Towards Automated and Correct Composition
of Timed Services

Daniel Stohr and Sabine Glesner

Technical University of Berlin, Chair Software Engineering for Embedded Systems,
{daniel.stoehr,sabine.glesner}@tu-berlin.de
www.pes.tu-berlin.de

Abstract. The design of programs controlling distributed components in
safety-critical domains can be very error-prone and time-consuming. Espe-
cially in the presence of real-time requirements the correctness with respect
to functional and non-functional properties must be guaranteed. To this
end, we develop a technique for the automated and correct composition
of timed services based on timed i/o automata, the temporal logic TCTL,
and planning algorithms based on model checking. Thus, we can speed up
the development of controller programs while assuring correctness.

1 Introduction

The development of controller programs coordinating distributed components in
safety and time-critical environments is a very complex task. On the one hand,
the correctness with respect to functional and non-functional properties, like
timed behaviour, has to be assured. This can be achieved by using verification
techniques, e.g., model checking, which automatically proves total correctness
but significantly increases the quantity and length of development cycles. On
the other hand, development time has to be short to achieve a small time-to-
market. In our work, we address the problem of closing the gap between these
opposites with development methods assuring correctness by construction.

For this purpose, we lift the problem of creating a controller model to the
problem of automated service composition. Our method shall be able to generate
controller models for a given set of timed services with respect to functional and
non-functional (especially timed) requirements. We describe the behaviour of the
services as timed i/o automata (TIOA) and the composition requirements in the
temporal logic Timed CTL (TCTL). The generated controller, which is an orches-
trator in the context of service-oriented computing, is a TIOA handling the input
and output actions of the individual automata. To realize our approach, we extend
planning as model checking which is already able to deal with untimed automata-
based planning domains and CTL goals. We extend the theory of planning as model
checking by introducing time in terms of real-valued clocks. In this paper, we re-
port on our first results with which we can automatically generate plans for a set
of timed services and requirements given in a restricted subset of TCTL.

A particularly interesting domain for our approach is the synchronization of
medical devices. Here, functional and real-time requirements have to be met in

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 319-B3T] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

320 D. Stohr and S. Glesner

order to guarantee the patient’s safety. We show the applicability of our approach
through case study where distinct components of a PCA (patient-controlled
analgesia) pump have to be controlled to guarantee functional and time-related
requirements. In our case study, we have closed components within a device that
can be controlled over a central software. Likewise, other scenarios where distinct
devices need synchronization over a network are also possible.

Briefly summarized, the contributions of this paper are:

e We outline an approach realizing the automated composition of timed ser-
vices by utilizing planning algorithms based on model checking. Timed i/o
automata describe the input services, TCTL formulas describe the composi-
tion requirements.

e We present our extensions of the existing planning algorithms and we have
implemented a prototype realizing planning for a subset of TCTL.

e We provide a case study for our approach that cannot be handled by current
composition and planning techniques.

The rest of this paper is structured as follows. In Section 2] we give the back-
ground for our work. We present the concept of timed i/o automata and TCTL,
along with a running case example for our approach. Also, we discuss planning
as model checking. In Section Bl we describe the concept of our overall approach,
and present our extensions to the symbolic planning algorithms. Afterwards, in
Section [we describe our prototype implementation. In Section [B] we discuss
related works for automated service composition and temporal planning. Finally,
in Section [6, we give a conclusion and outline future work.

2 Preliminaries

In this section, we present the background of our work. In Section 2] we de-
scribe timed i/0 automata and in Section [Z2] the temporal logic TCTL. In both
sections, we introduce the case example for our approach. Finally, in Section 2.3
we describe the concept of planning as model checking in detail.

2.1 Timed I/O Automata (TIOA) and Case Example

Timed i/o automata (TIOA), as proposed by David and Larsen [I], enrich the
concept of timed automata by adding input and output signals and the concept
of parallel composition over signals belonging together.

