
Preorders on Monads and Coalgebraic Simulations

Shin-ya Katsumata and Tetsuya Sato

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan
{sinya,satoutet}@kurims.kyoto-u.ac.jp

Abstract. We study the construction of preorders on Set-monads by the semantic
��-lifting. We show the universal property of this construction, and characterise
the class of preorders on a monad as a limit of a Cardop-chain. We apply these
theoretical results to identifying preorders on some concrete monads, including
the powerset monad, maybe monad, and their composite monad. We also relate
the construction of preorders and coalgebraic formulation of simulations.

1 Introduction

In the coalgebraic treatment of labelled transition systems and process calculi, several
coalgebraic formulations of bisimulations are proposed [1,12,18], and their relation-
ships are well-studied [25]. On the other hand, to express the asymmetry of simulations
between coalgebras, we need to generalise the framework of bisimulations. One of the
earliest works in this direction is [13], where Hesselink and Thijs introduced a class of
relational liftings of Set-functors called relational extensions, with which simulations
can be coalgebraically captured. Hughes and Jacobs took preordered functors as a basis
for constructing relational extensions of endofunctors. This approach was further de-
veloped in the subsequent studies on coalgebraic trace semantics [10] and forward and
backward simulations of coalgebras [9]. The key assumption in the last two works is
that an order enrichment is given to the Kleisli category of a monad.

One natural problem arising in this line of research is how to systematically con-
struct preordered functors. In fact, many coalgebra functors of transition systems con-
tain the functor part of monads to describe branching types of transition systems, and
they are the focal point when considering relational liftings and preorders on endo-
functors. Upon this observation, we address the problem of constructing preorders on
monads, and study its relationship to the coalgebraic formulation of simulations.

The main technical vehicle to tackle the problem is semantic ��-lifting [16], which
originates from the proof of the strong normalisation of Moggi’s computational meta-
language by reducibility candidates [21,22]. We apply the semantic ��-lifting to con-
struct preorders on monads, and show that this construction satisfies a universal prop-
erty. We also characterise the class of preorders on a monad as the limit of a large chain
of certain preorders. We then apply these theoretical results to identifying preorders on
some concrete monads, including the semiring-valued multiset monad, powerset monad
and maybe monad. We finally show that the semantic ��-lifting satisfies a couple of
properties that are relevant to the coalgebraic formulation of simulations.

F. Pfenning (Ed.): FOSSACS 2013, LNCS 7794, pp. 145–160, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

146 S. Katsumata and T. Sato

Preliminaries

Throughout this paper we assume the axiom of choice. We write Pre (resp. Pos) for
the cartesian monoidal category of preorders (resp. posets) and monotone functions
between them. For sets I, J, by I ⇒ J we mean the set of functions from I to J. Each
preorder ≤ on a set J extends to the pointwise preorder on a function space I ⇒ J,
which we denote by ≤̇. In this paper the metavariable T (and its variants) is reserved
for monads over Set. Its components are written by (T, η, μ). For a function f : I → T J,
by f # we mean the Kleisli lifting of f , that is, the function μJ ◦ T f . A preordered
functor [13,15] consists of an endofunctor F : Set → Set and an assignment I �→ 	I of
a preorder on FI such that for any function f : I → J, F f is a monotone function from
(FI,	I) to (FJ,	J).

2 Preorders on Monads

Definition 1. Let I be a set. We call a binary relation S ⊆ T I × T I substitutive if for
each function f : I → T I and (x, y) ∈ S , (f #(x), f #(y)) ∈ S .

Especially, a preorder≤ on T I is substitutive if and only if for each function f : I → T I,
f # is a monotone function of type (T I,≤) → (T I,≤).

Definition 2. Let I be a set. We call a preorder ≤ on T I congruent if for each set J and
functions f , g : J → T I, f ≤̇ g implies f # ≤̇ g#.

Under the correspondence between monads and algebraic theories, T I may be viewed
as the set of I-many variable polynomials in the algebraic theory corresponding to T .
Then a binary relation S ⊆ T I × T I is substitutive if for each polynomial pair (t, u) ∈ S
and a simultaneous substitution [i := vi]i∈I of polynomials, we have (t[i := vi]i∈I , u[i :=
vi]i∈I) ∈ S . The congruence of a preorder ≤ on T I means that for each polynomial
v ∈ T J and two simultaneous substitutions [j := t j] j∈J and [j := u j] j∈J such that
t j ≤ u j, we have v[j := t j] j∈J ≤ v[j := u j] j∈J.

We introduce the main subject of this paper, preorders on monads.

Definition 3. A preorder 	 on T is an assignment of a preorder 	I on T I to each set I
such that

1. each preorder 	I is congruent, and
2. for each function f : I → T J, f # is a monotone function from (T I,	I) to (T J,	J)

(we also call this property substitutivity).

From this definition, 	I is substitutive for each set I, and (T,) is a preordered functor.
We write Pre(T) for the class of preorders on T . We define a pointwise partial order
� on Pre(T) by: 	 � 	′ if 	I ⊆ 	′I holds for each set I. The class Pre(T) admits
intersections of arbitrary size: for a subcollection � of Pre(T), its intersection is the
preorder

⋂
� on T defined by: a (

⋂
�)I b if a 	I b holds for each preorder 	 ∈ �.

Example 1. We write Tp for the powerset monad. For each set I, TpI has a natural
preorder given by the set inclusion. This is a preorder on Tp.

Preorders on Monads and Coalgebraic Simulations 147

Example 2. We write Tl for the monad whose functor part is given by TlI = I+ {∗}; this
is known as the maybe monad in Haskell. We assign to each set I the flat partial order
on TlI that makes ι2(∗) the least element. This is a preorder on Tl.

Example 3. We write Tm for the free monoid monad. For each set I, we define a pre-
order 	I on TmI by: x 	I y if the length of x is equal or shorter than y. This is not a
preorder on Tm because it is not substitutive.

Suppose that the Kleisli category SetT of a monadT is Pre-enriched, and moreover the
enrichment is pointwise, that is, (∀x ∈ SetT (1, I) . f # ◦ x 	1,J g# ◦ x) implies f 	I,J g
for all f , g ∈ SetT (I, J). Then the assignment I �→ 	1,I gives a preorder on T under the
identification SetT (1, I) � T I. Conversely, given a preorder 	 on T , the assignment of
the preorder 	̇J to SetT (I, J) gives a pointwise Pre-enrichment. This correspondence
between pointwise Pre-enrichments on SetT and preorders on T is bijective.

