of random elements in basis X — 3.

As expected, the construction of the multiplicative relations is extremely ef-
ficient. For this reason, it was performed on a single laptop, using one CPU.
We used advanced pinpointing. The preparatory construction of smooth-
polynomials, for 1000 different values of A, took a little more than 3 hours on
the laptop. Once this was done, we performed the computation of the relations
together with the structured Gaussian elimination, in 2 minutes. The resulting
linear system contains 829 405 unknowns.

As expected, the computation is dominated by the linear algebra step. We
performed this step using a block Wiedemann approach (as in [22]), based on
32 independent series of matrix-vector evaluation. Each run in the series was

2 At the time of the computation, the factorization of C' was unknown. Since then,
William Hart [12] has found a 178-bit factor of C; the remaining cofactor is still
composite.
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performed on a 16-cordd node of Genci’s Curie computer, using OMP threads,
thus using a total of 512 processors. The initial matrix-vector products required
almost 37 hours. Due to memory requirement, the computation of a relation
using block Wiedemann was done on 64 cores of a larger noddd of Curie: it took
9h30min. Finally the recovery of the solution took 32 additional matrix-vectors
products of half length compared to the initial runs. Due to the extra cost of
combining the intermediate values using the coefficients in the relation, this
required almost 25 hours. The grand total amounts to about 32 000 CPU-hours.
We give a comparison of the timings with the previous record in Table [

Table 1. Comparison between our computations and the previous record

Bitsize Total time Relation construction Linear algebra Indiv. Log.

(CPU.h) (CPU.h) (CPU.h) (CPU.h)
[13] 923 bits 813000 270000 483 000 60 000
This paper 1175 bits 32 000 3 32000 4
This paper 1425 bits 32000 6 32000 <12

The reader can find some typical discrete logarithms of base elements in base
2 —3 modulo C in the eprint version of this paper [I5] and in the announcement
on the number theory mailing list [I4]. They have been removed from this version
to improve its compactness and lisibility.

Individual Discrete Logarithm. The computation of individual discrete log-
arithms is unchanged from [I8] and requires a moderate amount of computing
power. We illustrate this by computing the logarithm of:

46

Z = Z (Lwp™*'] mod p) X".
=0

The first step is to find a value related to Z which can be expressed using
polynomials in X of relatively low degree. Here, we find that:

Z (X +1)% = ]l\)[’
where NV and D can be factored into irreducible polynomials of degree at most 8.

Once, this is done, we use the descent procedure to express each factor using
polynomials of lower degree in X and Y. The slowest step in the descent is the
final step that expresses polynomials of degree 2 using linear polynomials. After
the earlier steps of the descent, we have a total of 278 degree polynomials whose
logarithms are required (156 in X and 122 in Y). In the final step, we consider

3 More precisely, it was on Curie’s thin nodes: each node contains two octocore Intel
Sandy Bridge EP (E5-2680) processors at 2.7 GHz.

* Here, we used half of a Curie’s xlarge node, i.e. eight octocore Intel Nehalem-EX
X7560 processors at 2.26 GHz .
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all polynomials of the form XY + aY 4 bX + ¢ that are multiples of the target
polynomial and use sieving to find a relation between this target and linear
polynomials. When not possible, we use a relation that also includes another
degree 2 polynomial and restart from that polynomial. The total time to obtain
all these logarithms on the laptop used for computing the relations is under 4
hours.

Finally, back-substituting all the logarithms of the linear polynomials, we
derive the logarithm of Z modulo C. To ease verification, we have also computed
this logarithm modulo the small factors and thus give its complete value. We
have:

log(Z) =

35663312714649406626328113474094944057178080787823953083099211252314049
42775893475045554815091157495604731476318649637458779492102525688657986
42649039047033462050627522813317937084662147227994756376452164608898303
68728733379152433093789922795231130025288283817373896596104544618014057
3240231646914447899262099152488534480737568049333712088197470913054182

5.2 A Finite Field of Size 1425 Bits

For this example, we decided to consider an extension field Fys given by a
Kummer extension of degree 57 = 8 x 7+ 1. We then chose p to make sure that
p — 1 is divisible by 57 and that p°” — 1 is easy to factor. Thus, we considered
Fps7, with p = 33 341 353.

