
C. Fernandez-Gago et al. (Eds.): IFIPTM 2013, IFIP AICT 401, pp. 166–176, 2013.
© IFIP International Federation for Information Processing 2013

Impact of Dataset Representation on Smartphone
Malware Detection Performance

Abdelfattah Amamra, Chamseddine Talhi, and Jean-Marc Robert

Department of Software Engineering and Information Technologies,
École de Technologie Supérieure,

Montreal, Canada
Abdelfattah.amamra.1@ens.etsmtl.ca

{Chamseddine.Talhi,Jean-Marc.Robert}@etsmtl.ca

Abstract. Improving Smartphone anomaly-based malware detection techniques
is widely studied in recent years. Previous studies explore three factors: dataset
size, dataset type and normal profile model. These factors improve the perform-
ance, but increase computation complexity and the required memory space. In
this paper we explore a new factor: the dataset representation. Dataset represen-
tation is the format adopted to organize and represent data. To investigate the
impact of this factor, we examine four machine learning classifiers with three
different dataset representations. Those dataset representations are: successive
system calls, bag of system calls and patterns frequency system calls. The used
dataset is a collection of system call traces of Smartphone executing Android
2.2. We analyse the performance of each classifier and deduce the influence of
dataset representation on accuracy and false positive rates. The results show
that the dataset representation has a potential impact on the performance of
classifiers with low computational and memory cost.

Keywords: Smatphone security, system calls, intrusion detection, machine
learning, Anomaly technique.

1 Introduction

Smartphones are very popular and widely used in business and personal life in recent
years due to their capabilities and services. Therefore, their market is growing very
fast. According to the International Data Corporation (IDC), they expect about 982
million units will be shipped by the end of 2015 [1]. This popularity of Smartphones
attracts malware developers. Google recently found about 50 applications that were
infected with hidden malicious code DroidDream. The applications were loaded in the
official applications store (Android Market). They were available for about 4 days and
between 50,000 and 200,000 copies were downloaded [1]. Thereby, the need of mal-
ware detection tool is now more curial.

Smartphone malware detection techniques are classified broadly into two main
classes: signature-based and anomaly-based [2]. Signature-based techniques look
for patterns that match with malware patterns in their database. Anomaly-based

 Impact of Dataset Representation on Smartphone Malware Detection Performance 167

techniques maintain normal behavior profiles and any deviation from these profiles is
considered malicious [2]. The main advantage of anomaly detection techniques is the
ability to detect unknown malwares. Therefore, they have been actively investigated.
However, anomaly-based malware detection still needs more investigation and im-
provement to reduce false positive and increase detection accuracy. Prior works
explored actively the factors having an impact on the performance of anomaly-based
detection techniques. They examined three factors: dataset size, dataset type, and the
model of normal profile. From related work, we can learn that increasing the quantity
of dataset or varying the data type used to characterize normal behavior profile im-
proves the normal profile accuracy. However, the resulting profile has usually high
computational and memory space overhead. Therefore, these factors are not suitable
to improve performance of anomaly-based detection technique on limited resources
environment, such as Smartphone. Thereby, we should explore other factors that
have significant influence on the performance of anomaly-based technique as well as
low computation and memory cost. In this work, we highlight the dataset representa-
tion factor. We examine the impact of this factor on the performance of anomaly-
based technique on Smartphone system call traces. Dataset representation is the
format of how the data is organized and represented. This format is used during the
training phase as well as the detection phase. The process of preparing dataset repre-
sentation has light computation cost and memory complexity which make it suitable
approach for Smartphone malware detection technique.

In this study, we examine three dataset representations on Smartphone system call
traces. Those representations are:

• Successive system calls representation, where the ordering information between
system calls in sequence is considered. This dataset representation is used in prior
work.

• Bag of system calls representation, where the successiveness of system calls in
sequence is disregarded and only the frequency of each system call is preserved. It
is used in prior work.

• Patterns frequency system calls representation combines features of the two pre-
vious representations. Pattern-frequency representation regards the successive or-
der information of system calls in short pattern, and regards the frequency of each
pattern in the sequence. To the best of our knowledge, this representation has not
been studied in the past.

We evaluate performance of different machine learning classifiers with the above
dataset representations and we deduce the influence of each dataset representation on
the performance of each classifier. We select the most known and used classifiers:
Support Vector Machine (SVM), Naïve Bayes (NB), Logistic Regression (LR), and
the Decision Tree (DT). We experiment our approach on system call traces collected
from an HTC Dream Smartphone. These system call traces represent the execution of
the 100 most downloaded normal applications and the 90 available real malwares.