3 Relational Liftings and Preorders on Monads

After reviewing a coalgebraic formulation of (bi)simulations in the category BRel of
binary relations and relation-respecting functions, we introduce a relational lifting of
monads, called preorder ��-lifting, and show that it gives rise to preorders on monads.

3.1 The Category BRel of Binary Relations

We define the category BRel (which is the same as Rel in [15]) by the following data.
An object in BRel is a triple (X, I1, I2) such that X ⊆ I1× I2. A morphism from (X, I1, I2)
to (Y, J1, J2) is a pair (f1, f2) of functions f1 : I1 → J1 and f2 : I2 → J2 such that for
each (i1, i2) ∈ X, (f1(i1), f2(i2)) ∈ Y. We use bold letters X,Y,Z to range over objects in
BRel, and refer to each component of X ∈ BRel by (X0,X1,X2). We write iX : X0 →
X1 × X2 for the inclusion function. We say that X ∈ BRel is above (I1, I2) ∈ Set2 if
X1 = I1 and X2 = I2. Objects above the same Set2-object are ordered by the inclusion
of their relation part. We denote this order by ⊆. For each object X,Y in BRel and
morphism (f1, f2) : (X1,X2) → (Y1,Y2) in Set2, we abbreviate (f1, f2) ∈ BRel(X,Y) to
(f1, f2) : X →̇Y. We call a pair (X,Y) of objects in BRel composable if X2 = Y1. Their
composition X ∗Y is given by the relational composition of X0 and Y0:

X ∗Y = ({(x1, y2) | ∃z ∈ X2 . (x1, z) ∈ X0, (z, y2) ∈ Y0},X1,Y2).

A preorder ≤ on a set I determines a BRel-object (≤, I, I), which we also denote by ≤.
We write EqI for the BRel-object of the identity relation on I.

The category BRel arises as the vertex of the pullback of the subobject fibration
p : Sub(Set) → Set (see [14, Chapter 0]) along the product functor D : Set2 → Set:

BRel ��

π

��

Sub(Set)

p

��
Set2

D
�� Set

where π is

{
π(X) = (X1,X2),
π(f1, f2) = (f1, f2)

148 S. Katsumata and T. Sato

The leg π : BRel → Set2 of the pullback is a partial order fibration [14]. For an object
X in BRel and a morphism (f1, f2) : (I1, I2) → (X1,X2) in Set2, we define the inverse
image object (f1, f2)∗X by

(f1, f2)∗X = ({(x1, x2) | (f1(x1), f2(x2)) ∈ X}, I1, I2).

The category BRel has a bi-cartesian closed structure that is strictly preserved by π. The
object part of this structure is given as follows:

˙∏
i∈IXi =

(
{(x, y) | ∀i ∈ I . (πi(x), πi(y)) ∈ (Xi)0},

∏
i∈I (Xi)1,

∏
i∈I (Xi)2

)

˙∐
i∈IXi =

(⋃
i∈I {(ιi(x), ιi(y)) | (x, y) ∈ (Xi)0},

∐
i∈I(Xi)1,

∐
i∈I(Xi)2

)

X ⇒̇ Y = ({(f , g) | ∀(x, y) ∈ X0 . (f (x), g(y)) ∈ Y0},X1 ⇒ Y1,X2 ⇒ Y2).

This structure captures the essence of logical relations for product, coproduct and arrow
types interpreted in type hierarchies [23]. We note that the equality functor Eq : Set →
BRel also preserves the bi-CC structure (identity extension).

3.2 Relational Liftings and Coalgebraic Simulations

Definition 4. A relational lifting of an endofunctor F : Set → Set is an assignment
Ḟ : |BRel| → |BRel| such that for each morphism (f , g) : X →̇ Y, we have (F f , Fg) :
ḞX →̇ ḞY. We say that Ḟ is

– reflexive if EqFI ⊆ ḞEqI ,
– lax compositional if ḞX ∗ ḞY ⊆ Ḟ(X ∗ Y),
– compositional if ḞX ∗ ḞY = Ḟ(X ∗ Y), and
– a relational extension [13] if it is reflexive and compositional.

A relational lifting bijectively corresponds to an endofunctor Ḟ : BRel → BRel such
that π ◦ Ḟ = F2 ◦ π. We later see that the lax compositionality guarantees the compos-
ability of simulations between coalgebras.

Example 4. The bi-cartesian closed structure on BRel gives canonical relational exten-
sions of functors consisting of Id,CA (the constant functor for a set A), + and ×. For
instance, the canonical lifting of FX = CA + X × X is ḞX = EqA +̇ X ×̇ X.

Example 5. The following relational lifting F is known to capture the concept of bisim-
ulation between F-coalgebras in many cases (see e.g. [12]):

FX = (Im, FX1, FX2),

where Im is the image of 〈Fπ1, Fπ2〉 ◦ FiX : FX0 → FX1 × FX2. It is always reflexive,
and also compositional if and only if F preserves weak pullbacks [3].

Example 6. In [13, Section 4.1] Hesselink and Thijs give the following construction of
a relational lifting F+()(X) from a preordered functor (F,):

F+()(X) = 	X1 ∗ FX ∗ 	X2 .

They show that every relational extension Ḟ of a Set-functor F gives rise to a preordered
functor (F, Ḟ(Eq−)), and Ḟ can be recovered as Ḟ = F+(Ḟ(Eq−)). In [20], it is shown that
the preordered functor (F,) is stable (Definition 10, [20]) if and only if F+() is a
relational extension such that (F+(), F2) is an endomorphism over π.

Preorders on Monads and Coalgebraic Simulations 149

A natural generalisation of the coalgebraic formulation of (bi)simulations in [12,15]
is to make it parametrised by relational liftings of coalgebra functors.

Definition 5. Let Ḟ be a relational lifting of an endofunctor F : Set → Set. An Ḟ-
simulation from an F-coalgebra (I1, f1) to another F-coalgebra (I2, f2) is an object
X ∈ BRel above (I1, I2) such that (f1, f2) : X →̇ ḞX.

Example 7. Hermida and Jacobs formulated bisimulations between F-coalgebras as F-
simulations [12]. Later, Hughes and Jacobs employed F+()-simulations to capture the
concept of simulations between F-coalgebras [15].

