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Abstract . In a world of continuous growth of economies and global population 
eco-sustainability is of outmost relevance. Especially, mobile broadband net-
works are facing an exponential growing traffic volume and so the sustainabil-
ity of these networks comes into focus. The recently completed European 
funded Seventh Framework Programme (FP7) project EARTH has studied the 
impact of traffic growth on mobile broadband network energy consumption and 
carbon footprint, pioneering this field. This chapter summarizes the key insights 
of EARTH on questions like “How does the exploding traffic impact the sus-
tainability?”, “How can energy efficiency be rated and predicted?”, “What are 
the key solutions to improve the energy efficiency and how to efficiently inte-
grate such solutions?” The results are representing the foundation of the matur-
ing scientific engineering discipline of Energy Efficient Wireless Access,  
targeting the standardisation in IETF and 3GPP, strongly influencing academic 
research trends, and will soon be reflected in products and deployments of the 
European telecommunications industry. 

1 Introduction 

This chapter gives an overview of the FP7 project EARTH contributions to a sustain-
able wireless broadband access to the Future Internet. Hence, it summarizes the re-
sults of common work of the EARTH consortium obtained during the project duration 
from January 2010 until July 2012 [1]. 

The Europe 2020 strategy [2] of the European Union aims towards Smart, Sustain-
able and Inclusive Growth for Europe. In all these areas ICT (Information and Com-
munication Technologies) are broadly considered as the lever to enable this growth. 
For instance, the Smart2020 report [3] stated that ICT can lead to emission reductions 
by 15% in 2020 compared to the emissions resulting from “business as usual”.  

A key part of the ICT infrastructure is represented by the Internet evolving to the 
Future Internet. The access to the Future Internet will be dominated by wireless de-
vices. Already now most European citizens witness how much the Internet and mobile 
access to the Internet transforms their ways to live. But this is just the beginning  
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presented. The validation of the theoretical results by tests of prototype implementa-
tions under realistic conditions is described before the chapter is concluded with a 
summary. 

2 Socio-Economic Impact Analysis  

EARTH has developed a methodology that allows to accurately quantify the overall 
global carbon footprint of mobile communications in the period 2007 – 2020 consid-
ering the complete network lifecycle. We identify the energy consumption of global 
RAN (radio access network) operation as a main contributor and further investigate 
the potential impact of EARTH technologies on RAN energy consumption in several 
scenarios.  

The model is based on detailed life cycle analysis of network equipment as well as 
models and data on development of mobile traffic volumes, number of base stations, 
and subscribers globally. We consider all generations of cellular mobile networks 
including all end-user equipment accessing the networks, all business activities of the 
operators running the networks, and the use of fixed network resources as a result of 
data traffic generated by mobile network users. Estimates on the number of mobile 
subscriptions, traffic volumes, and network infrastructure are based on projections 
from analysts Gartner and ABI Research and extrapolated for the period 2015 to 2020 
as part of the EARTH project. For more details we refer to [5]. 

Over the last decade, the energy consumption of RAN equipment has already de-
creased by about 8% per year. This average annual improvement can be attributed to 
the technology scaling of semiconductors, as well as to improved radio access tech-
nologies. Consequently, this 8% per year improvement scenario is taken as a refer-
ence throughout the study and referred to as “continuous improvements”. 

2.1 Global Carbon Footprint of Mobile Communications 

• According to the projection (see Fig.2), the overall carbon footprint of mobile 
communications increases almost linearly until 2020 with annual increase of 
11 Mto CO2e, equivalent to the annual emissions of 2.5 million EU households. 
The emissions in 2020 amount to more than 235 MtoCO2e, corresponding to more 
than one third of the present annual emissions of the entire United Kingdom. Rela-
tive to 2007, the overall carbon footprint will increase by a factor of 2 until 2014 
and a factor of 2.7 until 2020. In the event that only minor efficiency improve-
ments of base station sites and end-user equipment occur, the footprint could even 
increase more than threefold. In contrast, the footprint of the ICT sector as a whole 
is expected to increase by a factor of only 1.7 during the same 13-year period.  

• While RAN operation was by far the largest contributor in 2007, mobile device 
manufacturing will develop an equal share in the overall carbon footprint in 2020. 
The reason for this is that smartphones and laptops represent an actively increasing 
fraction of the devices accessing the network — a trend driven by the demand for 
advanced wireless services and applications, especially video. Compared to regular 
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phones, smartphones and laptops have carbon footprints almost two times and ten 
times higher, respectively. 