This allows us to define the extension field using the relations: Y = X7 and
X =2/ Y8, This illustrates the dids + 1 variant of our technique on Kummer
extension. The initial smoothness basis contains 1.17M elements. The cardinality
of the finite field is:

P —1=p-1)-(p*+p+1)-19-p; -ps where

18
pr=(>_p")/19 and
=0

5

12
pa=>_ 0" = (p+p") Y p"
=0

=0

The two primes p; and p, respectively have 446 and 900 bits.

Since, X has order 57(p — 1), we use X — 11 as our basis for discrete loga-
rithms. The construction of the multiplicative relations was performed on the
same laptop as previously indicated. For the preparatory construction of smooth-
polynomials, we used 2000 different values of A, which took 6 hours on the laptop.
Once this is done, we performed the computation of the relations together with
the structured Gaussian elimination, in 2 minutes. The resulting linear system
contains 714 931 unknowns.
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Once again, the computation is dominated by the linear algebra step. This
time, we split the computation into two independent parts, adressing p; and
p2 separately. For each of the two primes, the initial matrix-vector products
required 18 hours and 30 minutes, using a 16-core node for each prime. The
block Wiedemann step required 2h30m for p; and 6h10m for ps, using 64 cores
for each computation. The final run of matrix-vectors products took 12 hours for
each prime. Once again, the grand total amounts to about 32000 CPU-hours.

5.3 Individual Discrete Logarithm

The computation of individual discrete logarithms works as previously. However,
for performance reasons, we reimplemented the descent procedure in C, instead
of using a mix of PARI/GP scripts and C code as before. The computing power
required for an individual logarithm remains moderate and could be parallelized
if required. We illustrate this by computing the logarithm of:

56
Z = Z (Lwp™*'] mod p) X"
i=0
We have: N
Z.(X =11 2859 _
( ) D’

where N and D can be factored into irreducible polynomials of degree at most
10.

Once, this is done, we use the descent procedure to express each factor using
polynomials of lower degree in X and Y. The slowest step in the descent is again
the final step that expresses polynomials of degree 2 using linear polynomials.
The total time to obtain all the logarithms on the laptop used for computing
the relations is 11h20m hours.

Finally, back-substituting all the logarithms of the linear polynomials (see [16]
for some example values), we derive the logarithm of Z modulo p; ps. To ease
verification, we have also computed this logarithm modulo the small factors and
thus give its complete value. We have:

log(Z) =
38696727954848672340251996343560616689921565412031083259217543064490314
47408883954126868476623514303774994735374412083792131893939754716315174
24844029927129365760724185099125036453504412299497357601200524653484297
57817687904797819402906339667295765269483052878960833041193969662027000
58228267455228614682567866764560024936105482975290632000822052456595422
72461445286333607026598459910186711625408343307828043847399249565522120202

6 Conclusion and Open Problems

In this paper, we have shown a new technique to replace sieving in some index
calculus algorithms. This technique can be applied whenever the target discrete
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logarithm group is a finite field that contains a subfield of the right size. We have
illustrated it with some new discrete logarithms records. Since we only know
how to use this technique in the medium prime case of the function field sieve,
it leaves open the problem of generalizing the approach to other index calculus
algorithms. The natural targets are the function field sieve without a medium-
size subfield and the number field sieve, either for factoring or computing discrete
logarithms. It should be noted that the result presented in this paper was in fact
inspired by the cubic sieve introduced in [3] (see [5] for more details) which can
be seen as its remote precursor and also offers a partial answer to the question
of pinpointing in the case of number field sieve. However, generalizing to the
general formulation of the number field sieve seems to be a difficult problem.

Another open problem is to adapt our construction to take advantage of the
action of Frobenius regardeless of the extension degree. In particular, it would be
convenient to make it compatible with the Galois invariant smoothness approach
proposed in [4].
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