Here are some properties of Ḟ-simulations. I) Ḟ-simulations are closed under the union
of arbitrary family. II) If Ḟ is reflexive, Ḟ-simulations are F-simulations. III) If Ḟ is lax
compositional, Ḟ-simulations are closed under the relational composition ∗.

We extend the concept of relational liftings of endofunctors to monads.

Definition 6. A relational lifting of T is an assignment Ṫ : |BRel| → |BRel| such that

– For each object X in BRel, we have (ηX1 , ηX2) : X →̇ ṪX, and
– for each morphism (f1, f2) : X →̇ ṪY, we have (f #

1 , f #
2) : ṪX →̇ ṪY.

A relational lifting of T bijectively corresponds to a monad Ṫ = (Ṫ , η̇, μ̇) over BRel
such that

π(ṪX) = (TX1, TX2), π(Ṫ (f1, f2)) = (T f1, T f2), η̇X = (ηX1 , ηX2), μ̇X = (μX1 , μX2).

We note that every relational lifting Ṫ ofT is a strong monad over BRel, and its strength
θ̇ satisfies π(θ̇X,Y) = (θX1,Y1 , θX2,Y2), where θ is the canonical strength of T .

The relational lifting in Example 5 extends to monads:

Proposition 1. For each monad T , T is a relational lifting of T .

Larrecq, Lasota and Nowak further generalised this fact using subscones and mono
factorisation systems [8]. Hesselink and Thijs’s construction in Example 6 also yields
relational liftings of monads, when preorders on monads are supplied:

Proposition 2. For each monad T and preorder 	 on T , T+() is a lifting of T .

3.3 Preorder ��-Lifting

Inspired from [22,21,24], in [16] the first author introduced semantic ��-lifting, a
method to lift strong monads on the base category B of a certain partial order fibration
p : E → B to its total category E. This method takes a pair (R, S) such that pS = TR
as a parameter of the lifting, and by varying this parameter we can derive various lift-
ings of T . In this paper, we apply the semantic ��-lifting to the strong monad T 2 over
Set2 and the fibration π : BRel → Set2, and we supply congruent (and substitutive)
preorders to the semantic ��-lifting as parameters.

Definition 7. A preorder parameter for T is a pair (R,≤) of a set R and a congruent
preorder ≤ on TR.

150 S. Katsumata and T. Sato

The following is a special case of the semantic ��-lifting [16, Definition 3.2], where a
preorder parameter is supplied.

Definition 8. Let (R,≤) be a preorder parameter for T . We write σI for the function
λxk . k#(x) : T I → (I ⇒ TR) ⇒ TR.1 We define the assignment T��(R,≤) : |BRel| →
|BRel| by:

T��(R,≤)X = (σX1 , σX2)∗((X⇒̇ ≤)⇒̇ ≤). (1)

Below we call T��(R,≤) preorder ��-lifting to distinguish it from the general semantic
��-lifting. When the preorder parameter is obvious from context, we simply write T��

instead of T��(R,≤). An equivalent definition of T��X using an auxiliary object X� is:

X� = X ⇒̇ ≤ = ({(f1, f2) | ∀(x1, x2) ∈ X0 . f1(x1) ≤ f2(x2)},X1 ⇒ TR,X2 ⇒ TR),

T��X = (({(x1, x2) | ∀(f1, f2) ∈ (X�)0 . f #
1 (x1) ≤ f #

2 (x2)}, TX1, TX2).

Theorem 1 ([16]). The preorder ��-lifting T�� is a relational lifting of T .

Example 8 (Example 3.6, [16]). We regard Tp1 = {∅, 1} as the congruent preorder ∅ ≤
1. The preorder ��-lifting of Tp with this preorder parameter is

T��
p X = ({(P1, P2) | ∀x1 ∈ P1 . ∃x2 ∈ P2 . (x1, x2) ∈ X0}, TpX1, TpX2).

Every preorder ��-lifting of a monad T yields a preorder on T .

Theorem 2. Let (R,≤) be a preorder parameter for T .

1. For each set I, we have T��EqI = ({(x, y) | ∀ f : I → TR . f #(x) ≤ f #(y)}, T I, T I).
2. The assignment I �→ T��EqI is a preorder on T (which we denote by [≤]R).

Proof. We note that (T��EqI)0 = {(x, y) | ∀ f , g : I → TR . f ≤̇ g =⇒ f #(x) ≤ g#(y)}.

1. (⊇) Immediate. (⊆) Let x, y ∈ T I and assume ∀h : I → TR . h#(x) ≤ h#(y). For
functions f , g : I → TR such that f ≤̇ g, we have f #(x) ≤ g#(x) as ≤ is congruent,
and g#(x) ≤ g#(y) from the assumption. Therefore f #(x) ≤ g#(y) holds by the
transitivity of ≤.

2. (Transitivity) Let (x, y), (y, z) ∈ T��EqI . From 1, for any function f : I → TR, we
have f #(x) ≤ f #(y) and f #(y) ≤ f #(z), hence f #(x) ≤ f #(z). (Reflexivity) Reflexivity
is immediate from the congruence of ≤. (Congruence) The Kleisli lifting of (f , g) :
EqI →̇ T��EqJ satisfies (f #, g#) : T��EqI →̇ ṪEqJ. From the reflexivity of T��EqI ,
we have (f #, g#) : EqT I ⊆ T��EqI →̇ T��EqI . (Substitutivity) Let f : I → T J be a
function and x, y ∈ T I such that (x, y) ∈ T��EqI . For each function g : J → TR, we
have

g#(f #(x)) = (g# ◦ f)#(x) ≤ (g# ◦ f)#(y) = g#(f #(y)),

implying (f #(x), f #(x)) ∈ T��EqJ.

Below we write CSPre(T , I) for the set of congruent and substitutive preorders on T I,
ordered by inclusion. The mapping (−)I : 	 �→ 	I is a monotone function of type
Pre(T) → CSPre(T , I). We characterise the assignment ≤ �→ [≤]R as the right adjoint
[−]I : CSPre(T , I) → Pre(T) to (−)I .

1 This is called the unit of the continuation monad transformer [4].

Preorders on Monads and Coalgebraic Simulations 151

Theorem 3. For each set I, we have the following adjunction (−)I � [−]I such that
[−]I

I = id.

(CSPre(T , I),⊆) �
[−]I

��
(Pre(T),�).

