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Abstract. This paper presents a distributed model predictive control (DMPC) 
for indoor thermal comfort that simultaneously optimizes the consumption of a 
limited shared energy resource. The control objective of each subsystem is to 
minimize the heating/cooling energy cost while maintaining the indoor 
temperature and used power inside bounds. In a distributed coordinated 
environment, the control uses multiple dynamically decoupled agents (one for 
each subsystem/house) aiming to achieve satisfaction of coupling constraints. 
According to the hourly power demand profile, each house assigns a priority 
level that indicates how much is willing to bid in auction for consume the 
limited clean resource. This procedure allows the bidding value vary hourly and 
consequently, the agents order to access to the clean energy also varies. Despite 
of power constraints, all houses have also thermal comfort constraints that must 
be fulfilled. The system is simulated with several houses in a distributed 
environment.  
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1 Introduction 

Heating accounts for a significant proportion of the world’s total energy demand. The 
building sector alone consumes 35.3%, of which 75% is for space heating and 
domestic water heating. In Europe, the final energy demand for heating and cooling 
(49%) is higher than for electricity (20%) or transport (31%) [1]. Therefore, it is 
important economically, socially, and environmentally to reduce the energy 
consumption of buildings. New models and control techniques must be developed to 
move beyond standard heuristic approaches and seek to incorporate predictions of 
weather, occupancy, renewable energy availability, and energy price signals that can 
support real time energy auction markets [2], [3].  The desire approach here presented 
intends to take advantage from the innovative technology characteristics provided by 
future Smart Grids (SGs) [4]. In the smart world, simple household appliances, like 
dishwashers, clothes dryers, heaters, air conditioners will be fully controllable in 
order to achieve the network maximum efficiency. Renewable energies will be a 
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common presence and any kW provided by these technologies should not be wasted. 
Active demand side management (DSM) will control the loads in order to adapt them 
to the available renewable energy source. Therefore, how can the demand be adjusted 
to an intermittent energy source in a distributed network, in order to maximize the 
energy efficiency? 

Model Predictive Control (MPC) during the last years has been granted to reduce 
and optimize the energy consumption in the residential sector namely to deal with 
temperature set points regulations [5], [6]. Model predictive control can also naturally 
deal with the aforementioned predictions to improve building thermal comfort, 
decrease peak demand and reduce total energy costs. The optimal profile of delivered 
energy depends on various factors which include time varying utility prices, 
availability of renewable energy and ambient temperature variation. The MPC have 
also advantage in distributed systems [7], [8]. Distributed Model Predictive Control 
(DMPC) allows the distribution of decision-making while handling constraints in a 
systematic way. DMPC strategies can be characterized by the type of couplings or 
interactions assumed between constituent subsystems [9]. The DMPC strategy here 
presented uses the method of subsystems sharing coupled constraints [9], [10].  

In this context, in a scenario with distributed infrastructures that are interconnected 
or related with each other, makes them suitable for Multi Agent System (MAS) 
technology, and consequently, for the autonomous management of houses and 
buildings. 

The paper is organized as follows. Section 2 presents the technological 
contribution of this paper, Section 3 presents the implemented system, with the house 
dynamical thermal model, hourly auction scenario and DMPC formulation. Section 4 
illustrates the used methodology with simulation results and in Section 5 some 
conclusions are draw. 

2 Relationship to Internet of Thinks  

From the Internet of Things (IoT) perspective, SGs also predicts a future in which 
devices can communicate with one another across infrastructures much the way 
people communicate with one another via the web. As mentioned, simple household 
appliances will be linked in the grid and will be fully controllable, monitored and 
regulated in real time. Information will be exchanged between devices in order to 
manage energy demands more efficiently and incorporate the increasing amounts of 
renewable power from sources like the sun and wind. 

Assuming that future communication infrastructures will support real time energy 
auction markets, the hourly auction here presented is, as far as we know, a novelty 
contribution for what is expected to be a nearby reality. 

The work contributes with a new methodology to manage energy networks from 
the demand side with strong presence of intermittent energy sources. In a distributed 
network, the implementation of a constraint in the shared available resource 
consumption presented here, introduces a novelty that intends to give response to 
problem mentioned above. With this approach the system will try to adjust 
consumption to the value provided by the renewable resource maximizing the 
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efficiency and minimizing the consumer energy costs. The profile of delivered energy 
depends on several factors, such as price of conventional energy and availability of 
renewable energy. The MAS technology can solve the efficient management of clean 
(“green”) and dirty (“red”) resources, giving the priority to “green”.  

3 Implemented System 

3.1 Thermal Model of the House 

The house for which MPC is designed is present in (1-3) and describes only the 
dominant dynamics of the house. 
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where in (1), lossesQ is heat and cooling losses (kW), houseT the inside temperature (K), 

C the thermal capacitance (kJ/K), and heatQ  the heat and cooling power (kW). In (3) 

oaT  is the outdoor temperature (K) and the parameter Req describes the equivalent 

thermal resistance of all walls (including roof and ceiling) and windows that isolate 
the house from outside, and can be describe as a electrical parallel resistance circuit 
[5]. The plant model representation (1) can be rewritten and changed into a discrete 
model using Euler discretization with a sampling time of tΔ . 
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oad Δ+= , u(k) is the necessary heat/cooling  

power, T(k) is the indoor temperature, v(k) is a disturbance signal resulting from Pd 
the external disturbances (kW) (e.g. load generated by occupants, direct sunlight, 
electrical devices or doors and windows aperture to recycle the indoor air), and Toa,  
the temperature of outside air (K). 