A TIOA is a tuple A = (Loc, qo, Clk, E, Act, Inv) where Loc is a finite set
of locations, gy € Loc is the initial location, and Clk is a finite set of clocks.
E C Loc x Act x B(Clk) x 2€% x Loc is a set of edges with timed guards (B(Clk)
are all Boolean expressions over Clk) and a set of clocks to be reset. Finally,
Act = Act; U Act, U {7} is a finite set of actions consisting of disjunct sets
of input and output actions and the symbol 7 for transitions without actions.
Inv : Loc — B(ClE) is a set of location invariants.

The parallel composition TA;||TAs of TIOA is similar to building up the
crossproduct. If an in- and output signal belong together, both transitions are
combined as one parallel transition.

Towards Automated and Correct Composition of Timed Services 321

It has been shown that web service compositions, e.g. in WS-BPEL or WS-
CDL, can be translated into timed automata and vice versa [2]. Service instances
are represented as single automata, messages as synchronized actions, and wait
durations or timeouts as guards and invariants. Thus, web services compositions
can be analyzed and verified by model checking.

Figure [I] shows the visual representation of a TIOA and gives a use case for
our approach. It shows a simplified version of a system controlling a PCA pump
[3]. These pumps administer the pain medication for a patient by delivering drug
doses at a basal rate. The complete use case contains further requirements. E.g.,
the pump can raise alarms or the patient can signal the system to give a bolus
injection if his pain level is too high. However, the first-mentioned requirement
is sufficient for illustrating the benefit our approach, as it cannot be solved by
existing tools for automated composition or AI planning (see Section [Hl).

ul Controller WaitFor- Pump

Stopped Idle
Start
) start _/
start? inject!
stop! .= inject | c:=0
start! p stop c:=0 stop? 2

inject! .

Started €1>=5 InjLoop Injecting
cy:=0 €1<=5 <=0

Fig. 1. Composition of TIOA describing the components of a PCA pump and a con-
troller

The system consists of a TIOA UT representing the user interface that turns
the pump on and off via the output signals start and stop. The other component
is described by Pump which just waits for the input signal inject triggering an
injection dose and resetting the clock co. Then, the state Injecting is entered
and left without letting time progress. This is realized by using an invariant.

The TIOA Controller performs the composition according to the above-
mentioned requirement. With our approach, we generate such a controller out
of a formal requirements specification. In its initial State WaitForStart, the
controller waits for the signal start to turn on the system and to reset the clock
¢1. The drug injection has to be triggered in a specific interval (here, 5 time units).
The invariant of InjLoop and the guard and clock reset on the loop transition
ensure that the signal inject is emmited every 5 time units. Thus, the controller
guarantees the injection rate defined in the composition requirement.

! Our composition requirements leave some flexibility in the controller’s design. The
controller shown in our example triggers the first injection 5 time units after the
system has been started. A controller injecting immediately after the start would
also be valid but would have to guarantee that the user cannot bypass the safetey
requirement by switching fast between start and stop. Our extended planning algo-
rithms would generate the latter version. However, to improve the comprehensibility
of our example we have chosen the former version.

322 D. Stohr and S. Glesner

2.2 Timed CTL (TCTL)

The Timed Computation Tree Logic (TCTL [4]) is an extension of CTL with
clock constraints. TCTL can be used to describe conditions on branching paths
in timed i/o automata. The language is defined as follows.

where p is an atomic proposition, and y are clock variables, and ¢,d € N.

The semantics of the logical (A, =) and relational (<) operators are defined as
usual. The temporal operator E(®; UP5) holds iff there exists a path preserving
&1 until P5 holds. A (P UPy) is defined analogously for all paths. x.P is the reset
quantifier. Iff clock x is zero, then @ holds.

Logical (V, —, <») and relational (<, >, >) abbreviations are defined as usual,
too. The temporal abbreviations EFp and EGp hold iff there exists a path where
p holds eventually, respectively forever. AFp and AGp are defined analogously
for all paths. Finally, EF.p with ¢ € N holds iff there exists a path where
eventually p holds in less than ¢ time units.

In the following, we show the requirements of our case study (see Figure [I])
expressed as TCTL formulas. In our approach, these formulas are used to auto-
matically generate the controller.

