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Abstract. Improving Smartphone anomaly-based malware detection techniques 
is widely studied in recent years. Previous studies explore three factors: dataset 
size, dataset type and normal profile model. These factors improve the perform-
ance, but increase computation complexity and the required memory space. In 
this paper we explore a new factor: the dataset representation. Dataset represen-
tation is the format adopted to organize and represent data. To investigate the 
impact of this factor, we examine four machine learning classifiers with three 
different dataset representations. Those dataset representations are: successive 
system calls, bag of system calls and patterns frequency system calls. The used 
dataset is a collection of system call traces of Smartphone executing Android 
2.2. We analyse the performance of each classifier and deduce the influence of 
dataset representation on accuracy and false positive rates. The results show 
that the dataset representation has a potential impact on the performance of 
classifiers with low computational and memory cost. 

Keywords: Smatphone security, system calls, intrusion detection, machine 
learning, Anomaly technique. 

1 Introduction 

Smartphones are very popular and widely used in business and personal life in recent 
years due to their capabilities and services. Therefore, their market is growing very 
fast. According to the International Data Corporation (IDC), they expect about 982 
million units will be shipped by the end of 2015 [1]. This popularity of Smartphones 
attracts malware developers. Google recently found about 50 applications that were 
infected with hidden malicious code DroidDream. The applications were loaded in the 
official applications store (Android Market). They were available for about 4 days and 
between 50,000 and 200,000 copies were downloaded [1]. Thereby, the need of mal-
ware detection tool is now more curial. 

Smartphone malware detection techniques are classified broadly into two main 
classes: signature-based and anomaly-based [2]. Signature-based techniques look  
for patterns that match with malware patterns in their database. Anomaly-based  



 Impact of Dataset Representation on Smartphone Malware Detection Performance 167 

techniques maintain normal behavior profiles and any deviation from these profiles is 
considered malicious [2]. The main advantage of anomaly detection techniques is the 
ability to detect unknown malwares. Therefore, they have been actively investigated. 
However, anomaly-based malware detection still needs more investigation and im-
provement to reduce false positive and increase detection accuracy.  Prior works 
explored actively the factors having an impact on the performance of anomaly-based 
detection techniques. They examined three factors: dataset size, dataset type, and the 
model of normal profile. From related work, we can learn that increasing the quantity 
of dataset or varying the data type used to characterize normal behavior profile im-
proves the normal profile accuracy. However, the resulting profile has usually high 
computational and memory space overhead. Therefore, these factors are not suitable 
to improve performance of anomaly-based detection technique on limited resources 
environment, such as Smartphone.  Thereby, we should explore other factors that 
have significant influence on the performance of anomaly-based technique as well as 
low computation and memory cost. In this work, we highlight the dataset representa-
tion factor. We examine the impact of this factor on the performance of anomaly-
based technique on Smartphone system call traces. Dataset representation is the  
format of how the data is organized and represented. This format is used during the 
training phase as well as the detection phase. The process of preparing dataset repre-
sentation has light computation cost and memory complexity which make it suitable 
approach for Smartphone malware detection technique.  

In this study, we examine three dataset representations on Smartphone system call 
traces. Those representations are: 

• Successive system calls representation, where the ordering information between 
system calls in sequence is considered. This dataset representation is used in prior 
work.  

• Bag of system calls representation, where the successiveness of system calls in 
sequence is disregarded and only the frequency of each system call is preserved. It 
is used in prior work. 

• Patterns frequency system calls representation combines features of the two pre-
vious representations. Pattern-frequency representation regards the successive or-
der information of system calls in short pattern, and regards the frequency of each 
pattern in the sequence. To the best of our knowledge, this representation has not 
been studied in the past. 

We evaluate performance of different machine learning classifiers with the above 
dataset representations and we deduce the influence of each dataset representation on 
the performance of each classifier. We select the most known and used classifiers: 
Support Vector Machine (SVM), Naïve Bayes (NB), Logistic Regression (LR), and 
the Decision Tree (DT). We experiment our approach on system call traces collected 
from an HTC Dream Smartphone. These system call traces represent the execution of 
the 100 most downloaded normal applications and the 90 available real malwares. 

The rest of this paper is organized as follows: related work is introduced in  
section 2. Section 3 presents the dataset presentations. Section 4 presents experiments 
and results analysis. We end with conclusion in section 5. 