(−)I

�� (2)

Proof. Monotonicity of [−]I is easy. We show 	 � [I]I . Let J be a set and suppose
x 	J y. Then from the substitutivity of 	, for each function f : J → T I, we have
f #(x) 	I f #(y), that is, x [I]I

J y. Next, we show [≤]I
I = ≤. We first calculate [≤]I

I :

[≤]I
I = {(x, y) | ∀ f : I → T I . f #(x) ≤ f #(y)}

Then ≤ ⊆ [≤]I
I is equivalent to the substitutivity of ≤, which is already assumed. To

show [≤]I
I ⊆ ≤, use the unit ηI : I → T I of T .

Example 9. 1. We define a congruent preorder ≤ on Tm2 = 2∗ by: x ≤ y if x is a
subsequence of y. Then we have x [≤]2

I y if and only if x is a subsequence of y.
2. For x ∈ TmI and i ∈ I, by o(x, i) we mean the number of occurrences of i in

x. For each congruent preorder ≤ on Tm1 � N, we have x [≤]1
I y if and only if

∀i ∈ I . o(x, i) ≤ o(y, i).

4 Characterising Pre(T) as the Limit of a Large Chain

Using the family of adjunctions (2), for sets I, J we define the monotone function ϕI,J :
CSPre(T , I) → CSPre(T , J) by ϕI,J(≤) = [≤]I

J. Theorem 3 asserts ϕI,I = id.

Lemma 1. For each 	 ∈ Pre(T) and sets I, J such that card(I) ≤ card(J), we have
	I = [J]J

I .

Proof. From 	 � [J]J, we have 	I ⊆ [J]J
I . We show the converse. We take an

injection i : I � J and a surjection s : J � I such that s ◦ i = id. Suppose x[J]J
I y.

Then for the function η ◦ i : I → T J, the following holds:

Ti(x) = (η ◦ i)#(x) 	J (η ◦ i)#(y) = Ti(y).

From the substitutivity of 	, we obtain x 	I y, because

x = T s ◦ Ti(x) = (η ◦ s)#(Ti(x)) 	I (η ◦ s)#(Ti(y)) = T s ◦ Ti(y) = y.

Lemma 2. For sets I, J,K such that card(I) ≤ card(J), we have ϕJ,I ◦ ϕK,J = ϕK,I .

Proof. We have ϕK,I(≤) = [≤]K
I

∗
= [[≤]K

J]J
I = ϕJ,I ◦ ϕK,J(≤); here,

∗
= is by Lemma 1.

This implies that when card(I) ≤ card(J), we have ϕJ,I ◦ ϕI,J = id, hence ϕI,J is a split
monomorphism in Pos.

Lemma 3. For each 	 ∈ Pre(T) and sets I, J such that card(I) ≤ card(J), we have
[I]I � [J]J.

152 S. Katsumata and T. Sato

Proof. We have [J]J � [[J]J
I]I = [I]I ; the last step is by Lemma 1.

Thus each 	 ∈ Pre(T) determines a descending chain of preorders on T indexed by
cardinals: [0]0 � [1]1 � · · · , and 	 is a lower bound by Theorem 3. In fact, 	 is the
greatest lower bound:

Theorem 4. For each 	 ∈ Pre(T), we have 	 =
⋂
α∈Card [α]α.

Proof. It is sufficient to show
⋂
α∈Card [α]α � 	. Let I be a set, x, y ∈ T I and suppose

that x [α]αI y holds for any cardinal α; so this especially holds at card(I). Taking a
bijection h : I → card(I), we obtain Th(x) 	card(I) Th(y). As 	 is substitutive, we have
x = Th−1 ◦ Th(x) 	I Th−1 ◦ Th(y) = y.

Let us write Card for the linear order of cardinals (recall that we assume the axiom of
choice). To clarify the relationship between Pre(T) and CSPre(T ,−), we extend the
assignment α ∈ Card �→ CSPre(T , α) to a functor CSPre(T ,−) : Cardop → Pre; the
morphism part is given by ϕ. We thus obtain a large chain:

CSPre(T , 0) CSPre(T , 1)
ϕ1,0�� · · ·

ϕ2,1�� CSPre(T ,ℵ0)�� · · ·
ϕℵ0 ,ℵ1��

We characterise Pre(T) as a limit of this large chain.

Theorem 5. The family (−)α : Pre(T) → CSPre(T , α) is a limiting cone.

Proof. We first show that (−)α : Pre(T) → CSPre(T , α) is a cone over CSPre(T ,−).
Let 	 ∈ Pre(T) and α, β be cardinals such that α ≤ β. Then ϕβ,α(β) = [β]βα = 	α by
Lemma 1.

Next, let V be a class and p : V → CSPre(T ,−) be a cone. We construct the unique
mediating mapping m : V → Pre(T) such that (−)α ◦ m = pα. For this, we first prove
the following lemma:

Lemma 4. For each class V, cone p : V → CSPre(T ,−) and cardinals α, β such that
α ≤ β, we have [pα(v)]α � [pβ(v)]β.

Proof. As p is a cone, for any cardinal α ≤ β, we have ϕβ,α(pβ(v)) = [pβ(v)]βα = pα(v).
Then [pα(v)]α = [[pβ(v)]βα]α � [pβ(v)]β; the last step is by Lemma 3.

Therefore every v ∈ V determines a decreasing sequence of preorders on T : [p0(v)]0 �
[p1(v)]1 � · · · . We then define a mapping m : V → Pre(T) by

m(v) =
⋂

α∈Card

[pα(v)]α.

This mapping satisfies m(v)α = pα(v) because

m(v)α =
⋂

β∈Card

[pβ(v)]βα =
⋂

β∈Card,α≤β
[pβ(v)]βα =

⋂

β∈Card,α≤β
pα(v) = pα(v).

When another mapping m′ : V → Pre(T) satisfies m′(v)α = pα(v), then m′(v) = m(v)
because

m′(v) =
⋂

α∈Card

[m′(v)α]α =
⋂

α∈Card

[pα(v)]α = m(v).

Preorders on Monads and Coalgebraic Simulations 153

Corollary 1. We have an isomorphism CSPre(T , α) � Pre(T) if ϕβ,α is an isomor-
phism for each cardinal β ≥ α.

Finding such a cardinal α is not obvious and depends on T . Below we present a conve-
nient condition for finding such α; see Example 11 for a concrete case.