(1) AG(Started —» (AG AFInjecting))
(2) AG(Injecting — ~EF_5Injecting)
(3) AG(Injecting — Started)

Requirement (1) describes that whenever the system is started, the drug in-
jection must take place repeatedly. Requirement (2) defines the injection rate.
Whenever the state Injecting has been entered, it may not be reached again
in less than 5 time units. In this scenario, our extended planning tool would
solve the goal AFInjecting as soon as possible. Hence, these two requirements
are sufficient for generating a controller injecting every 5 time units. At last, we
need our safety requirement (8), stating that the injection may only be triggered
while the system is activated.

2.3 Planning as Model Checking

Methods of Al planning generate plans solving problems in a given domain. In
planning as model checking [5] the domain is described in an automata-based
model and the planning problem consists of sets of initial and goal states. A plan
is a list stating which action has to be performed in which state, to reach a goal
state from an initial state.

However, the problem of identifiying paths leading to the goal is similar to
the counter example generation in model checking where a path leading to a
violated property is computed. Hence, planning as model checking reduces the
planning problem to a model checking problem. As described in Section [we
extend planning as model checking to cope with time and realize the automated
composition approach.

Towards Automated and Correct Composition of Timed Services 323

In the following, we give the basic definitions for planning domains, planning
problems, and plans. Afterwards, we show how the planning problem can be
solved via symbolic model checking.

Basic Definitions. A planning domain is a tuple D = (P, S, A, R) where P is
a finite set of propositions, S C 27 is a finite set of states, A is a finite set of
actions, and R C S x A x S is the transition relation.

A planning problem is defined as a tuple P = (D, I, G) where D is a planning
domain, I C S is a set of initial states, and G C S is a set of goal states.

Plans for a given domain D = (P, S, A, R) are expressed as a state-action table
m C{(s,a)ls € S,a € A,3s" € S: R(s,a,s’)}. State-action tables can be ezecuted
within a domain by starting in an initial state and performing the corresponding
action for each state. With regard to non-determinism, the execution may take
different execution paths through the domain.

Finally, a strong plan for a domain D = (P, S, A, R) and problem P = (D, I, G)
is a state-action table where each execution path starting in a state of I leads to
a state in G. A strong plan is calculated by using the following function:

Ezxec(s,a) = {s'|R(s,a,s")}

StrongPreImage(S) = {(s,a)|0 # Exec(s,a) C S}

StrongPreImage explores all state-action pairs that lead into the set of states S
while taking non-determinism into account. The planning algorithm applies that
function on the set of goal states, then, on the union of the newly explored and
goal states, and so on. The plan generation fails if a fixpoint is reached before all
initial states are explored. Otherwise, the set of all collected state-action pairs
forming the strong plan, is returned?.

Planning with CTL formulas as planning goal is also offered [5]. Here, the
complex goal is divided into smaller subgoals that are resolved by using functions
similar to the preimage function.

Symbolic Planning. Planning as model checking
uses techniques of symbolic model checking to solve ° b 0
the planning problem with logical operations. At first, 6

the planning domain is described by Boolean formu-
las. Then, the preimage function can also be described Flg 2. A planning do-
symbolically by using logical operators. main

We give a small example for a planning domain in Figure 2] consisting of two
states p and ¢, a loop transition on p using the action a, and a transition between
p and ¢ using action b. The domain is described by the following fomulas:

Ti=pAaAp States = (p A —q) V (—p A q)
Ty =pAbAq Actions = (a A —b) V (ma A D)
T=T,VTy D =T A States A\ Actions

Every state of the domain is represented by two Booleans p, p/, ¢, and ¢’. Un-
primed state variables describe the source of a transition, the others the desti-
nation. The actions are represented by the boolean variables a and b.

2 The complete algorithm uses an additional function ensuring that a state is not
explored twice. We have ommited that function due to lack of space.