• From 2007 to 2020, the annual data traffic volume per mobile subscription is ex-
pected to increase substantially from 0.3 GBytes/year up to 100 GBytes/year. The 
rather moderate linear increase in global footprint compared to the vast exponential 
increase in traffic volume is made possible by 1) strong increase in network capac-
ity through small cells, 2) increasing spectral efficiency and bandwidths in future 
mobile standards, and 3) already existing unused capacity. 

• An estimated number of 100 million femto cells in 2020 will consume about 4.4 
TWh/year, which is less than 5% of that estimated for the global RAN operation in 
2020. We infer that the total carbon emissions due to femto cells are comparably 
small and become significant only if their number approaches the order of 1 billion 
or more globally. 

• The carbon footprint due to manufacturing and operation of M2M communication 
devices will be small, even for a vast number of existing devices in 2020. Here, 
only the actual modem part is allocated to be a part of the mobile network. 

 

Fig. 2. Global carbon footprint of mobile communications in CO2e projected until 2020 

2.2 RAN Energy Consumption and the Potential Impact of EARTH 
Technologies  

As discussed above, a major source of CO2e from the network part of mobile commu-
nications is from the electrical power used for operation of the base stations (BS) in 
the RAN. Focusing on this topic we derived the following observations (see Fig.3): 

• In the reference case of 8% improvements in efficiency per year, the RAN energy 
increases by about 28% in 2020 compared to 2012 (Scenario “Improvements  
8% p.a.” in Fig.3). 
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• Assuming all base stations deployed in the period 2013-2020 use 50% less electric-
ity (the target of EARTH) RAN operation will increase only slightly compared to 
its 2012 value - despite the anticipated growth in traffic demand (Scenario “New 
technologies” in Fig.3). The 50% reduction must be seen as per-site-average due to 
the combined effects of improved hardware as well as better use of the equipment 
through improved radio resource management, smarter deployment, and other im-
provements of the EARTH integrated solution. 

• A significant reduction of RAN operation energy for 2020 is possible if innova-
tions are also implemented in already installed base stations, e.g. through software 
updates, and site modernization (Scenario “Large swap of equipment” in Fig.3). 
Here, we assume a progressive swap-out of almost 40 percent of globally installed 
equipment, where old sites are replaced by state-of-the-art equipment during the 
period 2013 to 2020. 

 

Fig. 3. Global RAN electricity consumption in TWh per year projected until 2020 for different 
scenarios of technology adoption 

In summary, our analysis demonstrates that network operators should focus on sav-
ings in RAN operation. A 50% reduction in energy consumption per site yields sig-
nificant energy savings under realistic assumptions on technology adoption. It shows 
that with the saving target of EARTH it would be possible to keep the total power 
consumption of RANs flat after 2012, despite the expected exponential traffic growth. 
Application of EARTH solutions to the BSs deployed before 2012 would even enable 
to revert the growth in RAN power consumption experienced between 2007 and 2012. 

3 Energy Efficiency Evaluation Framework (E3F) 

When the project started, no widely accepted methodology existed in the mobile in-
dustry and academia to quantify the energy efficiency of a wireless network. Metrics 
and measurement specification for the energy efficiency of individual base stations 
had been specified by the standard body ETSI [6]. However, for a large-scale  
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network, like a national deployment of an operator this is much more difficult to 
achieve. Nevertheless, GSMA has recently provided a framework for the assessment 
and comparison of energy efficiency of large deployed networks in the field [7]. The 
limitation of this benchmarking service is in the assessment of saving potentials. 
Which parts or functions of the network are the main consumers and how much im-
pact would certain improvements, e.g. in hardware or network management, achieve? 
EARTH has undertaken the effort to fill the methodology gap for predicting gains in 
efficiency in theory and in simulations and to build best practice advise for character-
istic network scenarios.  

The EARTH Energy Efficiency Evaluation Framework (E3F) [8] takes as starting 
point the well-known radio network assessment methodology of the Third Generation 
Partnership Project (3GPP), which is focused on small-scale scenarios and provides 
results in terms of system throughput, quality of service (QoS) metrics, and fairness in 
terms of cell edge user throughput. EARTH has extended this to the energy efficiency 
of large area networks with diverse environments ranging from rural areas to densely 
populated cities. The most important addends are a sophisticated power model for 
various base station types, as well as a large-scale long-term traffic model that allows 
for a holistic energy efficiency analysis over large geographical areas and extended 
periods of time (typically 24 hours instead of seconds). The EARTH E3F is illustrated 
in Fig.4 and comprises the following steps: 

1. Small-scale, short-term evaluations are conducted for each deployment environ-
ment (dense urban, urban, suburban and rural) and for a representative set of traffic 
loads, which captures the range between the minimum and the maximum load  
observed in a certain deployment environment. 