3.2 Hourly Auction Scenario 

The scenario considers two types of available energy resources, the green and the red. 
The green or clean resource must be always consumed (is non dispatchable) and it is 
limited to a maximum available value and it’s considered a time variable resource.  In 
opposition, the red is always available and it is considered a dirty resource, more 
expensive than the green. Therefore, if the green resource is insufficient to satisfy the 
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The bid value establishes an order to access to the resource, being the green 
resource consumption made by the agents sequentially by that order. The first agent 
consumes and the remainder green resource is passed to the next agent as the 
maximum green available resource. As mentioned, when the green resource becomes 
insufficient to satisfy all the demand, the red is available. The red resource 
consumption implies a penalty in the final cost function (3) due to the soft constraint 
violation imposed by the maximum available green resource is exceeded. 

3.3 Model Predictive Control 

MPC principle of controlling house heating and cooling is to react on the 
heating/cooling actuators based on current measurements/estimates of temperatures in 
T(k) and predictions of future disturbances in v(k) (obtained from the weather forecast 
service). The MPC will explicitly take into account the constraints of heating/cooling 
actuators and the temperature comfort limits while minimizing the energy inserted 
from the actuators in the one-day-ahead period. The objectives are: minimize the 
energy consumption to heating and cooling; minimize the peak power consumption; 
maintain the zones within a desired temperature range and maintain the used power 
within the green available bounds. At each time step, each one of the agents must 
solve is MPC problem. 

{ }

( ) ( ),          

,...,maxmin

1

2

|

2
|

1

2
|

2
|

2
|1

2
|

1

0

2
|





=
++

=
++

−+

−

=
+

++++

+Δ

N

k
tkttkt

N

k
tkttkt

tNttt

N

k
tkt uutu

γ,γ,ε,εU,

γγψεερ

φ

 (5)

Subject to the following constraints, 
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In (5), ݑ represents the power control inputs, φ is the penalty on peak power 

consumption, ρ  is the penalty on the comfort constraint violation, ψ the penalty on 

the power constraint violation and N is the length of the prediction horizon. In (7), ߝ 
and ߝ  are the vectors of temperature violations that are above and below the desired 

comfort zone defined by ܶ and ܶ. In (8), coupled constraint, ߛ and ߛ are the power  
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violations that are above or lower the maximum, 
iAU , and minimum, 

iAU , available 

green power for heating/cooling the space, with ii
AA UU −= .A scheme of the system 

implemented is shown in the next picture. 

 

TgreenU

1AU 11 uU A −
2AU 22 uUA −

 

Fig. 4. Implemented system 
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[ ]Tiii Nkukuu )(,...,)( += ,
 

(12)

where, for a generic Agent i at the control horizon, 
iAU represents the green available 

resource for indoor comfort , UTgreen represents the green available total resource, Ci the 
fixed consumption profile and ui the used power to heating/cooling the space that 
results from the optimization program.  

4 Results 

The presented results were obtained with an optimization Matlab routine that finds a 
constrained minimum of a quadratic cost function that penalizes the sum of several 
objectives. It is considered that all houses have the same outdoor temperature 
presented in Fig. 1. The thermal characteristics, load disturbances profile (Fig. 4) and 
comfort temperature bounds are different for all houses (Table 2). Agents can also 
have distinct penalties on power and temperature constraints violations, they can 
hourly privilege comfort or cost according to consumer choice. Here, is assumed that 
the penalty values of each agent are always the same. Table 2 shows the used 
parameters. 

In the figures here presented, the subtitles “Power constraint” represents

iiAA CuUU ii −−= −− 11
, “Green resource” represents 11 −−− iA uU i

 and ”Heating/Cooling 
used power” represents ui.  
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Table 2. Scenario parameters 

Parameter A1 A2 A3 Units 
Req 50 25 75 K/kW 
C 9.2×103 4.6×103 11×103 kJ/K 

ρ 100 100 300 - 
ψ 500 200 300 - Φ 2 2 2 - 
Δt 1 1 1 H 
N 24 24 24 - 

T(0) 297.15 296.15 297.15 ºK 

  

Fig. 5. Disturbance forecasting (Pd) Fig. 6. A1, A2 and A3 indoor temperature and 
their constraints 

 

Fig. 7. Used power to heat/cool and their 
constraints 

Fig. 8. a) Total available green resource and 
used power. b) Heating/cooling total cost. 

In Figure 6, it can be seen that the comfort constraint is respected, the indoor 
temperature is always inside the comfort zone for all agents. Taking advantage of the 
predictive knowledge of the disturbance (Pd) and making use of the space thermal storage, 
it can also be seen that in both scenarios the MPC treats the indoor temperature before the 
disturbance beginning. The used power to heat/cool the space is maintained inside the 
constrained bounds. Note that when the “Power Constraint” is null the used power is also 
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null, Fig. 7. The “Used Power”, [ ]
=

+=
3

1

)()()(
i

iiused kCkukU , is sometimes above the 

daily maximum green available resource, meaning that the red resource was consumed, 
Fig 8(a). Figure 8(b) illustrates the effectiveness of the approach and demonstrates the 
advantage of the auction. For each one of the agents it can be seen that the “Real Cost” is 
much lower than the cost of not to bid in auction and only consume the red resource “Red 
Cost”.  

5 Conclusions 

In this paper, a distributed MPC control technique was presented in order to provide 
thermal house comfort. The obtained solution solves the problem of control of 
multiple subsystems subject to coupled constraint that changes hourly. Each 
subsystem solves is own problem involving its own state predictions and the shared 
constraints. It could be observed through the simulations and results analysis that 
were obtained suitable dynamic performances. Despite access orders being changing 
hourly, the predictive characteristics of the implemented system were not lost, being 
the soft constraints, temperature and power satisfied. By changing the penalties values 
during the day, the implemented system also allows the consumer to shift hourly 
between indoor comfort and lower costs. 
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