324 D. Stohr and S. Glesner

T, describes the loop transition where each conjunct describes an element of
the tuple describing the transition in the set-based representation. 75 describes
the other transition. The set of Transitions is described by 7. The formulas
States and Actions state that only one state or action may be active at once.
Finally, D represents the whole planning domain.

Building on the system’s symbolic description, the preimage function is defined
symbolically, too. To this end, quantified Boolean formulas (QBFs) are used. QBF's
extend propositional logics by universal and existential quantifiers. If @ is a for-
mula and v one of its variables, then Vv.® is equivalent to ®[v/True] A®lv/False].
The existential quantification is defined analogously using the logical or.

The symbolic preimage function is defined as follows, where S is the formula
describing the set of input states (e.g., p’ V ¢’ or just p’) and D is the formula
describing the planning domain.

StrongPrelmage(S) =Vp',¢'.(D — S)A3Ip',¢'.D
The preimage function is applied in the same way described for the set-based
function. Other operations performed in the complete algorithm, are also per-
formed using logical operators. By doing this, very large sets of states can be
handled in compact formulas and, hence, the amount of memory usage and com-
putation time can be reduced.

3 Automated Composition of Timed Services

In this section, we describe our approach for the automated and correct com-
position of timed services. A set of service interfaces, expressed as TIOA, and
composition requirements, expressed as TCTL formulas, serve as input. The
output is a generated orchestrator, i.e. a central automaton. We do so by using
planning algorithms based on model checking where the set of services becomes
the planning domain and the composition requirements become planning goals.

Firstly, in Section B we outline the overall concept of our approach and
how we transform the composition problem into a planning problem. Secondly,
in Section B.2] we give a detailed description of our extensions to planning as
model checking, which realize the composition process. At this moment, we have
realized the extensions for a subset of TCTL (formulas in the form of A(-¢Uy))
describing unsafe states ¢ and a goal state). However, our results can be
extended for full TCTL support.

3.1 Methodology of Our Approach

) TCTL
With our approach, we transform the Formulas

problem of automatically composing

.) . . TA; —>7—>TA,
timed services into an AI planning \ 7

problem. The methodology is visual- A

ized in Figure[Bl As input we take a set

of TIOA TA, ..., TA, describing ser- Fig.3. Our approach for the Automated

vice interfaces. TAH’ the parallel com- g Correct Composition of Timed Services
position of these automata, serves as (ACCTS)

T

Towards Automated and Correct Composition of Timed Services 325

planning domain. As composition requirements, which describe the properties
of the overall composition, we use TCTL formulas reasoning on states and tim-
ing constraints. In our example the input automata are UI and Pump, while
the composition requirements are a conjunction of the functional and safety
requirements.

Afterwards, we use our algorithms for timed planning as model checking to
build up a plan 7 controlling the domain with respect to the composition re-
quirements. The plan is used to build up our controller TAx, the TIOA that
orchestrates the overall composition.

Existing planning techniques cannot deal with timed domains and require-
ments of that expressiveness (see Section B.2)). Hence, we decided to extend
the algorithms of planning as model checking that already solves CTL goals in
planning domains based on untimed automata. To overcome this restriction, we
introduce clocks into the planning theory. In the next section, we describe first
extensions we have realized.

3.2 Extending Strong Planning with Time

In the following, we describe how we cope with time by extending the structures
and algorithms of planning as model checking (see Section 23]). Analogously
to TIOA (see Section 21I), we add clock variables, guards, and invariants. For
additionally extending the expressiveness of strong goals, we also introduce a
possibility to express unsafe states, which a plan has to avoid. Thus, we can
plan with TCTL formulas in the form of A(—¢U) where ¢ describes the set
of unsafe states and 1 describes the set of goal states. Subsequent, we describe
how we shifted our extensions to the symbolic representation.

Basic Definitions. A timed planning domain is a tuple

Dz = (P, S,Clk, A, R, Inv). As before, P is a finite set of propositions, S C 2°
is a finite set of states, and A is a finite set of actions. Additionally, Clk is the set
of clock variables and R C S x A x B(Clk) x 2°% x S is the transition relation
enriched with a guard and a set of clocks to be reset. Inv : S +— B(Clk) are the
timed invariants of the states.