Definition 9. We say that a cardinal α is large enough for preorder axioms on T if for
each cardinal β ≥ α and x, y ∈ Tβ, there exists functions g : β → Tα and f : α → Tβ
(depending on x, y) such that f # ◦ g#(x) = x and f # ◦ g#(y) = y.

Theorem 6. If α is large enough for preorder axioms on T , then CSPre(T , α) �
Pre(T).

Proof. We show that ϕα,β is surjective as a function for any cardinal β ≥ α. When this is
shown, ϕα,β becomes the inverse of ϕβ,α in Pos because ϕα,β is a split monomorphism.

Let β be a cardinal such that β ≥ α, and suppose that it is witnessed by an injection
w : α� β. For each congruent and substitutive preorder ≤ ∈ CSPre(T, β), we define a
binary relation ≤′⊆ Tα × Tα by

a ≤′ b ⇐⇒ there exists an injection m : α� β such that Tm(a) ≤ Tm(b).

Lemma 5. ≤′ ∈ CSPre(T , α).

We omit the proof of this lemma. We next show that ≤ is the image of ≤′ by ϕα,β.

Lemma 6. ϕα,β(≤′) =≤.

Proof. Let x, y ∈ Tβ such that x ≤ y. For each function f : β→ Tα, we obtain

Tw ◦ f #(x) = (Tw ◦ f)#(x) ≤ (Tw ◦ f)#(y) = Tw ◦ f #(y)

from the substitutivity of ≤, thus f #(x) ≤′ f #(y). Therefore we obtain x [≤′]αβ y.
Conversely, suppose x [≤′]αβ y. From the assumption, we have g : β → Tα and

f : α → Tβ such that f # ◦ g#(x) = x and f # ◦ g#(y) = y. We thus have g#(x) ≤′ g#(y),
hence there is an injection m : α � β such that Tm ◦ g#(x) ≤ Tm ◦ g#(y). Now take a
surjection s : β � α such that s ◦ m = idα. Then we have a function f ◦ s : β → Tβ,
and as the preorder ≤ is substitutive, we have

x = (f ◦ s)# ◦ Tm ◦ g#(x) ≤ (f ◦ s)# ◦ Tm ◦ g#(y) = y.

Theorem 7. The rank of a monad T , if it exists, is large enough for preorder axioms
on T .

Proof. We write α for the rank ofT . Let β be a cardinal such that β ≥ α and x1, x2 ∈ Tβ.
There exists a cardinal 0 < γ < α (witnessed by an injection i′ : γ� α), m1,m2 ∈ Tγ
and an injection i : γ � β such that T (i)(mi) = xi (i = 1, 2). We then take surjections
s : β � γ and s′ : α � γ that are left inverses to i and i′, respectively. Then f =
η ◦ i′ ◦ s : β→ Tα and g = η ◦ i ◦ s′ : α→ Tβ satisfy g# ◦ f #(xi) = xi because

g# ◦ f #(xi) = Ti ◦ T s′ ◦ Ti′ ◦ T s ◦ Ti(mi) = Ti(mi) = xi (i = 1, 2).

154 S. Katsumata and T. Sato

5 Enumerating and Identifying Preorders on Monads

The understanding of the categorical status of Pre(T) allows us to identify its contents
in several ways. Below we illustrate some methods with concrete monads.

5.1 Showing the Adjunction (2) being an Isomorphism

Let M be a semiring. We write T M
c for the M-valued finite multiset monad, whose

functor part is given by T M
c I = { f : I → M | supp(f) is finite}; here, supp(f) = {i ∈

I | f (i) � 0}. Below we show that the adjunction (2) becomes an isomorphism for I = 1.
The following is the key lemma, which states that each preorder on T M

c is pointwise:

Lemma 7. Each preorder 	 on T M
c satisfies: d 	I d′ ⇐⇒ ∀i ∈ I . d(i) 	1 d′(i).

This implies [1]1 � 	. Therefore from Theorem 3, we obtain:

Theorem 8. We have CSPre(T M
c , 1) � Pre(T M

c).

By letting M be the two-point boolean algebra and removing the finiteness restriction,
T M

c becomes the powerset monad Tp. A similar argument then identifies Pre(Tp):

Theorem 9. We have 4 � CSPre(Tp, 1) � Pre(Tp). The preorders on Tp are: I) the
discrete order, II) the inclusion order, III) the opposite of II and IV) the trivial preorder
(that is, 	I = TpI × TpI).

5.2 Collecting Preorders of the Form [≤]R

From Theorem 4, every preorder 	 on T is the intersection of preorders of the form
[≤]R. Therefore if the collection {[≤]R | R ∈ Set, ≤ ∈ CSPre(T ,R)} is closed under
intersections of arbitrary size, then it is equal to Pre(T). Below we identify Pre(Tl)
using this fact. We note that Levy identified Pre(Tl) using a different method called
boolean precongruences [19]; see Section 7.

Example 10. Let (R,≤) be a preorder parameter forTl. Then [≤]R is either I) the discrete
order, II) the flat order with ι2(∗) being the least element, III) the opposite of II, or
IV) the trivial order. For proving this statement, we consider the combinations of two
subcases: A) whether ι2(∗) is the least element in (R,≤) or not, and B) whether ι2(∗)
is the greatest element in (R,≤) or not. From this, we conclude that I—IV are the only
preorders on Tl.

5.3 Computing CSPre(T , α) with a Large Enough α for Preorder Axioms

In the previous method, we have managed to find a good case analysis of preorder pa-
rameters. However, when the monad T becomes more complex, we immediately have
no idea what kind of case analysis on preorder parameters is sufficient for classifying
all the preorders on the monad. The second method presented in this section circum-
vents this problem by exploiting Theorem 6. We find a finite cardinal α that is large
enough for preorder axioms on T , then compute CSPre(T , α). Below we examine the

Preorders on Monads and Coalgebraic Simulations 155

case where this computation is feasible. First, we assume that Tα is finite. We introduce
the following preorder � on Tα × Tα:

(x1, y1) � (x2, y2) ⇐⇒ ∃ f : α→ Tα . (f # x1, f #y1) = (x2, y2)

and the following congruent closure operator C:

C(B) = {(f #(w), g#(w)) | X ∈ Set,w ∈ TX, (f , g) : EqX →̇ (B, Tα, Tα)}.