168 A. Amamra, C. Talhi, and J.-M. Robert 

2 Related Work 

Smartphones malware detection techniques based on system traces such as system 
calls and system events studied actively in recent years. Several classifiers and data-
sets types are investigated to produce more accurate model. This comes with more 
memory and computational cost.  Bose et al [3] introduced framework to detect mo-
bile malwares. The framework based on Support Vector Machine (SVM) classifier 
and temporal logic of causal knowledge (TLCK) to represent the applications beha-
viors. The application behaviors are constructed from several data: system events, 
resource accesses and API calls in Symbian OS. The authors studied only 25 distinct 
malicious behaviors. Shabtai et al [4] proposed a framework using machine learning 
classifiers to detect new malwares. These classifiers are: k-means, Logistic Regres-
sion, Histograms, Decision Tree, Bayesian Networks and Naïve Bayes. The normal 
behavior is constructed from various system metrics like CPU consumption, number 
of sent packets through Wi-Fi, number of running processes and battery level. Xie et 
al [5] adopted Hidden Markov Model (HMM) to build normal behavior. The training 
dataset is a combination of user inputs and applications system calls. HMM classifier 
is powerful, but computationally expensive which make it not suitable to limited  
resources environment. Zhao et al [6] presented software behavior signature frame-
work called RobotDroid. It runs on Android OS phones. This Framework is based  
on Support Vector Machine (SVM) active learning algorithm. The classifier is trained 
on three malwares families: Plankton, DroidDream and Geinimi. The application 
behaviors are defined as intent issued and system resources accessed by applications. 
Burguera et al [7] proposed a framework named Crowdroid running on Android OS 
platform. The proposed framework collects system call traces, organizes them in bag 
of system call representations and applies k-means algorithm to classify them into two 
categories: normal and malware. The shortcoming of this technique is the fact that the 
system always divides the system call dataset into two classes even if there is no 
malware. Amamra et al [8] proposed hybrid machine learning classifiers using stack-
ing method to improve the classification process. The classifiers trained and tested 
with system call traces. These system calls are collected from 100 normal applications 
and 90 malwares. Hybrid classifiers improve accuracy performance with high compu-
tational cost. Pathak et al [9] proposed a new system calls based on power modeling 
framework. This framework consists of two main components: (1) Finite State  
Machines (FSM) to model the power states and state transitions of each component as 
well as the whole smartphone, (2) testing application suite which leverages the  
domain knowledge of system calls to systematically uncover the FSM transition  
rules. Buennemeyer et al [10] proposed B-SIPS (Battery-Sensing Intrusion detection 
Protection System). B-SIPS monitors the power consumption of Bluetooth and Wi-Fi 
communication channels to detect intrusion activities. The anomalous activities are 
detected if the power consumption level exceeds the system’s dynamic threshold  
value. Power based malware detection technique detects only malwares have an  
impact on device power level, whereas many malwares have normal power level  
consumption. 
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3 System Calls Representations 

Roughly speaking, a system call trace is a chunk of information. That information is 
formatted and organized in a dataset D as shown in Fig 1. The dataset D has a specific 
format that expresses how the data is organized. This format is called dataset repre-
sentation and it is used during training as well as detection phases of machine learning 
classifiers. 

 
 
 
 
 
 
 

Fig. 1. System call trace transformation to Dataset 

Given the dataset D, the purpose of the machine learning algorithms is to find a 
classifier C: D     {normal, malicious} that maximizes accuracy and minimizes false 
positive rate. Dataset representation has an impact on the accuracy and false positive 
rate of the machine learning classifier. 

For harmony definitions of the three system calls representations, we consider the 
set of system calls Σ = {s1, s2, s3… sm}, where m is the number of system calls of op-
erating system. Let Si be finite sequence of system calls and |Si| is the length of the 

sequence. Let Σ*
 be the set of all possible finite sequences of system calls, Si∈Σ*. N is 

the number of applications (normal and malware) used in training and test phases. 

3.1 Successive System Calls Representation 

This representation considers the sequential order information of system calls in se-
quence. Formally, this representation can be defined as follow: 

Dataset D is a set of finite sequences of successive system calls generated by dif-
ferent executed applications. The dataset D can be defined formally as: D = {<Si, Ti> | 

Si∈Σ*, Ti ∈{normal, malicious}} where Si is a finite sequence of system calls gener-

ated by an application i and Ti indicates whether this application is normal or mali-
cious. Fig 2 shows an example of successive system calls representation. 