A timed planning problem is defined as a tuple Py = (Dp,I,U, G) where D
is a timed planning domain and I, U, G C S x RSIF are initial, unsafe, and goal
states connected to clock values. Here, Rgf)’“ (an abbreviation for the mapping
Clk — Rg) is a valuation of the clock variables.

For (s,v),(s,v") € S x REYE (a state and corresponding clock valuation) a
discrete transition (s,v) < (s/,v’) exists, if there exists a tuple (s, a, g, res, s') €
R such that v' = v[res], v = g, and v’ |= Inv(s’). v[res] denotes the valuation v
with all clock in res reset to zero.

We express plans for a given timed domain Dr as a timed state-action table
7 C {((s,v),a|(s,v) € S x RS¥ a € A, 3(s',v") € S x REYF : (s,v) = (s/,0')}.
The ezecution of a plan and the resulting ezecution paths do not only consist of
performing actions. Also time progress, called time transitions, can occur where

326 D. Stohr and S. Glesner

the clock valuation is increased for all clocks synchronously (within the bounds
of the invariants).

Finally, a strong plan for a timed domain D7 and timed problem P is a state-
action table where each execution path starting in a state of I leads to a state
in G. For the calculation of strong plans, we extend the preimage function, as
follows:

Ezec((s,v),a) = {s'|(s,v) = (s',0')}
Sv=A{(s,v—=4d)|(s,v) e SAdERsgAv—d >0A(s,v—d) E Inv(s)}
StrongPreImage(S,U) =

{((s,v),a)|0 # Ezec((s,v),a) €S/ M E=Inv(s)As¢ U}

We extended the Exec function which computes all possible results of executing
an action in a state and which now considers guards and invariants of s’ by
using discrete transitions. Also, we define the / operator which is common
in the model checking of timed automata. The argument is a set of states S
and the result are all states that can be reached from S by letting time progress
backwards. In our extended StrongPrelmage function, we apply the ,/ operator
to the set of states S (which are the goal states and already discovered states
leading to the goal). Thus, we ensure that not only the execution of actions but
also time progress is considered. The preimage function now calculates those
states that can reach a state in S immediately by executing an action, or by
letting time progress and then executing an action. Moreover, we now enforce
that the StrongPrelmage function considers the invariant of the state s and
ensure that s is not part of the unsafe states in U.

In the fixpoint algorithm, the StrongPrelmage function is initially applied
to the goal states, then to the states of the resulting state-action pairs, and so on.
Thus, we explore the states that can reach the goal states while avoiding unsafe
states. The algorithm terminates if the initial states are reached and fails if a
fixpoint is reached. Our extended algorithm still terminates, because we have
a finite set of states, clock values cannot be lower than 0, and we only use the
v operator. At some point of time, the algorithm will have explored all states
and will have counted all clocks to 0 (resp. to the lowest bound enforced by
the invariants). Thus we will reach a fixpoint from any given set of states and
corresponding clock valuations.

Mapping TIOA into Timed Planning Domains. Our extensions allow us
to map the service interfaces, resp. TIOAs, into timed planning domains. As de-
scribed in SectionB.d], we do so by building the parallel composition of all required
services. The resulting single automaton Ay = (Loc, q0, Clka, E, Act, Inva) can
easily be mapped into a timed planning domain Dy = (P, S, Clkp, A, R, Invp).
Firstly, we have a property in P for each location in Loc. The set of domain
states S ensures that only one property may be true at a timdd. The sets of clock

3 For higher efficiency it is possible to encode the set of locations as a combination of
property values. Another possibility is to allow more than one active property at a time
by translating the states of the original parallel automata. However, investigating the
efficiency impact of these alternative solutions will be part of future work.

Towards Automated and Correct Composition of Timed Services 327

variables Clk s and Clkp, as well as the action labels Act and A are identical.
Now the transition relation R and the invariants Invp can be built up out of E
and Inva by matching properties and corresponding locations.

