

L.M. Camarinha-Matos, S. Tomic, and P. Graça (Eds.): DoCEIS 2013, IFIP AICT 394, pp. 239–249, 2013.
© IFIP International Federation for Information Processing 2013

Minimalist Architecture to Generate
Embedded System Web User Interfaces

Fernando Pereira1,2,3 and Luís Gomes1,3

1 Universidade Nova de Lisboa - Faculdade de Ciências e Tecnologia – Portugal
2 ISEL, Instituto Superior de Engenharia de Lisboa, – Portugal

3 UNINOVA - CTS – Portugal
fjp@deea.isel.ipl.pt, lugo@fct.unl.pt

Abstract. This paper presents a new architecture to semi-automatically
generate Web user interfaces for Embedded Systems designed using IOPT Petri
Net models. The user interfaces can be used to remotely control, monitor and
debug embedded systems using a standard Web Browser. The proposed
architecture takes advantage of the distributed nature of the Internet to store all
static user interface data and software on third-party Web services (the Cloud),
and execute the user-interface code on the user's Web Browser. A simplified
protocol is proposed to enable remote control, status-monitoring, debugging and
step-by-step execution, minimizing resource consumption on the physical
embedded devices, including processing load, memory and communication
bandwidth. As the user interface data and code are kept on third-party Web
services, these resources can be shared among multiple embedded device units,
and the hardware requirements to implement the devices can be simplified,
leading to reduced cost solutions. To prevent down-time due to network
problems or server failures, a fault-tolerant topology is suggested. The
distributed architecture is transparent to end-users, observing just a Web
interface for an embedded device on the other side of an Internet URL.

Keywords: Embedded-systems, Petri-Nets, Web User Interface.

1 Introduction

The widespread dissemination of the Internet and the mass production of
telecommunication technology has significantly reduced the cost barrier to add
Internet connectivity to the most inexpensive embedded-system devices, ranging from
home appliances, medical and health monitoring devices, surveillance and security
equipment, in-vehicle systems, to industrial machinery. However, the traditional
Internet connectivity implementation strategies generally lead to increased product
complexity, longer development time and increased hardware requirements, including
more memory to store images and multimedia files and higher processing power to
execute user interface code, with the corresponding implications on power-
consumption and battery life.

240 F. Pereira and L. Gomes

This paper proposes a new architecture to overcome these limitations, taking
advantage of the distributed nature of the Internet and the processing capabilities offered
by modern Web browsers. All static data files are stored on external Web servers and the
user-interface code is executed directly on the user's personal computer Web browser,
greatly reducing the embedded devices hardware requirements and contributing to
minimize bandwidth consumption, as many user interactions are dealt directly by the user
interface code running on the browser.

To implement the new architecture, a new protocol is proposed to establish the
communication between the user-interface code running on the browser and remote
embedded devices, taking advantage of AJAX (Asynchronous Javascript and XML)
principles. The same protocol used to implement the Web user interfaces can also be
used to enable remote monitoring, debug and step-by-step execution of embedded
system controllers running on physical devices, or simulated on personal computers.

The proposed architecture is applied to embedded systems designed using the
IOPT Petri-net modeling framework [1] and the associated Web-based IOPT-tools [2]
tool-chain (http://gres.uninova.pt), including an editor to design IOPT models, a
model-checking framework based on a state-space generator and a query system, and
automatic "C" and VHDL code generators to produce the controller implementations.

The user interfaces are designed using an Animator tool [3] that permits the interactive
rule-based definition of Animated Graphical User interfaces for embedded-systems. This
tool has been previously used to design and generate simulation control-panels and
graphical user interfaces for systems running on FPGA (Field Programmable Gate Array)
reconfigurable devices. Using the Animator tool, the user-interface designer creates a set
of screen background images, used to implement application dialogs, and sets of static or
animated icons and images. Each dialog contains a table of rules associating internal state
variables (IOPT Marking) and Input/Output Signals with the appearance and screen
location of the selected icons and images, creating an animated SCADA-like user
interface that reflects the system-state in real-time. To control the system from the Web
interface, Input Signals can be associated with icons and images activated using mouse
clicks to implement bidirectional user-feedback.

The new architecture proposes the execution of Animator-generated user interfaces
inside a Web browser, converting the Animator rules into equivalent Javascript code
and establishing the communication with the physical systems using remote
procedure calls over a protocol based on AJAX XmlHttpRequests.