2. The system level evaluations provide energy consumption and other performance 
metrics (e.g. throughput, QoS) for each small-scale deployment environment and a 
certain traffic load. 

3. Given the daily traffic profile of a certain deployment environment, the power  
consumption over a day is generated by weighted summing of the short-term 
evaluations. 

4. Finally, the mix of deployment environments that quantify the area covered by cit-
ies, suburbs, highways and villages, yield the global set of the large-scale system 
energy consumption. 

The EARTH E3F has found application in the work of ETSI TC EE on defining how 
to compute “Network Energy Efficiency” [9]. Also the E3F is already well adopted by 
the scientific community (e.g. in the Green Touch initiative [10]). 

3.1 Small-Scale Short-Term System-Level Evaluations 

System level simulations, requiring a lot of computation resources, are not feasible on 
the global scale and can only be executed for individual scenarios (“snapshots”).  
Further, studying snapshots, the E3F enables to identify the most critical contributions 
to the global network and to study the best improvement strategy for each scenario 
individually. 
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c.f. Fig.6(a). This indicates that both urban and rural areas need to be considered, and 
are equally important to consider, when improving energy efficiency of a network. 

The analysis also showed that the network operates at relatively low load levels. In 
the studied network, less than 10 % of the subframes are utilized for transmission of 
user data. Still, due to local temporal and geographical variations certain parts of the 
network must serve a large number of simultaneously active users during shorter time 
periods. The analysis further revealed that for current network design and operation 
the power consumption is only weakly dependent of the traffic load. This is a clear 
indication that the no and low load situations are where the largest energy saving 
potential is. Furthermore, traditionally radio access research both in the academy and 
the industry have been focused on the challenge to achieve as high data rates as possi-
ble for a given maximum transmission power. Therefore current technologies can be 
considered to already be fairly energy efficient during transmission. This further sup-
ports the conclusion that the largest unexplored energy saving potential is to be found 
in low and no load situations.  

The potential of the non-transmitting scenario depends strongly on the considered 
time scale. Considering a traditional O&M time scales of 15 minutes there may not be 
many periods, if any, without any transmissions at all. However, LTE scheduling 
decisions are made per ms, i.e. per every LTE subframe; when addressing this time 
scale instead, the possibility for idle subframes becomes considerable, even in fairly 
loaded cells, something that was seen in the analysis in [8]. 

4 Hardware Solutions and Radio Interface Techniques 

4.1 Hardware Solutions 

Several hardware solutions have been defined as energy efficiency enabling tech-
niques for base station components. Adaptability to signal level or traffic load is the 
key approach for energy efficient operation of base stations. This means that hardware 
or software solutions can decide and adjust their configuration following the traffic 
load variation in order to minimize the power consumption. New power-saving fea-
tures take benefit by the non-uniform load distribution over the day and the short-term 
signal characteristics.  

Investigating the base stations radio equipment aspects, a distinction is done be-
tween components for macro-cell and small-cell base stations due to the different 
origins and their relative weight of power consumption, c.f. Section 3.2.  

The energy adaptive transmit path, defined for macro-cell base station, integrates 
several sub-components (see Fig.7) enabling the component deactivation and adjust-
ment of their operating points in medium and low load situations. The digital signal 
processing unit (DSPU) represents the digital transceiver part and controls the energy 
adaptation of the other analogue transmitter components. The conversion module 
allows the deactivation of some of its components, controlled by the DSPU, for 
minimizing the power consumption when no signal is transmitted. The highest 
amount of power saving is achieved by the adaptive power amplifier which allows the  
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Flexible energy aware baseband signal processing algorithms are mainly beneficial 
in up-link at low signal loads and offer an overall power reduction of about 13% of 
traffic load dependent improvement. For an adaptive conversion module, flexibility of 
different building blocks has been introduced and lead to a traffic load dependent 
power efficiency improvement of 30% on average through SiNAD (signal-to-noise-
and-distortion) adaptation and time/frequency duty-cycling. The reduction of power 
consumption depends on the signal level and shows maximum values of 58% below 
5% of signal load (see Fig.9).  

 

 

Fig. 9. Power consumption of a dual-antenna pico-cell base-station conversion module 

The energy adaptive power amplifier implements the operating point adjustment and 
component deactivation features similar to the power amplifier of the macro-cell base 
station. It allow power reductions up to 55% at low signal load while up to 80% effi-
ciency improvement can be obtained during deactivation. Such a component can be 
easily connected to the conversion module and is controlled via a simple interface. 