 
 
 
 

 
 
 

Fig. 2. Successive System Calls 

System calls 
trace Dataset 

Transformation 

syscall_983045, prctl, mmap2, gettid, brk, getpriority, futex, clock_gettime, 
clock_gettime, futex, open, ioctl, ioctl, mmap2, close, syscall_983042, brk, brk, 
futex, futex, futex, futex, mmap2, mmap2, ioctl, sigprocmask, syscall_983042, 
futex, futex, sigprocmask, syscall_983045, prctl, mmap2, gettid, brk, getpriority, 
futex, clock_gettime, clock_gettime, ⁄, normal 



170 A. Amamra, C. Talhi, and J.-M. Robert 

The memory complexity of successive system calls representation is depends on 
the number of sequences Si in the database (N) and the total length of sequences. The 
memory complexity is              The total length of sequences is big number, 
therefore this representation is costly. 

3.2 Bag of System Calls Representation 

This representation disregards the ordering information of sequential system calls. 
Only the frequency of system calls in the sequence is maintained. Formally, the repre-
sentation can be defined as follow: 

Let dataset D be the set of features X. The feature Xi is defined as a list Xi = <n1, 
n2, n3, …, nm>, where m =|Σ| and nj is the number of occurrence of a system call sj in 
the sequence Si. 

Fig 3 illustrates bag system call representation of a normal application. Each num-
ber in the sequence represents the frequency of a system call in application trace. For 
example, the numbers 5,0,0,10,75,…. correspond to frequency of the following sys-
tem calls: fstat64, setgroups32, setgid32, setuid32, getuid32 respectively. The last 
attribute in figure 3 indicates the sequence for normal application. 
 
5,0,0,10,75,0,0,0,0,0,01,1,3,0,0,4,0,0,0,0,203,25,62,58,0,0,0,0,0,0,0,0,0,0,0,0,35,101,0
,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,4,0,10,0,0,0,0,0,0,0,0,0,0,0,0,513,0,0,0,0,0,0,0,0,97,607
2,1617,142,360,0,1,0,0,0,0,0,0,0,0,90,0,0,0,00,0,0,0,0,0,0,0,108,0,0,0,8,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,85,353,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,25,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,00,0,0,0,0,2575,40,0,0,normal 

Fig. 3. Bag System call Representation 

The memory complexity of bag of system calls representation is O(N*|Σ|), where N 
is the number of sequences and |Σ|  is number of system calls.  |Σ| is a small number. 
For example, Linux 2.6 has 326 system calls [11], then |Σ| = 326. The cost of this 
representation is much less than successive system calls representation cost because 
|Σ| is very small than  

3.3 l-Patterns Frequency of System Calls Representation 

This representation combines features of the two previous representations. Pattern-
frequency representation regards the successive order information of system calls in a 
short patterns, and regards the frequency of those patterns in a sequence. Formally, 
the representation can be defined as follow: 

Let P be the set of all possible patterns of length l, P = {p1, p2, p3 …pr}, where r 
=|Σl|. Dataset D is set of features Y. The feature Yi is defined as an ordered list Yi = 
<n1, n2, n3, ⁄, nr>, where nj is the number of occurrence of a pattern pj in the sequence 
Si. 

Fig 4 illustrates 3-pattern frequency representation of a normal application. Each 
number represents the frequency of pattern of 3 system calls length. For example,  
the numbers 15,0,30,219,1,…. represents the following: the pattern: (open, fstat64, 

N 
 
i=1 

O(N* Σ |Si|). 

N 
 
i=1 
Σ |Si|. 
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mprotect) is repeated 15 times, the pattern: (close, close, close) is repeated 0 time, the 
pattern: (mmap2, mprotect, clone) is repeated 30 times, the pattern: (futex, futex, get-
timeofday) is repeated 219 times, and the pattern: (access, access, mkdir) is repeated 1 
time. The last attribute in figure 4 indicates the sequence for normal application. 
 
15,0,30,219,1,0,0,0,0,0,0,10,0,113,0,0,4,0,0,0,0,2,125,622,58,0,0,0,0,20,0,0,0,0,0,0,0,
35,101,0,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,432,0,10,0,0,0,0,0,0,0,0,33,0,0,0,513,0,0,0,0,0,
0,0,0,0,6002,160,1402,360,0,1,0,0,0,0,0,0,0,0,90,0,0,0,00,0,10,0,0,0,0,0,108,0,0,0,8,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,385,153,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0
,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3…,normal 

Fig. 4. 3-Patterns Frequency Representation 

The memory complexity of l-patterns frequency of system calls representation is 
O(N*|Σl|), where N is the number of sequences and |Σl| number of possible patterns. 
For short patterns (l = 2 or 3) and |Σ| = 326, |Σl| is not big number. This representation 
consumes memory little more than bag of system calls representation and much less 
than successive system calls representation. 