Symbolic Planning. For the symbolic planning algorithms, we firstly enrich
the system’s symbolic representation clock variables and clock constraints. We
illustrate this, by using the Pump automaton (see Section 2]) transformed into
a timed planning domain:

Ty = Idle Ainject! A ¢y = 0 A Injecting’

Ty = Injecting A —inject! A ¢y = co A Idle’

T=T,VT,

States = (Idle A ~Injecting) V (—=Idle A Injecting A ca < 0)

Actions = (inject! V —inject!)

D =T A States N\ Actions

As in the untimed version, we still have variables for all propositions and actions.
We add the real-valued clock variables ¢1, ¢}, ¢a, and ¢ for describing clock val-
ues before or after discrete transitions, and for describing invariants. Formula
Ty describes the left transition of Pump. Source, action, and destination are de-
noted as before. We add the expression ¢4 = 0 describing the clock reset. If the
transition contained a guard, the correpsonding exepression would refer to cs.

Also, we need to consider clock variables in the States formula. Here, we add
the invariant co < 0 of Injecting. The other formulas, Ty, T, Actions, and D
are built up as before, since they do not directly refer to clock variables. The
expression —inject! means that no action is active and stands for 7 in the set-
based representation.

For the symbolic representation of our extended preimage function, we in-
troduce further quantifications over the clock variables, the operator, and
consider the unsafe states U:

StrongPreImage(S,U) =Vp', ¢, ¢\, ch.(D = S /)N, ¢,), ch.(D A-U)

The additional quantifications remove the clock resets from the formula D, leav-
ing only the preimage states, corresponding actions, and guards. The result char-
acterizes the states that can reach S immediately or after time progress.

In summary, our approach provides a methodology for the automated composi-
tion of timed services. By transforming the composition problem into a planning
problem and by using techniques of model checking, we ensure the correctness of
resulting compositions. Within our approach, service interfaces are represented
as TIOA and composition requirements as TCTL formulas. So far, we have
realized extensions to the existing planning algorithms, that allow us to solve
planning goals in the form of A(—-¢U1) where ¢ are the unsafe states and 1
are the goal states. However, our results can be further extended for full TCTL
support. In Section [6] we outline how these extensions can be realized.

4 Implementation with MDD+ CRDs

For evaluating our first extensions, we have implemented a prototype. To work
with logical formulas and operators, we used the open source library REDLIB [6]

328 D. Stohr and S. Glesner

which offers multi-decision- & clock-restriction-diagrams (MDD+CRDs), a data
structure representing Boolean formulas with Boolean, discrete, and clock vari-
ables. The usual logical operators, variable quantification, and the ,/ operator
are also included. MDD+CRDs were developed for the model checking of timed
automata and RED, a model checker based on REDLIB, performs very well
in time and space compared to other established model checking tools [7]. Al-
gorithms of model checking generally lead to a high complexity. But by using
REDLIB, we hope to improve the scalability of our implementation.

Our prototype takes an xml representation of TIOA and a planning problem,
resp. a set of goal and unsafe states, as input. The output is a plan solving the plan-
ning problem. Our whole algorithm is executed by performing logical operations.

We tested our prototype by generating a plan for our case study with the
simplified, non-cyclic composition requirement A(—-Injecting U (Started A
Injecting))). Also, we generated plans for other small examples. Our evaluation
led to promising results where plans have been generated within milliseconds
(under Ubuntu 10.04 on an Intel i5, 2,7 Ghz with 2GB RAM). However, for a
profound evaluation of the scalability, we will need much larger examples and
full TCTL support.

5 Related Work

In this section, we present works related to our approach. In Section Bl we dis-
cuss approaches for automated service composition. In Section [(.2] we examine
techniques for temporal planning.

5.1 Automated Service Composition

The majority of techniques for automated service composition do not consider
time as a service property or composition requirement. The astro framework
[8], e.g., uses planning as model checking to automatically generate a BPEL
composition out of a given set of web services and composition requirements.
Here, the way how the planning theory was utilized to solve the composition
problem is similar to our approach. This work is not able to deal with timed
service behaviour or timed requirements. However, timed capabilities are one of
the main characteristics of our proposed approach.