For a finite set D, a subset A ⊆ D and a monotone increasing function f over TpD, the
following function lfp computes the least fixpoint of f including A:

lfp(A, f){
if(A = f (A)) { return A; } else { return lfp(f (A), f); }

}

If f is computable then lfp terminates in finite steps.
We construct the following algorithm Naive to compute CSPre(T , α):

CTU(A) { return lfp(A, C ◦ T ◦ U); }
f1(L) { return L ∪ { CTU(B ∪ {(x, y)}) | B ∈ L, (x, y) ∈ Tα × Tα \ B }; }

Naive() { return lfp({EqTα}, f1); }

where, U is the upward closure operator on (Tα × Tα,�) and T is the transitive closure
operator; they are both computable. The function CTU thus computes the congruent
transitive upward closure of a given binary relation over Tα. When C is computable, the
above algorithm is also computable.

Proposition 3. Naive() = CSPre(T , α).

We explain how the algorithm Naive runs with the following example.

Example 11. First, the cardinal 3 is large enough for preorder axioms on the nonempty
powerset monad Tp+ , because for each pair (x, y) ∈ Tp+X × Tp+X, the following two
functions f : X → Tp+3 and g : 3 → Tp+X satisfy g# ◦ f # x = x and g# ◦ f #y = y:

f (a) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{0} a ∈ x\y
{1} a ∈ y\x

{2} otherwise

, g(b) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y b = 1

x ∩ y b = 2 and x ∩ y � ∅
x otherwise

Since Tp+3 is finite and the multiplication of Tp+ is the set union operation, R is congru-
ent if and only if R satisfies (x1, y1), (x2, y2) ∈ R =⇒ (x1 ∪ x2, y1 ∪ y2) ∈ R. Therefore,
the following algorithm computes C:

C(A){ return lfp(A, f2); } where f2(B){ return B ∪ {x ∪ y | x, y ∈ B}; }

We have CSPre(T , α) � 4. The orders on Tp+ remains the same as the one for Tp.

156 S. Katsumata and T. Sato

Table 1. All Preorders on Tpl (we omit opposite ones)

Type of preorders The definition of x 	I y
Trivial preorder true
Equivalence relations x = y, (x = y) ∨ (⊥ ∈ x ∧ ⊥ ∈ y),

x\{⊥} = y\{⊥}
Partial orders x ⊆ y, x = y ∨ x = y\{⊥},

x = y ∨ (x ⊆ y ∧ ⊥ ∈ x), x = y ∨ (x ⊆ y ∧ ⊥ ∈ y),
(x = y) ∨ (x\{⊥} ⊆ y\{⊥} ∧ ⊥ ∈ x)

Proper preorders x = y ∨ ⊥ ∈ x, x ⊆ y ∨ ⊥ ∈ y,
(x ⊆ y) ∨ (x\{⊥} ⊆ y\{⊥} ∧ ⊥ ∈ x)

We rewrite the naive algorithm to an efficient one. The basic idea to improve the
efficiency is to work on the poset (Tα×Tα/∼, [�]) rather than the preorder (Tα×Tα,�),
where ∼ is the equivalence relation � ∩ � and [�] is the extension of � to the partial
order on ∼-equivalence classes.

Since Tα is finite, the set of all ∼-equivalence classes and the order [�] between
them are computable. We then rewrite the naive algorithms CTU and Naive to,

CTU(A) { return lfp(A, C′ ◦ T′ ◦ U′); }
f3(L) { return L ∪ { CTU(B ∪ {d}) | B ∈ L, d ∈ (Tα × Tα/∼) \ B}; }

Modified() { return lfp({{[(x, y)] | (x, y) ∈ EqTα}}, f3); }

respectively. Here, U′ is the upward closure operator on (Tα × Tα/∼, [�]), C′(B) =
{[(x, y)] | (x, y) ∈ C(

⋃
B)}, and T′(B) = {[(x, y)] | (x, y) ∈ T(

⋃
B)}. Since an upward

closed subset B of (Tα × Tα,�) is the union
⋃

B′ of an upward closed subset B′ of
(Tα × Tα/∼, [�]), we have {

⋃
B | B ∈ Modified()} = CSPre(T , α).

Algorithm Modified is faster than Naive because the upward closure operator U’
and the set comprehension in f3 works on the smaller poset (Tα × Tα/ ∼, [�]) than
(Tα × Tα,�). Function f1 also has a redundant computation: it computes CTU(B ∪
{(x, y)}) for each pair (x, y) ∈ Tα × Tα \ B, but the results of this computation are the
same when ∼-equivalent pairs are supplied. The function f3 avoids such duplicated
computation by working on ∼-equivalence classes.

We demonstrate an execution of Modified. Below, we write Tpl for the composite
monad Tp ◦ Tl using the canonical distributive law between Tp and Tl.

Example 12. The cardinal 2 = {a, b} is large enough for preorder axioms on Tpl.
First we calculate all ∼-equivalence classes and the partial order [�]. We have Tpl2 ×
Tpl2/∼ = {p1, p2, · · · , p28} where,

p1 = [({a}, {b})] p8 = [({a,⊥}, {b})] p15 = [({a}, {b,⊥})] p22 = [({a,⊥}, {b,⊥})]
p2 = [({a, b}, {b})] p9 = [({a, b,⊥}, {b})] p16 = [({a, b}, {b,⊥})] p23 = [({a, b,⊥}, {b,⊥})]
p3 = [({a}, {a, b})] p10 = [({a,⊥}, {a, b})] p17 = [({a}, {a, b,⊥})] p24 = [({a,⊥}, {a, b,⊥})]
p4 = [({a}, {a})] p11 = [({a,⊥}, {a})] p18 = [({a}, {a,⊥})] p25 = [({a,⊥}, {a,⊥})]
p5 = [({a}, ∅)] p12 = [({a,⊥}, ∅)] p19 = [({a}, {⊥})] p26 = [({a,⊥}, {⊥})]
p6 = [(∅, {a})] p13 = [({⊥}, {a})] p20 = [(∅, {a,⊥})] p27 = [({⊥}, {a,⊥})]
p7 = [(∅, ∅)] p14 = [({⊥}, ∅)] p21 = [(∅, {⊥})] p28 = [({⊥}, {⊥})]

Preorders on Monads and Coalgebraic Simulations 157

We draw the following Hasse diagram of the poset (Tpl2 × Tpl2/∼, [�]).

p1

p2p3

p4

p5p6

p7

p8

p10
p9

p11

p13

p12

p14

p15

p17

p16

p18p20

p19

p21

p22

p23p24

p25

p26p27

p28

�����������
�����������

����������������

����������������

		���������

����

��������������
��									

��

��������������

��

�������

��
�������

���������������������

������ ���������

�� ��������

��������

��
��������

������

����������������

�������
��

������
��������������������

���������

		������
������

����������
 ����

���������������

��������

!!������

""

##�����
$$

%%�������

&&����
''																		

��
��!!!!!!!