The creation of Debug and monitoring interfaces has been presented in [4], with the
automatic generation of Animator screens that directly depict the corresponding IOPT
models and the automatic generation of rules that display the system status in real-time,
including place marking, transition firing readiness and the state of Input and Output
Signals. However, in order to fully support remote debug sessions over the Internet, the
communication protocol will be extended with additional remote procedure calls
implementing step-by-step execution, continuous execution, system reset, force input
signal values and the definition of breakpoints associated with Transition firings.

Finally, this paper proposes a new type of Transition, called the Test-transition, used
during the debug and simulation development phases. Test-transitions differ from
standard IOPT Transitions because they are not allowed to change system behavior in
any form. This way, the new transitions can be freely added to existing models without
the risk of accidentally introducing behavioral modifications, to define breakpoints
associated with new conditions that were not verified in the original models.

 Minimalist Architecture to Generate Embedded System Web User Interfaces 241

2 Related Work and Research Innovation

Over the past decade, Internet enabled embedded devices with Web interfaces have
been offered by commercial systems and were implemented on many research
prototypes. The traditional architectures used to implement these solutions have
resorted to full-featured Web servers running over embedded operation systems, as
embedded Linux [5] and QNX [6], using standard interface technologies like
common-gateway-interface (CGI) to control the physical embedded devices.

However, solutions based on complex operating systems require advanced
microprocessors and occupy large amounts of memory, including many megabytes of
RAM (Random Access Memory) and mass storage devices to store operating system
files. The Web interfaces are generally created using standard Web page authoring tools
and the connection to the physical embedded systems are manually programmed. All
files used by the Web interface, including images and scripts are usually stored in the
device. Due to these requirements, Internet connectivity has usually been skipped from
the least expensive devices.

The new solution presented in this paper has many advantages over traditional
technologies. To start, the Web user interfaces are semi-automatically generated using
the rule-based Animator tool [3] and the Debug interfaces are fully automatically
generated [4] without the need to manually write any code. As the static files are
stored in external Web servers and the user interface code (Animator rules) is
executed by the user's Web browser, the computational requirements of the embedded
controller are largely reduced and the need to employ complex operating systems is
avoided, allowing the addition of internet connectivity and Web interfaces to the most
inexpensive devices without a significant cost increase. Instead of requiring 32-bit
microprocessors, the proposed minimalist architecture can be implemented with
simpler 8-bit embedded micro-processors using small TCP/IP stacks as uIP and LwIP
[7] that require just tens of Kilobytes of RAM and can entirely fit inside the memory
blocks offered by FPGA devices without external RAM. The usage of 8-bit micro-
processors also contributes to reduce FPGA resource consumption, enabling the
choice of smaller and less expensive reconfigurable devices.

In addition to the automatic generation of Web user interfaces, the proposed
communication protocol also permits remote debugging and step-by-step execution of
embedded-system controllers running on real hardware devices, allowing long
distance troubleshoot and maintenance operations over the internet. As the graphical
debug interfaces automatically generated by the PNML2Anim4Dbg [4] tool can be
directly presented in the new architecture, it is possible to monitor the state of remote
embedded-systems in real time, observing the graphical evolution of the underlying
IOPT Petri net model. Contrary to traditional remote administration tools, this
solution offers a high degree of intuitiveness and user friendliness, as the system
designer operates directly on the Petri net model used to design the original system.

Other Petri net tools, including CPN tools [8], CPN-Ami [9], Renew [10] and
others have implemented debug and step-by-step execution tools, but as these classes
of Petri nets are autonomous, the scope of these tools is generally restricted to
simulations running on personal computers and not for final implementations. Inside
these simulation tools, some authors have also defined the concept of breakpoints
associated with transitions and changes on place-markings [11], but the new concept
of Test-transition presented in this paper offers many advantages over these solutions
as it enables the definition of generic breakpoint conditions.

242 F. Pereira and L. Gomes

Finally, the new architecture was built on top of previous work, starting with the
definition of the IOPT Petri Net class [1], IOPT design tools [2], automatic code
generators and the Animator Tool [3]. The proposed architecture enables the porting
of previous Animator-designed user interfaces that were executed inside simulations
or on FPGA hardware [12] [13], to a distributed Web/Internet platform.