Most approaches on the composition of timed services regard time as a mea-
surement for communication latency between world-wide distributed services [9]
or telephone servers [I0]. They consider time as a Quality of Service criterion
that serves as parameter for choosing a proper service instance during the com-
position process. In our work, we see time as a part of the service’s behaviour
and functionality itself.

To the best of our knowledge, there is only one approach realizing automated
service composition with timed composition requirements [I1]. In contrast to our
approach, this work offers a very low degree of automation because the overall
workflow of a BPEL composition has to exist before timed requirements can

Towards Automated and Correct Composition of Timed Services 329

be woven into the workflow according to specification. In contrast to that, our
approach offers a very high degree of automation by generating the workflow of
the composition from scratch.

We proposed our approach in an earlyier work [12]. This work only presented
the overall concept of the approach. Now, we have refined the concept itself,
realized first theoretical foundations, and implemented a prototype.

5.2 Temporal Planning

There are several temporal planning tools of which most only allow planning
goals that consist of one or more goal states and deadlines [13[14]. Others create
a schedule for a list of atomic actions with regard to specified interaction con-
straints [I5]. These tools are not applicable to our domain because we need to
support more complex TCTL goals. In the following, we discuss two temporal
planning tools that are interesting with regard to the expressiveness of their goal
languages.

The TALPlanner [16] plans over domains and goals expressed in a first order
logic, the temporal action logic (TAL). TAL formulas allow the quantification over
discrete or clock variables and provide operators that put actions and variable
changes in a causal correlation. In contrast to TCTL, TAL specifies linear (op-
posed to branching) behavior. Moreover, TAL reasons on actions actions, while
TCTL reasons on states. Hence, TAL does not cover the expressiveness of TCTL.

Uppaal-TIGA [I7] solves game-theoretical problems on timed game automata
with respect to reachability or safety properties expressed in a subset of TCTL.
These goals do not allow the nesting of TCTL operators or the conjunction
of goals using temporal operators. Hence, it is not possible to consider, e.g.,
the cyclic appearing reachability goal we use in our example (requirement (1)
in Section [Z2)). The formulas that can be expressed are hard-coded into the
algorithms. In constrast to that, the results of our apporach can be continued
for full TCTL support.

6 Conclusion and Future Work

In this paper, we have presented first theoretical foundations of our approach for
the automated and correct composition of timed services by using timed i/o au-
tomata, TCTL, and planning algorithms based on model checking. With our first
extensions to the existing untimed planning algorithms, we can generate plans
fulfulling composition requirements expressed in a subset of TCTL (formulas in
the form of A(—¢U?1)). Thus, we already cover those composition requirements
where a state has to be reached under occlusion of unsafe states. Moreover, we
have implemented a first prototype realizing our extended algorithms. We evalu-
ated our approach by generating the plan for a simplified version of our case study
where the composition requirements can be expressed in the above-mentioned
subset of TCTL.

330 D. Stohr and S. Glesner

In future work, we will realize the support of whole TCTL formulas as planning
goals, similar to the extensions for strong planning. Yet, no other automated com-
position and no planning approach is able to deal with with the expressiveness
of full TCTL formulas. The existing algorithms for simple CTL goals [5] divide
complex goal formulas into atomic subgoals. According to the corresponding
CTL operators, the reachability of subgoals is symbolically calculated by using
functions similar to the preimage function. For supporting clock variables, we
will extend these functions in a similar way, as we did here.

Furthermore, we introduce TCTL’s reset quantifier, x.®, as a new subgoal.
z.9 bounds a new clock variable x to an expression @. In the planning context,
@ is a set of subgoals. To solve these goals, we add the new clock variable to
the system’s symbolic description and assure that x must be zero every time a
subgoal of @ is activated.