The rest of this paper is organized as follows: related work is introduced in
section 2. Section 3 presents the dataset presentations. Section 4 presents experiments
and results analysis. We end with conclusion in section 5.

168 A. Amamra, C. Talhi, and J.-M. Robert

2 Related Work

Smartphones malware detection techniques based on system traces such as system
calls and system events studied actively in recent years. Several classifiers and data-
sets types are investigated to produce more accurate model. This comes with more
memory and computational cost. Bose et al [3] introduced framework to detect mo-
bile malwares. The framework based on Support Vector Machine (SVM) classifier
and temporal logic of causal knowledge (TLCK) to represent the applications beha-
viors. The application behaviors are constructed from several data: system events,
resource accesses and API calls in Symbian OS. The authors studied only 25 distinct
malicious behaviors. Shabtai et al [4] proposed a framework using machine learning
classifiers to detect new malwares. These classifiers are: k-means, Logistic Regres-
sion, Histograms, Decision Tree, Bayesian Networks and Naïve Bayes. The normal
behavior is constructed from various system metrics like CPU consumption, number
of sent packets through Wi-Fi, number of running processes and battery level. Xie et
al [5] adopted Hidden Markov Model (HMM) to build normal behavior. The training
dataset is a combination of user inputs and applications system calls. HMM classifier
is powerful, but computationally expensive which make it not suitable to limited
resources environment. Zhao et al [6] presented software behavior signature frame-
work called RobotDroid. It runs on Android OS phones. This Framework is based
on Support Vector Machine (SVM) active learning algorithm. The classifier is trained
on three malwares families: Plankton, DroidDream and Geinimi. The application
behaviors are defined as intent issued and system resources accessed by applications.
Burguera et al [7] proposed a framework named Crowdroid running on Android OS
platform. The proposed framework collects system call traces, organizes them in bag
of system call representations and applies k-means algorithm to classify them into two
categories: normal and malware. The shortcoming of this technique is the fact that the
system always divides the system call dataset into two classes even if there is no
malware. Amamra et al [8] proposed hybrid machine learning classifiers using stack-
ing method to improve the classification process. The classifiers trained and tested
with system call traces. These system calls are collected from 100 normal applications
and 90 malwares. Hybrid classifiers improve accuracy performance with high compu-
tational cost. Pathak et al [9] proposed a new system calls based on power modeling
framework. This framework consists of two main components: (1) Finite State
Machines (FSM) to model the power states and state transitions of each component as
well as the whole smartphone, (2) testing application suite which leverages the
domain knowledge of system calls to systematically uncover the FSM transition
rules. Buennemeyer et al [10] proposed B-SIPS (Battery-Sensing Intrusion detection
Protection System). B-SIPS monitors the power consumption of Bluetooth and Wi-Fi
communication channels to detect intrusion activities. The anomalous activities are
detected if the power consumption level exceeds the system’s dynamic threshold
value. Power based malware detection technique detects only malwares have an
impact on device power level, whereas many malwares have normal power level
consumption.

 Impact of Dataset Representation on Smartphone Malware Detection Performance 169

3 System Calls Representations

Roughly speaking, a system call trace is a chunk of information. That information is
formatted and organized in a dataset D as shown in Fig 1. The dataset D has a specific
format that expresses how the data is organized. This format is called dataset repre-
sentation and it is used during training as well as detection phases of machine learning
classifiers.

Fig. 1. System call trace transformation to Dataset

Given the dataset D, the purpose of the machine learning algorithms is to find a
classifier C: D {normal, malicious} that maximizes accuracy and minimizes false
positive rate. Dataset representation has an impact on the accuracy and false positive
rate of the machine learning classifier.

For harmony definitions of the three system calls representations, we consider the
set of system calls Σ = {s1, s2, s3… sm}, where m is the number of system calls of op-
erating system. Let Si be finite sequence of system calls and |Si| is the length of the

sequence. Let Σ*
 be the set of all possible finite sequences of system calls, Si∈Σ*. N is

the number of applications (normal and malware) used in training and test phases.