4 Experiments and Results 

In this section we examine and evaluate the influence of dataset representations on the 
performance of various machine learning classifiers. We measure the performance of 
the machine learning classifiers using two standard metrics: Accuracy rate and False 
Positive (FP) rate. Table 1 presents the confusion matrix. Confusion matrix holds 
information about actual and predicted classes generated by classifier. The perfor-
mance of classifier is measured using the information in the matrix. 

Table 1. Confusion Matrix 

 Predicted Class 
Normal Malware 

Actual Class 
Normal True Positive (TP) False Positive (FP) 

Malware False Negative (FN) True Negative (TN) 
 
In order to compare the performance of various machine learning classifiers, we 

employ two standard metrics: false positive rate and accuracy rate. 

• False positive (FP) is the quantity of misclassifying normal behaviours as 
malicious.  

  False Positive Rate (FP) = 
 

• Accuracy rate is the rate of correct predictions over the whole dataset.  

Accuracy Rate = 

     FP 
TP + FP 

     TP + TN 
TP + FN + FP + TN 
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We experiment the different dataset representations on the following machine learn-
ing algorithms: Support Vector Machine (SVM), Naïve Bayes (NB), Logistic Regres-
sion (LR) and Decision Tree (DT). Those classifiers are obtained from the WEKA 
machine learning visual package [12]. 

The dataset represents a large set of system-call traces of benign and malicious ap-
plications. The normal applications are the top 100 popular free applications in the 
official Android applications store (Android market) [13]. The 90 available Android 
real malwares are download from [14]. All applications are installed and executed on 
HTC Dream device running Android OS 2.2. The number of sequences in the dataset 
N = 190 (100 normal applications + 90 malwares). The length of sequences varies 
from applications to other. The shortest sequence has 10000 system calls and the 
longest sequence has 60000 system calls.  

Support Vector Machine (SVM) classifier classifies data by determining a set of 
support vectors, which are members of the set of training inputs that outline a hyper 
plane in the feature space [15]. Table 2 represents the support vector machine classifi-
er accuracy and false positive rates using different data representations. Pattern-
frequency representation of 2 system calls length and 3 system calls length  
outperforms with 100% accuracy rate and 0% false positive rate, whereas successive 
system calls representation has better performance than bag of system calls with 
95.10% accuracy rate and 6.10% false positive rate. 

Table 2. Support Vector Machine Classifier Performance 

Dataset Representation 

Accuracy rate FP rate 

Successive system calls 95.10% 6.10% 
Bag of system calls 92.50% 8.50%
2-Pattern frequency 100% 0% 
3-Pattern frequency 100% 0% 

 
Naïve Bayes (NB) Classifier is the simplest form of Bayesian network. It is based 

on Bayes theorem with heavy independence assumptions [16]. Table 3 shows the 
performance of naïve Bayes classifier using different system calls representations. 
The 3-pattern and 2-pattern frequency representation has the best performance 
(97.10% accuracy rate and 3.10% false positive rate). Bag of system calls representa-
tion has the worst performance (91.30% accuracy and 9% false positive rate).  

Table 3. Naïve Bayes Classifier Performance 

Dataset Representation 

Accuracy rate FP rate 

Successive system calls 94.10% 6.30% 
Bag of system calls 91.30% 9% 
2-Pattern frequency 97.10% 3.10% 
3-Pattern frequency 97.10% 3.10% 
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Logistic Regression (LR) Classifier is a discriminative model. It is based strongly 
on the logistic function [16]. Table 4 illustrates the impact of dataset representation on 
the performance of logistic regression classifier. The 3-pattern frequency representa-
tion has the highest performance. It has the higher accuracy rate (100%) and the lower 
false positive rate (0%). The 2-pattern frequency representation still performs better 
than the two classical representations with 97.10% accuracy rate and 3.10% false 
positive rate. Bag of system calls representation has the worst performance (92.30% 
accuracy and 8% false positive rate). 

Table 4. Logistic Regression Classifier Performance 

Dataset Representation 

Accuracy rate FP rate 

Successive system calls 96% 4.10% 
Bag of system calls 92.30% 8% 
2-Pattern frequency 97.10% 3.10% 
3-Pattern frequency 100% 0% 

 
Decision Tree (DT) Classifier is built during training phase. The nodes represent 

attributes, the edges represent the possible attributes values, and leafs represent the 
classes. The classification start by root node and move down in decision tree relative 
to attributes values till reach leaf [17]. Table 5 demonstrates decision tree classifier 
influenced by dataset representations. The classifier has better performance with pat-
tern frequency system calls representation than other dataset representation. The 3-
pattern frequency representation has the best performance with accuracy rate 98.20% 
and false positive rate 2.10%. Successive system calls representation has the worst 
performance with accuracy rate 92.10% and false positive rate 9.40%. 