		������

 ������������

������

 &&����������

Next, we demonstrate the execution of Modified(). It computes the least fixpoint of
f3 containing {{p4, p7, p25, p28}}. We now see the first loop of lfp in the execution
of Modified() in detail. The function f3 picks up an equivalence class other than
{p4, p7, p25, p28}, say p6, then pass {p4, p7, p25, p28, p6} to CTU . The function CTU pro-
cesses its argument by the closure operators U’, T’, C’ repeatedly until it gets stationary.
The following is the first pass of this process:

– U′({p4, p7, p25, p28, p6}) = {p4, p6, p7, p20, p21, p25, p28}
– T′({p4, p6, p7, p20, p21, p25, p28}) = {p4, p6, p7, p20, p21, p25, p28}
– C′({p4, p6, p7, p20, p21, p25, p28}) = {p3, p4, p6, p7, p17, p18, p20, p21, p24, p25, p27,

p28}

The result of the last calculation by C′, which we call H below, is already closed under
U′, T′ and C′. Therefore, CTU({p4, p7, p25, p28, p6}) = H. The function f3 similarly cal-
culates CTU({p4, p7, p25, p28, p}) for each equivalence class p other than p4, p7, p25, p28,
p6, and returns the union of the results of the calculations of CTUs and f3’s argument
L. This finishes the first call of f3. The function lfp in Modified repeats calling f3
until we obtain the least fixpoint of f3. The algorithm Modified() yields 20 sets of
equivalence classes, hence CSPre(Tpl, 2) � 20 (see also Section 7 for Levy’s result).

After this computation, we manually extract the definitions of preorders on Tpl from
each set of equivalence classes. The 20 preorders are listed in Table 1. For this extrac-
tion, we first identify the meaning of the binary relation

⋃
B over Tpl2 for each set

B ∈ Modified() of equivalence classes, then manually characterise [
⋃

B]2
I for each set

I. For instance,
⋃

H = ⊆2, and from this we obtain [⊆2]2
I =⊆I .

Another method to enumerate congruent substitutive preorders on Tα is to reduce the
problem to finding the valuations ρ that satisfy the following boolean formula:

∧

(Q1 ,Q2)∈V

(
∧

p∈Q1

Pp =⇒
∧

p∈Q2

Pq) (3)

Here, Pp is the propositional variable assigned to each p ∈ Tα× Tα/∼, and V is the set
of the following pairs:

– ({p}, {q}) for all p, q ∈ Tα × Tα/∼ such that p � q
– (∅, [(x, x)]) for all x ∈ Tα

158 S. Katsumata and T. Sato

– ({[(x, y)], [(y, z)]}, {[(x, z)]}) for all x, y, z ∈ Tα
– (Q, C′(Q)) for all Q ⊆ Tα × Tα/∼ such that C′(Q) � Q.

The set V encodes the conditions of congruent substitutive preorder. If Tα is finite and
C is computable, the boolean formula (3) is finite and can be generated by an algorithm.

The satisfying assignments of the boolean formula (3) bijectively correspond to pre-
orders in CSPre(T , α). The number of CSPre(T , α) is the solution of the problem
of counting the number of satisfying assignments of the formula, and this problem is
known as #SAT problem [5].

6 Some Properties on Preorder ��-Lifting

We show that preorder��-liftings satisfy a couple of properties that are relevant to the
coalgebraic simulations discussed in Section 3.2. The first property relates oplax coal-
gebra morphisms and simulations. We restrict our attention to T F-coalgebras, where
T is the functor part of a monad and F consists of Id,CA,+,× only. Below for each
function g : I → J, we define Gr(g) to be the BRel-object ({(i, g(i)) | i ∈ I}, I, J) of the
graph of g. We note Ḟ(Grg) = Gr(Fg).

Theorem 10. Let (R,≤) be a preorder parameter, and (Ii, fi) be T F-coalgebras (i =
1, 2). For each function g : I1 → I2, Gr(g) is a T��Ḟ-simulation from (I1, f1) to (I2, f2)
if and only if g is an oplax morphism of coalgebras with respect to [≤]R, that is, T Fg ◦
f1 ˙[≤]

R
FI2

f2 ◦ g.

In general, preorder ��-liftings may not be lax compositional. We here present a con-
dition to guarantee the lax compositionality.

Theorem 11. Let (R,≤) be a congruent preorder such that ≤ satisfies the following
condition for all subsets X, Y ⊆ TR:

(∀x ∈ X, y ∈ Y . x ≤ y) =⇒ ∃z ∈ TR.∀x ∈ X, y ∈ Y . x ≤ z ∧ z ≤ y. (4)

Then T�� is lax compositional.

For instance, (4) is satisfied when the preorder parameter (R,≤) is a complete lattice.

7 Conclusion and Related Work

We showed that preorder��-liftings construct preorders on monads, and this construc-
tion enjoys a universal property. We gave a characterisation of the collection Pre(T) of
preorders on T as the limit of the large diagram CSPre(T ,−) : Cardop → Set. We then
applied these theoretical results to identifying preorders on some concrete monads. We
also showed the properties of the preorder��-lifting that are relevant to the coalgebraic
formulation of simulations.

Besides [13,11,15], we briefly mention some recent works on (bi)simulations and
relational liftings. Cı̂rstea studies modular constructions of relational extensions and
modal logics characterising simulations using the categorical structures on BRel [7].