3 IOPT Petri Nets

The characteristics of the IOPT Petri net class [1] were selected to support the design
of embedded-system controllers. Beyond the Places and Transitions inherited from
classical Petri nets [14], IOPT nets also contain a set of non-autonomous properties
used to specify the interface between the controllers and the external world. This
interface comprehends Input and Output Signals, that can hold Boolean logic values
or Integer range values, and Input and Output Events associated with changes in
Signal values. Figure 1 displays an example IOPT Model implementing a UART
transmitter hardware module, edited with the IOPT-Tools model editor.

The model presented in Fig 1, has three Places (yellow circles), four Transitions
(cyan rectangles), three Input Signals (cyan circles), five Output Signals (green
circles), and one Output Event (green triangle). Associated with Places there are
Output Expressions that assign values to Output Signals whenever these Places are
marked. Guard conditions, associated with Transitions, inhibit the firing according to
the value of Input/Output Signals, Literals and Place marking. Transition firing is also
triggered by Input Events, and can produce Output Events that perform changes in
Output Signals. For example, transition TCount raises a Cntr Output Event, used to
count the number of bits transmitted by incrementing the value of the Cnt Output.

In order to ensure determinist execution, IOPT nets employ maximal-step
execution semantics, where every transition ready to fire will immediately fire on the
next execution step. Firing conflicts, when more than one transition is simultaneously
ready to fire, but the number of available tokens is not enough to fire all of them, can
be solved by assigning different priorities to each conflicting transition. A state-space
generation tool offered by IOPT-Tools can be used to automatically detect conflicts,
deadlocks and to calculate the maximal and minimal bound of each Place.

Fig. 1. IOPT-Tools Editor (UART Transmitter IOPT Model)

 Minimalist Architect

4 Distributed Web

Figure 2 displays the distri
user interface architecture,
computer, an external Web

The user interfaces are de
dialogs, image files and an
each screen and graphical
Animation rules define whe
embedded-system state, inclu

As the Animator tool sto
be easily translated into equ
Transformation) transforma
Javascript code is executed
of the user interface code fr

All static files, including
eliminating the need to stor
interface code and file stora
can be implemented using
controller only needs to im
procedure call from the W
system state (almost) in rea

5 Internet-Enable

The main goal of the archit
support to embedded-system
3 presents a possible hardw

Fi

ture to Generate Embedded System Web User Interfaces

b User-Interface Architecture

ibuted topology of the proposed embedded-system's W
employing the Web browser running on the user's perso
server and the embedded-system.

esigned with the Animator tool [3], producing a set of scr
nimation rules. Image files hold the background pictures

representations of icons, buttons and animation fram
en images are show or hidden according to the instantane
uding the Place marking, Input signals and Output signals
ores the animation rules under XML files, these rules
uivalent Javascript code using XSL (Extensible Style Sh
ations or other XML processing technologies. The result
inside the Web Browser, removing the computational l

rom the physical embedded device.
g images and Javascript code, are stored in external serv
re large files on the embedded device. By moving the u
age to external computers, the embedded-system contro

minimal hardware specifications. The embedded syst
mplement a micro HTTP server, used to answer rem

Web browser and transmit information about the curr
l time.

ed Embedded-System Internal Architecture

tecture proposed in this paper is the ability to add Inter
m devices with minimalist hardware specifications. Fig

ware architecture that fulfills these goals.

ig. 2. Distributed Web GUI Topology

243

Web
onal

reen
s of
mes.
eous
s.
can

heet
ting
oad

vers,
user
oller
tem

mote
rent

rnet
gure

244 F. Pereira and L. Gom

The proposed hardware
implement the TCP/IP com
system can be implemente
external Ethernet Physica
magnetics and connector, o

Resource consumption i
Ethernet requires a standa
Media Access Controller) m
the TCP/IP stack and a m
offered by FPGA vendors
As the open-source LwIP
Programming Language, th
of a “C” compiler and a 16
packets, plus the 40Kb Lw
requirements cover a wide
clones to more advanced 32

A clock management un
execution of the embedded-
or sending individual clock

The embedded micropro
core and is able to read sig
Output Signals and Place m
with Graphical User Interf
Animator screen can be a
controller and when the us
microprocessor to update th