4.2 Radio Interface Techniques 

Radio interface techniques utilize the features provided by the hardware solutions in 
order to save energy. The benefit on energy efficiency improvement due to energy 
adaptive component features can be maximized by applying interface solutions acting 
in time and frequency domain. Duty-cycling in time groups the transmitted data over 
time, by maximizing the time-slots without effective transmission. It exploits the en-
ergy saving potential of hardware features which allow deactivating components in 
time slots of no transmission. Duty-cycling in frequency targets to reduce the spec-
tral occupation and the resource elements and thus reduce the power of the transmit-
ted signal. It exploits the energy saving potential of hardware features which adapt 
their operation for maximum energy efficiency to the level of transmitted signals. 

Duty-cycling in time combined with deactivation of components enables discon-
tinues transmission in time domain, called cell DTX. It can be realized in some  
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related transceiver components in situations of reduced traffic load. As traffic load 
varies quickly in a mobile broadband network, the optimization timescale of antenna 
muting must be in the range of milliseconds to prove beneficial. Luckily this lies 
within the limits of what the EARTH hardware can do. With this approach, base sta-
tions designed for highest throughput can be operated in energy efficient way also 
when the traffic load drops. 

The energy efficient use of beamforming techniques, in which an advanced an-
tenna is utilized to direct the transmitted signal in a narrow direction, has also been 
analysed by EARTH. Slow beamforming based on reconfigurable antennas, exploits 
medium/long term variations of traffic in order to save energy. Fast beamforming, on 
the contrary, is immediately following the traffic distribution and can therefore poten-
tially save more energy. Slow beamforming based on reconfigurable antennas is also 
an enabler for certain network management solutions as used for Integrated Solutions. 

5 Network Level Solutions 

5.1 Network Deployment Recommendations 

EARTH has investigated optimal cell sizes. The surprising results are somewhat 
counterintuitive and contradict statements found in the literature, where it often is 
assumed that the lower transmit power of small cells will result in smaller power con-
sumption of the networks. However, EARTH has shown that with realistic power 
models reflecting state of the art of base station hardware (see Fig.5) smaller cell sizes 
increase the total power consumption. Therefore, traditional macro network planning, 
where the distance between base stations (BSs) is adjusted to the maximum inter-site 
distance (ISD) that provides the requested system performance and capacity, is cost 
efficient and also energy efficient at the same time. 

For areas with ultra-high traffic demand in city hotspots, EARTH also investigated 
heterogeneous deployments of large macros with an underlay of small cells (hetero-
geneous networks). It turned out that for such localized high traffic demand, hetero-
geneous deployments are more efficient than a densification of the macro cell  
deployment. Moreover, heterogeneous deployments with femto cells are especially 
beneficial for indoor solutions (13% saving). The results clearly showed that for such 
heterogeneous networks it is key that the macro cells can turn the offloading of their 
traffic into reduced energy consumption, e.g. by using adaptive EARTH BS hardware. 

EARTH also studied the in practical cases very relevant scenario where operator’s 
build on existing legacy (GSM and 3G) deployments. It turned out that a good strat-
egy is that legacy systems will mainly provide the coverage and low-traffic demand-
ing services in a multi-radio access technology (multi-RAT) scenario, while LTE will 
serve the increased capacity needs. This fact is in line with the energy consumption 
optimization, so the multi-RAT networks can be efficiently utilized in heterogeneous 
networks, as well. As a matter of fact, reality is complex so it was also identified that 
adopting more energy efficient RATs should be carefully balanced with the con-
straints coming from the forecast of capacity demand, terminal capabilities, coverage, 
emission limits, etc. As a relevant energy saving enabler it was estimated that site  
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co-location could result in reduction in power consumption up to around 5% due to 
better cooling efficiency. 

Relaying, the well-known technique often used in many wireless technologies to 
improve data transmission at cell-edge or to provide coverage in new areas, has also 
energy saving merits in certain network scenarios. Relays have the potential to be 
energy efficient because they benefit from shorter transmission hops and from the 
additional receive or transmit diversity. So with efficient future relay hardware, instal-
lation of new relay nodes over a macro-only network will be more energy efficient 
than the deployment of additional macro nodes to serve increasing traffic demands. 
From the transmission point of view, several relaying techniques have been com-
pared, and results showed that two-hop half-duplex relaying with hybrid DF/CF for-
warding provides considerable gains in large macro cells. This hybrid technique is, 
however, not supported by current standard releases. Rooftop relays for indoor users 
can provide energy saving compared to macro indoor coverage. 