3.1 Successive System Calls Representation

This representation considers the sequential order information of system calls in se-
quence. Formally, this representation can be defined as follow:

Dataset D is a set of finite sequences of successive system calls generated by dif-
ferent executed applications. The dataset D can be defined formally as: D = {<Si, Ti> |

Si∈Σ*, Ti ∈{normal, malicious}} where Si is a finite sequence of system calls gener-

ated by an application i and Ti indicates whether this application is normal or mali-
cious. Fig 2 shows an example of successive system calls representation.

Fig. 2. Successive System Calls

System calls
trace Dataset

Transformation

syscall_983045, prctl, mmap2, gettid, brk, getpriority, futex, clock_gettime,
clock_gettime, futex, open, ioctl, ioctl, mmap2, close, syscall_983042, brk, brk,
futex, futex, futex, futex, mmap2, mmap2, ioctl, sigprocmask, syscall_983042,
futex, futex, sigprocmask, syscall_983045, prctl, mmap2, gettid, brk, getpriority,
futex, clock_gettime, clock_gettime, ⁄, normal

170 A. Amamra, C. Talhi, and J.-M. Robert

The memory complexity of successive system calls representation is depends on
the number of sequences Si in the database (N) and the total length of sequences. The
memory complexity is The total length of sequences is big number,
therefore this representation is costly.

3.2 Bag of System Calls Representation

This representation disregards the ordering information of sequential system calls.
Only the frequency of system calls in the sequence is maintained. Formally, the repre-
sentation can be defined as follow:

Let dataset D be the set of features X. The feature Xi is defined as a list Xi = <n1,
n2, n3, …, nm>, where m =|Σ| and nj is the number of occurrence of a system call sj in
the sequence Si.

Fig 3 illustrates bag system call representation of a normal application. Each num-
ber in the sequence represents the frequency of a system call in application trace. For
example, the numbers 5,0,0,10,75,…. correspond to frequency of the following sys-
tem calls: fstat64, setgroups32, setgid32, setuid32, getuid32 respectively. The last
attribute in figure 3 indicates the sequence for normal application.

5,0,0,10,75,0,0,0,0,0,01,1,3,0,0,4,0,0,0,0,203,25,62,58,0,0,0,0,0,0,0,0,0,0,0,0,35,101,0
,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,4,0,10,0,0,0,0,0,0,0,0,0,0,0,0,513,0,0,0,0,0,0,0,0,97,607
2,1617,142,360,0,1,0,0,0,0,0,0,0,0,90,0,0,0,00,0,0,0,0,0,0,0,108,0,0,0,8,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,85,353,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,25,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,00,0,0,0,0,2575,40,0,0,normal

Fig. 3. Bag System call Representation

The memory complexity of bag of system calls representation is O(N*|Σ|), where N
is the number of sequences and |Σ| is number of system calls. |Σ| is a small number.
For example, Linux 2.6 has 326 system calls [11], then |Σ| = 326. The cost of this
representation is much less than successive system calls representation cost because
|Σ| is very small than

3.3 l-Patterns Frequency of System Calls Representation

This representation combines features of the two previous representations. Pattern-
frequency representation regards the successive order information of system calls in a
short patterns, and regards the frequency of those patterns in a sequence. Formally,
the representation can be defined as follow:

Let P be the set of all possible patterns of length l, P = {p1, p2, p3 …pr}, where r
=|Σl|. Dataset D is set of features Y. The feature Yi is defined as an ordered list Yi =
<n1, n2, n3, ⁄, nr>, where nj is the number of occurrence of a pattern pj in the sequence
Si.

Fig 4 illustrates 3-pattern frequency representation of a normal application. Each
number represents the frequency of pattern of 3 system calls length. For example,
the numbers 15,0,30,219,1,…. represents the following: the pattern: (open, fstat64,

N

i=1

O(N* Σ |Si|).

N

i=1
Σ |Si|.

 Impact of Dataset Representation on Smartphone Malware Detection Performance 171

mprotect) is repeated 15 times, the pattern: (close, close, close) is repeated 0 time, the
pattern: (mmap2, mprotect, clone) is repeated 30 times, the pattern: (futex, futex, get-
timeofday) is repeated 219 times, and the pattern: (access, access, mkdir) is repeated 1
time. The last attribute in figure 4 indicates the sequence for normal application.