Table 5. Decision Tree Classifier Performance 

Dataset Representation 

Accuracy rate FP rate 

Successive system calls 92.10% 9.40% 
Bag of system calls 96% 4.10% 
2-Pattern frequency 97.10% 3.10% 
3-Pattern frequency 98.20% 2.10% 

 
In summarizing of the above the results, the dataset representation has an important 

impact on the performance of machine learning classifiers. With the same dataset size 
and type, we have different accuracy rate and false positive rate for the same classifi-
er. The classification process is based on two classification properties: system calls 
successive property and system calls frequency property. The SVM classifier has low 
performance with bag of system calls representation with 92.50% accuracy rate and 
8.50% false positive rate which means SVM classifier is more sensitive to successive 
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classification property than frequency classification property. Naïve Bayes classifier 
and Logistic Regression have the same behavior as SVM. Their performance on suc-
cessive dataset representation is better than the performance on frequency dataset 
representation. However, Decision Tree classifier is more sensitive to frequency 
property than successive property; its performance with bag of system calls represen-
tation (96% accuracy and 4.10% false positive rate) is better than successive system 
calls representation (92.10% accuracy and 9.40% false positive rate). The pattern 
frequency representation has the better performance over all classifiers because this 
representation holds the both classification properties: frequency property and the 
successive property of short sequence. SVM classifier reaches its idle performance at 
two system calls pattern length. Three system calls pattern is the optimal length for 
Logistic Regression classifier. The LR classifier reaches its best performance with 
this length. Decision Tree and Naïve Bayes classifier may require longer patterns 
length to achieve their idle performance. Longer patterns have more successive and 
frequency information; therefore it is more discriminative in classification process. 
However, longer patterns require more memory and computation resources. SVM 
with 2-pattern frequency representation is the best combination of classifier and re-
presentation because this combination reaches the idle performance with lowest cost. 
Table 6 orders the combination (classifier-pattern frequency dataset representation) 
according to performance per cost. The worst performance of pattern frequency repre-
sentations is 97.10% accuracy rate and 3.10% false positive rate. However, this per-
formance is better than the best performance of other representations. 

Table 6. Classifier-Dataset Representation Order per Performance 

 
 
Classifier-Dataset Representation 

Accuracy rate FP rate 

SVM (2-Pattern frequency) 100% 0% 
SVM (3-Pattern frequency) 100% 0% 
LR (3-Pattern frequency) 100% 0% 
DT (3-Pattern frequency) 98.20% 2.10% 
LR(2-Pattern frequency) 97.10% 3.10% 
DT(2-Pattern frequency) 97.10% 3.10% 
BN (2-Pattern frequency) 97.10% 3.10% 
BN (3-Pattern frequency) 97.10% 3.10% 

5 Conclusion 

Dataset representation has a potential impact on the performance of machine learning 
classifiers.  It increases the accuracy rate and decreases the false positive rate. The 
experiments results affirm the performances of classifiers are improved significantly 
with same data quantity and type, but with using a new dataset representation. The  
3-pattern frequency representation has the best performance over all experimented 
classifiers; it reaches the idle performance of SVM classifier and logistic regression 
classifier (100% accuracy rate and 0% false positive rate).  The cost of improving the 
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performance by using dataset representation factor is very low relative the other fac-
tors: normal behavior model, dataset size and dataset type. Because dataset represen-
tation keeps the same dataset type and size, the required memory space is few extra 
kilobytes. The process of preparing dataset representations is not computationally 
expensive. Bag of system calls representation has the lowest memory cost and the 
lowest performance. Successive system calls representation has the highest memory 
cost and not the highest performance. Short pattern system calls representation has a 
few extra memory cost than bag of system calls representation, but it improves the 
classifiers performance significantly. The frequency property of system calls in se-
quence is important in classification process and the successive property of system 
calls in sequence is also important in the process of classification. However, the pat-
tern frequency property provides advantage by holding the two properties which leads 
to better classification process. A new factor improves the performance of machine 
learning classifiers with low computation and memory cost is an important step to 
implement lightweight machine learning algorithms on Smartphones device. We will 
study this approach in the future work. 
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