Preorders on Monads and Coalgebraic Simulations 159

Klin studies the least fibred lifting of Set-functors across the fibration ERel → Set,
where ERel is the category of equivalence relations [17]. His lifting works for mono-
preserving functors, and when they preserve weak pullbacks, his lifting coincides with
the one in Example 5. Balan and Kurz give liftings and extensions of finitary Set-
functors to endofunctors over Pre and Pos [2]. Their method uses the fact that every
finitary Set-functor T is presented as LanI(T ◦ I), where I : Finord → Set is the in-
clusion functor. Bilkova et al. derive a natural definition of relations between preorders
using Sierpinski-space enriched categories, and give relational liftings of endofunctors
over Pre in this context [6]. Levy extends the characterisation of bisimilarity by final
coalgebras to similarity [20].

The novelty of our approach is that we exploit the structure of monad to relationally
lift functors. The principle of the semantic ��-lifting seems fundamentally different
from the lifting methods employed in the above works. One distinguishing feature of
the semantic ��-lifting is its flexibility. By changing the preorder parameter, we can
uniformly derive various relational liftings and preorders on monads. The source of this
flexibility lies at continuation monads, which are a special case of enriched right Kan
extensions.

Levy introduces the concept called deterministic / nondeterministic boolean precon-
gruences (DBP and NDBP for short) in [19]. They are defined in our language by:

DBPE = CSPre(T E
e , 2), NDBPE = CSPre(Tp+ ◦ T E

e , 2);

here, T E
e is the error monad, whose functor part is given by T E

e I = I + E. He shows
CSPre(T , 2) � Pre(T) for T = T E

e and T = Tp+ ◦ T E
e , and enumerates the following

boolean precongruences together with their definitions:

DBP0 � 2, DBP1 � 4, DBP2 � 13, NDBP0 � 4, NDBP1 � 20.

He also gives modal logics that have Hennesy-Milner property with respect to the con-
cept of simulations derived from boolean precongruences. His results are derived by the
method that is specialised to these monads.

Acknowledgement. We are grateful to Naohiko Hoshino, Norihiro Tsumagari and Ha-
suo Ichiro for valuable discussions. This work was supported by JSPS KAKENHI Grant
Number 24700012.

References

1. Aczel, P., Mendler, N.: A Final Coalgebra Theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H.,
Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389,
pp. 357–365. Springer, Heidelberg (1989)

2. Balan, A., Kurz, A.: Finitary Functors: From Set to Preord and Poset. In: Corradini, A.,
Klin, B., Cı̂rstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 85–99. Springer, Heidelberg
(2011)

3. Barr, M.: Relational Algebras. In: MacLane, S., Applegate, H., Barr, M., Day, B., Dubuc,
E., Phreilambud, Pultr, A., Street, R., Tierney, M., Swierczkowski, S. (eds.) Reports of the
Midwest Category Seminar IV. LNM, vol. 137, pp. 39–55. Springer, Heidelberg (1970)

160 S. Katsumata and T. Sato

4. Benton, N., Hughes, J., Moggi, E.: Monads and Effects. In: Barthe, G., Dybjer, P., Pinto, L.,
Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer, Heidelberg (2002)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)

6. Bı́lková, M., Kurz, A., Petrisan, D., Velebil, J.: Relation liftings on preorders and posets.
CoRR, abs/1210.1433 (2012)

7. Cı̂rstea, C.: A modular approach to defining and characterising notions of simulation. Infor-
mation and Computation 204(4), 469–502 (2006)

8. Goubault-Larrecq, J., Lasota, S., Nowak, D.: Logical Relations for Monadic Types. In: Brad-
field, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 553–568. Springer, Hei-
delberg (2002)

9. Hasuo, I.: Generic Forward and Backward Simulations. In: Baier, C., Hermanns, H. (eds.)
CONCUR 2006. LNCS, vol. 4137, pp. 406–420. Springer, Heidelberg (2006)

10. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace theory. Electr. Notes Theor. Comput.
Sci. 164(1), 47–65 (2006)

11. Hermida, C., Jacobs, B.: An Algebraic View of Structural Induction. In: Pacholski, L.,
Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 412–426. Springer, Heidelberg (1995)

12. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inf.
Comput. 145(2), 107–152 (1998)

13. Hesselink, W.H., Thijs, A.: Fixpoint semantics and simulation. Theor. Comput. Sci. 238(1-2),
275–311 (2000)

14. Jacobs, B.: Categorical Logic and Type Theory. Elsevier (1999)
15. Jacobs, B., Hughes, J.: Simulations in coalgebra. Electr. Notes Theor. Comput. Sci. 82(1),

128–149 (2003)
16. Katsumata, S.: A Semantic Formulation of ��-Lifting and Logical Predicates for Computa-

tional Metalanguage. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 87–102. Springer,
Heidelberg (2005)

17. Klin, B.: The Least Fibred Lifting and the Expressivity of Coalgebraic Modal Logic. In:
Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS,
vol. 3629, pp. 247–262. Springer, Heidelberg (2005)

18. Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwig-
Maximilians-Universität, Munchen (2000)

19. Levy, P.: Boolean precongruences. Manuscript (2009)
20. Levy, P.: Similarity Quotients as Final Coalgebras. In: Hofmann, M. (ed.) FOSSACS 2011.

LNCS, vol. 6604, pp. 27–41. Springer, Heidelberg (2011)
21. Lindley, S.: Normalisation by Evaluation in the Compilation of Typed Functional Program-

ming Languages. PhD thesis, University of Edinburgh (2004)
22. Lindley, S., Stark, I.: Reducibility and ��-Lifting for Computation Types. In: Urzyczyn, P.

(ed.) TLCA 2005. LNCS, vol. 3461, pp. 262–277. Springer, Heidelberg (2005)
23. Mitchell, J.: Foundations for Programming Languages. MIT Press (1996)
24. Pitts, A.: Parametric polymorphism and operational equivalence. Mathematical Structures in

Computer Science 10(3), 321–359 (2000)
25. Staton, S.: Relating coalgebraic notions of bisimulation. Logical Methods in Computer Sci-

ence 7(1) (2011)

	Preorders on Monads and Coalgebraic Simulations
	Introduction
	Preorders on Monads
	Relational Liftings and Preorders on Monads
	The Category BRel of Binary Relations
	Relational Liftings and Coalgebraic Simulations
	Preorder -Lifting

	Characterising Pre(T) as the Limit of a Large Chain
	Enumerating and Identifying Preorders on Monads
	Showing the Adjunction (2) being an Isomorphism
	Collecting Preorders of the Form []R
	 Computing CSPre(T,) with a Large Enough for Preorder Axioms

	Some Properties on Preorder -Lifting
	Conclusion and Related Work
	References