15,0,30,219,1,0,0,0,0,0,0,10,0,113,0,0,4,0,0,0,0,2,125,622,58,0,0,0,0,20,0,0,0,0,0,0,0,
35,101,0,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,432,0,10,0,0,0,0,0,0,0,0,33,0,0,0,513,0,0,0,0,0,
0,0,0,0,6002,160,1402,360,0,1,0,0,0,0,0,0,0,0,90,0,0,0,00,0,10,0,0,0,0,0,108,0,0,0,8,0,
0,10,0,0,0,0,385,153,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0
,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3…,normal

Fig. 4. 3-Patterns Frequency Representation

The memory complexity of l-patterns frequency of system calls representation is
O(N*|Σl|), where N is the number of sequences and |Σl| number of possible patterns.
For short patterns (l = 2 or 3) and |Σ| = 326, |Σl| is not big number. This representation
consumes memory little more than bag of system calls representation and much less
than successive system calls representation.

4 Experiments and Results

In this section we examine and evaluate the influence of dataset representations on the
performance of various machine learning classifiers. We measure the performance of
the machine learning classifiers using two standard metrics: Accuracy rate and False
Positive (FP) rate. Table 1 presents the confusion matrix. Confusion matrix holds
information about actual and predicted classes generated by classifier. The perfor-
mance of classifier is measured using the information in the matrix.

Table 1. Confusion Matrix

 Predicted Class
Normal Malware

Actual Class
Normal True Positive (TP) False Positive (FP)

Malware False Negative (FN) True Negative (TN)

In order to compare the performance of various machine learning classifiers, we

employ two standard metrics: false positive rate and accuracy rate.

• False positive (FP) is the quantity of misclassifying normal behaviours as
malicious.

 False Positive Rate (FP) =

• Accuracy rate is the rate of correct predictions over the whole dataset.

Accuracy Rate =

 FP
TP + FP

 TP + TN
TP + FN + FP + TN

172 A. Amamra, C. Talhi, and J.-M. Robert

We experiment the different dataset representations on the following machine learn-
ing algorithms: Support Vector Machine (SVM), Naïve Bayes (NB), Logistic Regres-
sion (LR) and Decision Tree (DT). Those classifiers are obtained from the WEKA
machine learning visual package [12].

The dataset represents a large set of system-call traces of benign and malicious ap-
plications. The normal applications are the top 100 popular free applications in the
official Android applications store (Android market) [13]. The 90 available Android
real malwares are download from [14]. All applications are installed and executed on
HTC Dream device running Android OS 2.2. The number of sequences in the dataset
N = 190 (100 normal applications + 90 malwares). The length of sequences varies
from applications to other. The shortest sequence has 10000 system calls and the
longest sequence has 60000 system calls.

Support Vector Machine (SVM) classifier classifies data by determining a set of
support vectors, which are members of the set of training inputs that outline a hyper
plane in the feature space [15]. Table 2 represents the support vector machine classifi-
er accuracy and false positive rates using different data representations. Pattern-
frequency representation of 2 system calls length and 3 system calls length
outperforms with 100% accuracy rate and 0% false positive rate, whereas successive
system calls representation has better performance than bag of system calls with
95.10% accuracy rate and 6.10% false positive rate.

Table 2. Support Vector Machine Classifier Performance

Dataset Representation

Accuracy rate FP rate

Successive system calls 95.10% 6.10%
Bag of system calls 92.50% 8.50%
2-Pattern frequency 100% 0%
3-Pattern frequency 100% 0%

Naïve Bayes (NB) Classifier is the simplest form of Bayesian network. It is based

on Bayes theorem with heavy independence assumptions [16]. Table 3 shows the
performance of naïve Bayes classifier using different system calls representations.
The 3-pattern and 2-pattern frequency representation has the best performance
(97.10% accuracy rate and 3.10% false positive rate). Bag of system calls representa-
tion has the worst performance (91.30% accuracy and 9% false positive rate).

Table 3. Naïve Bayes Classifier Performance

Dataset Representation

Accuracy rate FP rate

Successive system calls 94.10% 6.30%
Bag of system calls 91.30% 9%
2-Pattern frequency 97.10% 3.10%
3-Pattern frequency 97.10% 3.10%

 Impact of Dataset Representation on Smartphone Malware Detection Performance 173

Logistic Regression (LR) Classifier is a discriminative model. It is based strongly
on the logistic function [16]. Table 4 illustrates the impact of dataset representation on
the performance of logistic regression classifier. The 3-pattern frequency representa-
tion has the highest performance. It has the higher accuracy rate (100%) and the lower
false positive rate (0%). The 2-pattern frequency representation still performs better
than the two classical representations with 97.10% accuracy rate and 3.10% false
positive rate. Bag of system calls representation has the worst performance (92.30%
accuracy and 8% false positive rate).

