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Abstract. We demonstrate in this paper the interoperability and the dynamism
capabilities in SCA-based systems in the context of smart habitats. These capabil-
ities are due to three developed tools: a Python-based OSGi runtime and service-
oriented component model (Pelix and iPOPO, respectively); a tool to publish
SCA services as OSGi services (NaSCAr) ; and a tool to publish UPnP devices
as SCA services (UPnPServiceFactory). By this, we have developed a service
robot and robot pilot agent, which can dynamically add and remove sensors and
widgets. This use case follows and responds to the ubiquitous computing trend
and the runtime adaptivity needed in such systems.
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1 Introduction

One of the biggest concerns in smart habitats is the integration of the often heteroge-
neous networked systems and devices that compose them. One of the principal solu-
tions used in the industry nowadays to ease developers’ burden concerning integration
issues is the use of service-oriented architectures. Thus, service platforms, like UPnP
[1], IGRS [2], Echonet [3] and DPWS [4], are very often used, despite their lack of sup-
port to ease software development, such as component models. Meanwhile, the Service
Component Architecture (SCA) [5] is a technology-agnostic standard for developing
service-oriented components. SCA has several runtime implementations, such as OW2
Frascati[6], Apache Tuscany[7], Oracle Tuxedo[8] and IBM WebSphere Application
Server Feature Pack for SCA[9]. Nevertheless, these platforms (and the SCA specifi-
cation itself) do not take into account another problem inherent to networked systems
and devices: dynamism. In these highly dynamic scenarios, components (i.e. devices)
have dynamic availability, and may appear and disappear several times during the ex-
ecution time. In this demonstration, we present system infrastructure which enables
both the dynamism and the interoperability between two service-oriented component
models (SOCMs), one targeting Java/OSGi applications, and the other Python applica-
tions. This infrastructure consists of a robot whose devices can be dynamically added
and removed. These devices’ information collectors are implemented as components in
Python and Java-based service-oriented component models.
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2 Used Tools

This demonstration software stack is based on four frameworks, the last three being
developed by the authors.

The OSGi Service Platform[10] is the basis for most existing SOCMs, such as
iPOJO [11] and Declarative Services [12], and it is considered as the standard de facto
for modularity in Java. It also offers life-cycle management for its modules and enables
them to interact by means of its service registry. SOCMs ease components development,
by automatically managing SOA mechanisms, such as publication and discovery.

IPOPO is a Python-based service-oriented component model inspired of the iPOJO
component model. As iPOJO turns on the top of an OSGi Service platform, iPOPO is
executed on an Python-based OSGi container called Pelix.

NaSCAr[14] is a tool which transforms SCA composites into OSGi bundles and
deploys them on an OSGi Service Platform. NaSCAr is also based on the iPOJO com-
ponent model and includes a SCA binding extension that enables dynamic service pub-
lication, discovery and binding for SCA composites.

UPnPServiceFactory is a tool which exposes UPnP services in an OSGi Registry.
We intend to present in this demonstration the interoperability between service-

oriented component models enabling software development with Java (OSGi) and
Python, by composing iPOPO and NaSCAr/iPOJO components dynamically. The com-
ponents in the system correspond to sensors (robots) and widgets, which are installed
as plug-ins and used to display data [15].

3 RobAIR, a Telepresence Robot for Smart Habitats

The use of robotics for personal assistance (named service robotics) is growing. It dif-
fers from industrial robotics in that the service robot coexists and cooperates with hu-
mans. In Europe, this area is at the heart of very important societal issues, due to its
aging population. A telepresence robot is a mobile service that allows persons to attend
meetings, visit factories, warehouses, hospital rooms, museums and so forth. It can be
used by technical experts as well as by elderly persons wishing to travel without leaving
their houses. A basic implementation would be a video conferencing system mounted
on a mobile robotic platform, with or without self-motion control.

In this demonstration, we present RobAIR (Robot for Ambient Intelligence Rooms,
depicted in Figure 1), a telepresence robot which can be deployed in smart habitats.

Pilots can remotely control the robot by using an user-agent running on a PC or a
tablet. The hardware platform of RobAIR is based on a Wifibot [16]. We have added
sensors for piloting (e.g. lidar and pan-tilt webcam) and collecting environmental data
(e.g. geiger counter). New sensors can be dynamically plugged to adapt RobAIR to a
specific domain usage (e.g. safety inspection for monitoring elderly people or museum
visits). Their corresponding components can be dynamically installed as well, without
the need to restart the robot. While connected to the robot, the user agent queries the
robots components in order to list the current sensors and then dynamically deploys and
starts the widgets for the visualization of the sensors data (in this case, radiation level).

The software components inside RobAIR were developed using a SOA approach.
They were modeled as SCA components. These components were deployed on an OSGi
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Fig. 1. RobAIR - platform and sensors (geiger, toxic gaz)
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Fig. 2. SCA Modelisation of RobAIR’s Robot and Pilot components

platform in both pilot and robot, thanks to NaSCAr and UPnPServiceFactory capabili-
ties. The complete architecture (containing the robot and the pilot’s user-agent) is repre-
sented by the Figure 2. Black boxes represent Python components, whereas white boxes
correspond to Java components.

The robot and the pilot’s user agent composites are bound to each other at run-
time. The robot composite publishes its services using the UPnP protocols. Pilot’s user
agent can discover this service and get its description inside a network, like Small-
office/Home-Office (SOHO). We have implemented a set of UPnP Device Control Pro-
tocols containing three distinct services: a RobotPilot service, for piloting the robot;
a SensorCollect service, to collect the robot sensors; and a XMPPSession service, to
allow a XMPP audio/video session between the robot and pilot agents.

The two main components are implemented in Java. Inside the Robot composite, the
sensor components (i.e. SGaz, SGeiger and SLidar) collect the data from their corre-
sponding sensors. They are instantiated and bound to the component RCore when the
sensor is plugged to the robot’s main board USB connectors, by the means of the UP-
nPServiceFactory tool. The component RCore is also connected to the JITSI component
in order to exchange audio/video between the robot and the pilot. In turn, inside the Pilot
composite, the widget components (i.e. WGaz, WGeiger and WLidar) display collected
sensors data. They are instantiated and bound to the component PCore when RCore no-
tifies changes in the robot’s sensors configuration. In addition, controllers (such as Nin-
tendo Wii’s Nunchuk and keyboards) can be dynamically bound to PCore for piloting
the robot.
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4 Conclusions

This demonstration paper presents the dynamic and opportunistic composition of het-
erogeneous services in the highly-variable context of smart habitats. Most of the im-
plemented components aimed to dynamically integrate heterogeneous legacy and off-
the-shelfs components, like ROS[17] (250 KLoC in C++) and JITSI[18] (750 KLoC
in Java). More information about RobAIR can be found at http://air.imag.fr/
mediawiki/index.php/RobAIR-Wifibot .
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