A set of optional inter
maintenance operations, in
reset signal and three signal

Fi

mes

architecture requires just a minimal set of components
mmunication protocol over Ethernet networks. The en
ed in a single FPGA (or ASIC), with the addition of
al Layer Integrated Circuit (PHY) and the respect
r equivalent components to support wireless networking
inside the FPGA/ASIC device to implement TCP/IP o
ard Ethernet MII/MAC (Media Independent Interfac
module and an embedded microprocessor, used to exec
mini Web-server. There are many microprocessor co
and many open-source processor cores publicly availab
(Light Weight Internet Protocol) is coded using the “

he only processor choice requirements are the availabi
bit memory address space (or larger), in order to store d

wIP code and a small HTTP command interpreter. Th
e range of microprocessors, ranging from 8-bit Zilog Z
2 bit MicroBlaze cores.
nit is also employed to allow debugging and step-by-s
-system controllers, by disabling the controller clock sig
pulses to run single execution steps.

ocessor I/O bus is connected to the embedded contro
gnals containing the instantaneous values of Input Sign
marking. It can also define the value of Signals associa
face objects. For example, an Icon or a Button inside
associated with an Input Signal in the embedded syst
ser manipulates that button, a HTTP request is sent to
he corresponding Signal value.
rnal signals is used to support remote debugging

ncluding a breakpoint mask, a forced-input-signal mask
ls to control the clock management unit: stop, run and s

ig. 3. Internal Controller Architecture

s to
ntire
f an
tive
g.
over
ce /
cute
ores
ble.
“C”
ility
data
hese
Z80

step
gnal

oller
nals,
ated
e an
tem
the

and
k, a
tep.

 Minimalist Architect

The breakpoint mask is u
When a selected Transition
management unit. The forc
value of Input signals read
problems in the physical em
the model behavior during t

6 Information flow

Figure 4 presents the flow
embedded-system and an ex
the user accesses the embed
embedded system answers w
main script file stored in an
user is successfully authenti
required to execute the gr
interface, including image
scripts that execute animati
obtain redundancy and pre
failures in case the external
is not reachable, the Start
might include multiple re
copies of the main script
different servers that will loa
first server does not respo
predefined time interval.

After the start-up sequenc
a Web user interface main
running, continuously
updated state information
embedded-system, includ
marking and Input and O
values. Using these values, t
scripts will update the gr
interface, almost in real-tim
update rate configurable acc
available bandwidth
requirements of each applica

As the static files stored in
server are loaded in back
distributed topology is transp
user that only sees the addre
the embedded device.

ture to Generate Embedded System Web User Interfaces

sed to enable breakpoints on selected IOPT Transitio
n fires, it will trigger a breakpoint event that stops the cl
ced-input-signal mask can be used to remotely force
by the embedded controller, in order to bypass mechan

mbedded devices or to easily force error situations and
these conditions.

w over the Internet

of information over the Internet between the Browser,
xternal Web server. A typical interaction session starts w
dded-system URL (Web address) using a Web Browser. T
with a Top/Start HTML page containing just a reference
external server. As soon as the main script is loaded and
icated, it immediately starts downloading all Animator f
raphical user
es and the
ion rules. To
event service
l Web server
HTML page
eferences to
t located in
ad only if the
ond during a

ce is finished,
n loop starts

requesting
n from the
ding Place

Output Signal
the animation
raphical user
me, with an

cording to the
and the

ation.
n the external
kground, the
parent to end
ess (URL) of

Fig. 4. Internet-IOPT Information Flow

245

ons.
ock
the

nical
test

the
when

The
to a

d the
files

246 F. Pereira and L. Gomes

7 The IOPT-Internet Protocol

The proposed Internet-IOPT protocol defines a set of commands, viewed as remote
procedure calls over HTTP, used to establish the communication between the user
interface code running on the Web Browser and the embedded-system HTTP
command interpreter. It comprehends three types of procedures calls: 1) front-page
and authentication; 2) status-monitoring and GUI interaction and 3) debug and step-
by-step execution.

Start-page requests and user authentication are implemented with the standard
HTTP commands used to serve static HTML files. User sessions can be implemented
using a temporary HTTP cookie holding a random number that identifies each user
after the authentication phase is successfully passed.

The second group of commands implements remote procedure calls that produce
XML results, implementing the following methods:

getMarking() - read the instantaneous IOPT net marking vector
getInputs() - read the instantaneous input signal vector
getOutputs() - read the instantaneous output signal vector
getStateChanges(tm) - read «marking, inputs and outputs» changed since the
 previous read or wait «tm» seconds if there are no changes
setGUInput(sigName, value) - write the value of a GUI input signal.