Table 4. Logistic Regression Classifier Performance

Dataset Representation

Accuracy rate FP rate

Successive system calls 96% 4.10%
Bag of system calls 92.30% 8%
2-Pattern frequency 97.10% 3.10%
3-Pattern frequency 100% 0%

Decision Tree (DT) Classifier is built during training phase. The nodes represent

attributes, the edges represent the possible attributes values, and leafs represent the
classes. The classification start by root node and move down in decision tree relative
to attributes values till reach leaf [17]. Table 5 demonstrates decision tree classifier
influenced by dataset representations. The classifier has better performance with pat-
tern frequency system calls representation than other dataset representation. The 3-
pattern frequency representation has the best performance with accuracy rate 98.20%
and false positive rate 2.10%. Successive system calls representation has the worst
performance with accuracy rate 92.10% and false positive rate 9.40%.

Table 5. Decision Tree Classifier Performance

Dataset Representation

Accuracy rate FP rate

Successive system calls 92.10% 9.40%
Bag of system calls 96% 4.10%
2-Pattern frequency 97.10% 3.10%
3-Pattern frequency 98.20% 2.10%

In summarizing of the above the results, the dataset representation has an important

impact on the performance of machine learning classifiers. With the same dataset size
and type, we have different accuracy rate and false positive rate for the same classifi-
er. The classification process is based on two classification properties: system calls
successive property and system calls frequency property. The SVM classifier has low
performance with bag of system calls representation with 92.50% accuracy rate and
8.50% false positive rate which means SVM classifier is more sensitive to successive

174 A. Amamra, C. Talhi, and J.-M. Robert

classification property than frequency classification property. Naïve Bayes classifier
and Logistic Regression have the same behavior as SVM. Their performance on suc-
cessive dataset representation is better than the performance on frequency dataset
representation. However, Decision Tree classifier is more sensitive to frequency
property than successive property; its performance with bag of system calls represen-
tation (96% accuracy and 4.10% false positive rate) is better than successive system
calls representation (92.10% accuracy and 9.40% false positive rate). The pattern
frequency representation has the better performance over all classifiers because this
representation holds the both classification properties: frequency property and the
successive property of short sequence. SVM classifier reaches its idle performance at
two system calls pattern length. Three system calls pattern is the optimal length for
Logistic Regression classifier. The LR classifier reaches its best performance with
this length. Decision Tree and Naïve Bayes classifier may require longer patterns
length to achieve their idle performance. Longer patterns have more successive and
frequency information; therefore it is more discriminative in classification process.
However, longer patterns require more memory and computation resources. SVM
with 2-pattern frequency representation is the best combination of classifier and re-
presentation because this combination reaches the idle performance with lowest cost.
Table 6 orders the combination (classifier-pattern frequency dataset representation)
according to performance per cost. The worst performance of pattern frequency repre-
sentations is 97.10% accuracy rate and 3.10% false positive rate. However, this per-
formance is better than the best performance of other representations.

Table 6. Classifier-Dataset Representation Order per Performance

Classifier-Dataset Representation

Accuracy rate FP rate

SVM (2-Pattern frequency) 100% 0%
SVM (3-Pattern frequency) 100% 0%
LR (3-Pattern frequency) 100% 0%
DT (3-Pattern frequency) 98.20% 2.10%
LR(2-Pattern frequency) 97.10% 3.10%
DT(2-Pattern frequency) 97.10% 3.10%
BN (2-Pattern frequency) 97.10% 3.10%
BN (3-Pattern frequency) 97.10% 3.10%

5 Conclusion

Dataset representation has a potential impact on the performance of machine learning
classifiers. It increases the accuracy rate and decreases the false positive rate. The
experiments results affirm the performances of classifiers are improved significantly
with same data quantity and type, but with using a new dataset representation. The
3-pattern frequency representation has the best performance over all experimented
classifiers; it reaches the idle performance of SVM classifier and logistic regression
classifier (100% accuracy rate and 0% false positive rate). The cost of improving the

 Impact of Dataset Representation on Smartphone Malware Detection Performance 175

performance by using dataset representation factor is very low relative the other fac-
tors: normal behavior model, dataset size and dataset type. Because dataset represen-
tation keeps the same dataset type and size, the required memory space is few extra
kilobytes. The process of preparing dataset representations is not computationally
expensive. Bag of system calls representation has the lowest memory cost and the
lowest performance. Successive system calls representation has the highest memory
cost and not the highest performance. Short pattern system calls representation has a
few extra memory cost than bag of system calls representation, but it improves the
classifiers performance significantly. The frequency property of system calls in se-
quence is important in classification process and the successive property of system
calls in sequence is also important in the process of classification. However, the pat-
tern frequency property provides advantage by holding the two properties which leads
to better classification process. A new factor improves the performance of machine
learning classifiers with low computation and memory cost is an important step to
implement lightweight machine learning algorithms on Smartphones device. We will
study this approach in the future work.