Beyond the above described techniques focusing on densifying the network, coor-
dination of or cooperation between BSs have been investigated as alternative solu-
tions to cope with increased traffic by utilizing better the available bandwidth of the 
system. We have found that uplink CoMP is more energy efficient than non-
cooperative system for cell edge communication and small cell deployment. Using 
more than three BSs for cooperation is unlikely to be beneficial and energy efficiency 
can mainly be achieved via improvement in spectral efficiency as a result of macro-
diversity. The most effective technology for backhaul is PON (Passive Optical Net-
work) for today's network and AON (Active Optical Network) is a good candidate for 
future networks, where bandwidth requirement per BS is getting closer to Gbps. 

5.2 Network and Radio Resource Management  

The strong requirements on low latency and high system throughput result in that 
resources on average are not fully utilized and networks will keep using only a small 
fraction of their capacity [8] [14] (see Fig.6 for illustration). Therefore a key lever to 
obtain high savings of energy is to dynamically adapt by management the network 
configuration, e.g., by dynamically reducing the number of active network elements 
to follow adaptively the daily variation of the traffic. There is a multifold of ways to 
achieve such network reconfigurability for energy efficiency investigated in EARTH 
(see Fig.11 for illustration).  

Here are some remarkable results. In urban networks, adaptive (de)sectorization of 
base stations can provide 30-60% energy saving without considerable impact on cov-
erage and cell edge user throughput. Furthermore, in case of dense BS deployment, 
not only sectors but complete BSs can be switched off in low traffic hours providing 
15-20% energy saving in single layer networks and 20-25% in vehicular scenarios. 
Heterogeneous networks (Hetnets) are the target of network modernization especially 
in densely populated urban environments as also discussed in Section 5.1. We have 
found that the idea of adaptive cell on/off in heterogeneous networks (even in multi-
RAT environment) can provide 35-40% energy saving meanwhile improving the user 
experience especially in indoor scenarios and in the uplink direction.  
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The experimental studies carried out have shown that already the application of a 
specific EARTH network management solution in a network made up by commercial 
base station allows for daily savings in the order of 15%. This is very well in line with 
the savings predicted by simulations and confirms that integrating such solution with 
the EARTH hardware and the other EARTH solutions has really the potential to  
provide the >50% savings as predicted by simulations (see Section 6). 

9 Summary and Conclusion 

The EARTH project had the ambition to pioneer the research on sustainability and 
energy efficiency of mobile broadband. Indicators that EARTH was successful in this 
are listed in the following bullet points: 

• EARTH developed a methodology, E3F, for assessment of RAN energy consump-
tion and energy efficiency. The methodology has been adopted also outside the 
project in other research initiatives and provides foundations in standardization to-
wards characterizing network energy efficiency, e.g., in ETSI Eco-environmental 
Product Standards. 

• EARTH developed key solutions for improved energy efficiency of such infra-
structure. It found ways to integrate hardware, deployment and management  
solutions efficiently into an Integrated Solution that allows decreasing energy  
consumption by more than 50%.  

• EARTH implemented key constituents of its solutions in hardware and software 
prototypes, illustrating the feasibility and proving validity of the developed novel 
solutions and of their foreseen savings in an operator’s testbed under realistic op-
eration conditions. So EARTH ensured that its theoretical savings will be also 
practical savings. 

• EARTH analysed for the first time the impact of Future Internet on sustainability 
and energy demands of mobile communications infrastructure. It showed that the 
EARTH Integrated Solution allows avoiding an increase of CO2e emissions and 
energy demands whilst expanding the mobile infrastructure to satisfy the future 
traffic demands. EARTH results are therefore pivotal for a sustainable and envi-
ronment friendly growth of mobile broadband communications as needed to bridge 
the digital divide and allowing for smart growth enabled by mobile infrastructure. 

The EARTH project was committed to have a high impact. Fig.17 depicts how the 
EARTH results bring about impact in the different areas. 

Furthermore, EARTH also had impact in standards and in the scientific community 
as well as among the general public. For example, the EARTH white paper “Chal-
lenges and Enabling Technologies for Energy Aware Mobile Radio Networks” pub-
lished in IEEE communication Magazine [17] was in the top ten list of papers 
downloaded in November 2010 [18]. EARTH also was awarded the 4th Future Inter-
net Award at the Aalborg’s edition of FIA in 2012 [19], for its enabling contributions 
to sustainable and environment friendly growth of mobile broadband infrastructure, 
bridging the digital divide and supporting smart growth. The European Commission 
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