Morover, we want to realize the translation of the generated plans into an
orchestrator, i.e., a central timed i/o automaton performing the composition.
Hence, we will adapt and extend a work translating plans into BPEL composi-
tions without considering time [8]. Moreover, we will perform a larger case study
where a PET/CT scanner has to be synchronized with other medical devices
over a network. This allows us to investigate the scalability of our approach in
the context of real-life applications.

References

1. David, A., Larsen, K.G., Legay, A., Nyman, U.: Timed I/O Automata: A Complete
Specification Theory for Real-time Systems. Science (2010)

2. Gregorio, D., Cambronero, M.E., Pardo, J.J., Cuartero, F.: Automatic generation
of Correct Web Services Choreographies and Orchestrations with Model Checking
Techniques. In: International Conference on Internet and Web Applications and
Services, AICT-ICIW 2006 (2006)

3. Arney, D., Jetley, R., Jones, P., Lee, 1., Sokolsky, O.: Formal Methods Based Devel-
opment of a PCA Infusion Pump Reference Model: Generic Infusion Pump (GIP)
Project. In: Joint Workshop on High Confidence Medical Devices, Software and
Systems and Medical Device Plug-and-Play Interoperability (2007)

4. Alur, R.: Techniques for Automatic Verification of Real-Time Systems. PhD thesis,
Stanford University (1991)

5. Pistore, M., Bettin, R., Traverso, P.: Symbolic techniques for planning with ex-
tended goals in non-deterministic domains. In: 6th European Conference on Plan-
ning (2001)

6. Wang, F.: REDLIB A Library of Integrated BDD-like Diagrams for Dense-Time
Model Verification (2012)

7. Wang, F.: Efficient verification of timed automata with BDD-like data structures.
International Journal on Software Tools for Technology Transfer 6(1), 77-97 (2004)

8. Pistore, M., Traverso, P., Bertoli, P.: Automated Composition of Web Services by
Planning in Asynchronous Domains. Artificial Intelligence 174 (2005)

9. Moussa, H., Gao, T., Yen, I.L., Bastani, F., Jeng, J.J.: Toward effective service
composition for real-time SOA-based systems. Service Oriented Computing and
Applications 4(1) (2010)

10.

11.

12.

13.

14.

15.

16.

17.

Towards Automated and Correct Composition of Timed Services 331

Lin, L., Lin, P.: Orchestration in Web Services and Real-Time Communications.
IEEE Communications Magazine (July 2007)

Kallel, S., Dinkelaker, T., Mezini, M., Charfi, A., Jmaiel, M.: Specifying and Mon-
itoring Temporal Properties in Web services Compositions. In: Seventh IEEE Eu-
ropean Conference on Web Services (2009)

Stohr, D., Glesner, S.: Automated Composition of Timed Services by Planning
as Model Checking. In: Proceedings of the 4th Central European Workshop on
Services and their Composition (2012)

Do, M.B., Kambhampati, S.: Sapa: A Domain-Independent Heuristic Metric Tem-
poral Planner. In: Proceedings of European Conference on Planning (2001)
Garrido, A., Fox, M., Long, D.: A Temporal Planning System for Durative Actions
of PDDL2.1. In: European Conference on Al, vol. 1 (2002)

Muscettola, N.: HSTS: Integrating Planning and Scheduling. Intelligent Scheduling
(1993)

Doherty, P., Kvarnstrom, J., Heintz, F.: A temporal logic-based planning and ex-
ecution monitoring framework for unmanned aircraft systems. In: Autonomous
Agents and Multi-Agent Systems, vol. 19(3) (2009)

Cassez, F., David, A., Fleury, E., Larsen, K.G.: Efficient On-the-fly Algorithms for
the Analysis of Timed Games (2005)

	Towards Automated and Correct Composition of Timed Services

	Introduction
	Preliminaries
	Timed I/O Automata (TIOA) and Case Example
	Timed CTL (TCTL)
	Planning as Model Checking

	Automated Composition of Timed Services
	Methodology of Our Approach
	Extending Strong Planning with Time

	Implementation with MDD+CRDs
	Related Work
	Automated Service Composition
	Temporal Planning

	Conclusion and Future Work
	References