All remote procedure calls are implemented using AJAX xmlHttpRequests, and the
embedded-system's Web server answers to each command with XML files containing
the requested values. The getStateChanges() method provides reduced bandwidth
consumption, as it only returns values that suffered changes since the last read
operation and will block when there are no changes during a specified timeout period.

Finally, the debug and step-by-step group of commands, used to directly control
the clock management unit shown on figure 3, implement the following methods:

reset() - reset embedded-system controller state
stop() - stop execution
run() - continue execution
step(n=1) - execute «n» execution steps (by default n=1)
setBreakpoint(trId) - enable breakpoints on transition «trId»
clearBreakpoint(trId) - disable breakpoints on transition «trId»
forceInput(sigName, value) - force the value of a non GUI input signal

 releaseInput(sigName) - release a forced input signal

8 Breakpoints and Test-Transitions

The proposed hardware architecture and communication protocol supports remote debug
and step-by-step execution, including a hardware clock management unit that can stop or
run continuously and is able to generate individual clock pulses to perform single
execution steps. However, as complex embedded-systems often execute thousands of
execution steps before reaching a critical situation being tested, step-by-step execution

 Minimalist Architecture to Generate Embedded System Web User Interfaces 247

may not be practical. Other embedded-systems simply cannot be run step-by-step
because the controllers must respond to external input changes during very fast time
intervals in order to prevent malfunctions and mechanical damages. For example, an
automatic door controller must immediately turn off the door motor when the door is
being closed and a presence sensor detects a person inside the door limits.

To solve this problem, the concept of breakpoints, usually employed in software
debugging systems, was extended to the IOPT Petri net modeling framework, adding
the possibility to assign breakpoints to Transitions. When a Transition fires, a
Breakpoint event will be raised and execution is stopped before the Transition is
actually fired. Observing figure 3, breakpoint events are connected to the clock
management unit and will immediately stop the clock signal. This concept can also be
easily ported to software implementations and may be applied on simulations or on
embedded devices running on microprocessors.

Finally, the test conditions corresponding to the error situations being debugged
may not directly correspond to the firing of any Transition existing in the model. As a
consequence, it might be necessary to add additional new Transitions to the model,
containing Arcs, Input events and Guard conditions that detect the (un)desired
situations. However, adding new Transitions to an existing model will usually
introduce changes to the behavior of the original model, potentially invalidating the
debug conclusions, as the new model may behave differently from the original one.

To solve this problem, a new concept of Test-transition is proposed. A Test-
transition has a set of restrictions that does not allow behavioral changes and can be
safely used to define test/debug conditions associated with breakpoints. In order to
achieve this effect, Test-transitions can only be connected to Test Arcs, cannot be
connected to Normal Arcs and may not be associated with Output events. As a result,
Test-transitions can only have input Test Arcs and cannot have output Arcs.

The concept of Test-transition has many advantages. First, Test-transitions can be
safely added to any model in any configuration without the risk of introducing any
behavioral changes. Second, Test-transitions can continue to be viewed as regular
Transitions by all IOPT Tools, including the automatic software and hardware code
generators, simulators and validation tools, without requiring additional development.
Finally, Test-transitions can also be safely removed from models using automated
filters, to generate final controller implementations without Debug code.

9 Conclusions and Future Work

The goal of this paper is to propose a new architecture to automatically add Web User
Interfaces to embedded-system controller designed with IOPT Petri net models. This
architecture employs a distributed topology to take advantage of the Web browser
processing power and the storage capacity offered by external Web servers, in order
to minimize the hardware requirements on the physical embedded-systems,
implementing Web awareness without almost no additional cost.

This work is an extension to previous work, where the Animator [3] concept and
tools were introduced. The proposed architecture can be used to automatically convert

248 F. Pereira and L. Gomes

existing user interfaces designed with the Animator tool, producing equivalent Web
interfaces.

In addition to automatic Web interface generation, the same communication
protocol was also extended to support remote debugging and step-by-step execution,
offering the possibility to perform maintenance and diagnose problems over the
Internet. The association of breakpoints to Transition firing and the new concept of
Test-transitions also contribute to reduce test and debugging effort, simplifying the
debug of systems where step-by-step execution would be impractical.

Although the proposed architecture was not yet implemented, all the components
used in the architecture are currently disseminated technologies, including the
suggested hardware platforms, the embedded TCP/IP protocol stack and the AJAX
technologies used to execute the user interface code in the Browser. All the
components employed are readily available, leading to the conclusion that the
implementation of the proposed ideas is feasible. Future work may lead to the
creation of prototypes based on the new architecture, with possible improvements to
overcome technical difficulties that may occur during development.