References

1. Amamra, A., Talhi, C., Robert, J.-M.: Performance Evaluation of Multi-pattern Matching
Algorithms on Smartphone. In: BWCCA, Vicroria, BC, Canada, pp. 329–334 (2012)

2. Amamra, A., Talhi, C., Robert, J.-M.: Smartphone Malware Detection: From a Survey
Towards Taxonomy. In: Malware, Fajardo, Puerto Rico, USA, pp. 89–96 (2012)

3. Bose, A., Hu, X., Shin, K.G., Park, T.: Behavioral detection of malware on mobile hand-
sets. In: MobiSys, Breckenridge, CO, USA, pp. 225–238 (2008)

4. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: Andromaly: a behavioral
malware detection framework for android devices. Journal of Intelligent Information
Systems 38, 161–190 (2012)

5. Xie, L., Zhang, X.: pBMDS: a behavior-based malware detection system for cellphone
devices. In: Third ACM Conference on Wireless Network Security, Hoboken, NJ, USA,
pp. 37–48 (2010)

6. Zhao, M.: RobotDroid: A Lightweight Malware Detection Framework on Smartphones.
Journal of Networks 7(4) (2012)

7. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: Behavior-Based Malware
Detection System for Android. In: Workshop on Security and Privacy in Smartphones and
Mobile Devices 2011, Chicago, USA (2011)

8. Amamra, A., Talhi, C., Robert, J.-M., Hamiche, M.: Enhancing Smartphone Malware De-
tection Performance by Applying Machine Learning Hybrid Classifiers. In: Kim, T.-H.,
Ramos, C., Kim, H.-K., Kiumi, A., Mohammed, S., Ślęzak, D. (eds.) ASEA/DRBC 2012.
CCIS, vol. 340, pp. 131–137. Springer, Heidelberg (2012)

9. Pathak, A., Hu, Y.C., Zhang, M., Bahl, P., Wang, Y.-M.: Fine-grained power modeling for
smartphones using system call tracing. In: EuroSys 2011, Salzburg, Austria, pp. 153–168
(2011)

10. Buennemeyer, T.K., Nelson, T.M., Clagett, L.M., Dunning, J.P., Marchany, R.C., Tront,
J.G.: Mobile Device Profiling and Intrusion Detection using Smart Batteries. In: HICSS
2008, Waikoloa, Hawaii, pp. 1–10 (2008)

176 A. Amamra, C. Talhi, and J.-M. Robert

11. Organization, L.K. Linux 2.6 System calls Table (2013),
https://www.kernel.org/pub/linux/kernel/v2.6/ (cited 2013)

12. Waikato, U.o. WEKA, http://www.cs.waikato.ac.nz/ml/weka/ (cited 2012)
13. Google. Android Market, https://play.google.com/store (cited 2012)
14. Mobile, B.C. Mobile Malwares (2012),

http://contagiominidump.blogspot.ca/
15. Mukkamala, S., Janoski, G., Sung, A.: Intrusion detection using neural networks and sup-

port vector machines. In: International Joint Conference on Neural Networks, New Mex-
ico, USA, pp. 1702–1707 (2002)

16. Smola, A., Vishwanathan, S.V.N.: Introduction to Machine Learning. Cambridge Univer-
sity Press, United Kingdom (2008)

17. Ben Amor, N., Benferhat, S., Elouedi, Z.: Naive Bayes vs Decision Trees in Intrusion De-
tection Systems. In: Symposium on Applied Computing, Nicosia, Cyprus, pp. 420–424
(2004)

	Impact of Dataset Representation on Smartphone Malware Detection Performance
	1 Introduction
	2 Related Work
	3 System Calls Representations
	3.1 Successive System Calls Representation
	3.2 Bag of System Calls Representation
	3.3 l-Patterns Frequency of System Calls Representation

	4 Experiments and Results
	5 Conclusion
	References