Acknowledgments. This work was partially financed by Portuguese Agency “FCT –
Fundação para a Ciência e Tecnologia”, in the framework of project Pest-
OE/EEI/UI0066/2011.

References

1. Gomes, L., Barros, J., Costa, A., Nunes, R.: The Input-Output Place-Transition Petri Net
Class and Associated Tools. In: Proceedings of the 5th IEEE International Conference on
Industrial Informatics (INDIN 2007), Vienna, Austria (July 2007)

2. Pereira, F., Moutinho, F., Gomes, L.: Model-checking framework for embedded systems
controllers development using IOPT Petri nets. In: 2012 IEEE International Symposium on
Industrial Electronics (ISIE), May 28-31, pp. 1399–1404 (2012),
doi:10.1109/ISIE.2012.6237295

3. Gomes, L., Lourenco, J.: Rapid Prototyping of Graphical User Interfaces for Petri-Net-
Based Controllers. IEEE Transactions on Industrial Electronics 57, 1806–1813 (2010)

4. Pereira, F., Gomes, L., Moutinho, F.: Automatic generation of run-time monitoring
capabilities to Petri nets based Controllers with Graphical User Interfaces. In: Camarinha-
Matos, L.M. (ed.) DoCEIS 2011. IFIP AICT, vol. 349, pp. 246–255. Springer, Heidelberg
(2011)

5. de Souza, R.N., Muniz, D.N., da Silva Fidalgo, A.V.: Ethernet communication platform
for synthesized devices in Xilinx FPGA. In: 2011 IEEE International Conference on
Computer as a Tool (EUROCON), April 27-29, pp. 1–4 (2011),
doi:10.1109/EUROCON.2011.5929377

6. QNX website, http://www.qnx.com/developers/docs/6.3.0SP3/
neutrino/user_guide/embedded_web_server.html (accessed January 6,
2013)

7. Dunkels, A.: Full TCP/IP for 8 Bit Architectures. In: Proceedings of the First ACM/Usenix
International Conference on Mobile Systems, Applications and Services (MobiSys 2003),
San Francisco (May 2003)

 Minimalist Architecture to Generate Embedded System Web User Interfaces 249

8. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Pratical Use.
Basic Concepts, vol. 1. Springer, Berlin (1997)

9. Hamez, A., Hillah, L., Kordon, F., Linard, A., Paviot-Adet, E., Renault, X., Thierry-Mieg,
Y.: New features in CPN-AMI 3: focusing on the analysis of complex distributed systems.
In: Sixth International Conference on Application of Concurrency to System Design,
ACSD 2006, June 28-30, pp. 273–275 (2006), doi:10.1109/ACSD.2006.15

10. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L.: Renew – User Guide, University of
Hamburg, Department for Informatics, Theoretical Foundations Group, Release 2.2,
(August 28, 2009)

11. Sadilek, D.A., Wachsmuth, G.: Prototyping Visual Interpreters and Debuggers for
Domain-Specific Modelling Languages. In: Schieferdecker, I., Hartman, A. (eds.)
ECMDA-FA 2008. LNCS, vol. 5095, pp. 63–78. Springer, Heidelberg (2008)

12. Moutinho, F., Gomes, L.: From models to controllers integrating graphical animation in
FPGA through automatic code generation. In: IEEE International Symposium on Industrial
Electronics (ISlE 2009), Seoul Olympic Parktel, Seoul, Korea, July 5-8 (2009)

13. Moutinho, F., Pereira, F., Gomes, L.: Automatic Generation of Graphical User Interfaces
for VHDL based Controllers. In: ISIE 2011 – 20th IEEE International Symposium on
Industrial Electronics, Gdansk, Poland, June 27-30, pp. 1491–1496 (2011),
doi:10.1109/ISIE.2011.5984381, ISBN: 978-1-4244-9312-8

14. Reisig, W.: Petri nets: an introduction. Springer Verlag New York, New York (1985)

	Minimalist Architecture to Generate Embedded System Web User Interfaces
	Introduction
	Related Work and Research Innovation
	IOPT Petri Nets
	Distributed b Web User-Interface Architecture
	Internet-Enable ed Embedded-System Internal Architecture
	Information flow w over the Internet
	The IOPT-Internet Protocol
	Breakpoints and Test-Transitions
	Conclusions and Future Work
	References

