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Abstract. Resolving a 3D segmentation problem is a common challenge
in the domain of digital medical imaging. In this work, we focus on an-
other original application domain: the 3D images of wood stem. At first
sight, the nature of wood image looks easier to segment than classical
medical image. However, the presence in the wood of a wet area called
sapwood remains an actual challenge to perform an efficient segmen-
tation. This paper introduces a first general solution to perform knot
segmentation on wood with sapwood. The main idea of this work is to
exploit the simple geometric properties of wood through an original com-
bination of discrete connected component extractions, 2D contour detec-
tion and dominant point detection. The final segmentation algorithm is
very fast and allows to extract several geometrical knot features.

Keywords: 3D segmentation, dominant points, histogram, geometrical
features, wood knot.

1 Introduction

Outside the classical medical applications, 3D digital imaging systems like X-
Ray Computer Tomography are an interesting way for biologists to analyze wood.
Even less frequent, these original images could offer the possibility to access to
numerous geometric informations about wood knots [12]. A wood knot is the
young part of a branch included in the wood stem (see Fig. 1(b)). Sawmills
are also interested by knot segmentation in 3D images to optimize the cutting
decisions of wood planks. They expect to improve at the same time the wood
plank appearance and the productivity.

By nature, wood structures are simpler to segment than medical images. At
first view, the extraction of wood knot does not seem difficult on ideal configu-
rations as in Fig. 1(a). On the contrary, the image 1(b) remains an important
problem to apply segmentation. A simple threshold is no more possible since sap-
wood and knot are connected and of similar intensity. The problem of sapwood
is a well known major difficulty.

More precisely, several authors have tried to remove the limitations induced
by sapwood. We can cite Andreu and Rinnhofer who propose a specific method
based on knot model to segment knots [5]. Their approach is robust on sapwood
but is limited to the Norway spruce. Moreover, it can only detect knots with
particular orientation specific to the species. This approach can not detect the
correct knot structure inside sapwood. Another approach was proposed by Aguil-
era et al. [2]. They use a 2D deformable model with simulated annealing. Their
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Fig. 1. Illustration of different knot qualities in X-Ray images. Image 1(a) is an ideal
configuration without sapwood, image 1(b) is an noisy version with sapwood. Images
1(c) and 1(d) show the limitations of the previous proposed approach [9].

approach can give results in presence of sapwood but an important separation
is visible between knot and sapwood on the examples of their experiments. The
proposed method also suffers from the setting of the deformable model param-
eters. Moreover, it is not automatic: the deformable model must be manually
initialized. We can also refer to the work of Nordmark [14]. He proposes to use
neural networks to solve the knot detection problem in presence of sapwood.
This original solution is interesting but presents the main inconvenients to be
very slow and does not always provide precise results. Note that other classical
segmentation approaches, like the 3D deformable models, are also not able to
perform knot segmentation in presence of sapwood (see for instance the segmen-
tation comparison in [9] or the one of Fig 10(f).

In previous work, we proposed a sapwood robust approach to detect position
and orientation of knots [9]. This first step is only limited to the detection and
does not segment the knots. In particular, the limits of such approach are illus-
trated on Fig. 1(c) and 1(d). The contribution of this new paper is to advance
further than the previous detection by performing a real segmentation even in
presence of sapwood. The main idea of the proposed method is to exploit geo-
metric information analyzed from the discrete contour of 2D images. Through
this method, we can integrate an a priori shape knowledge on knot and sapwood
while remaining efficient.

Before introducing this new solution, we summarize in the following section
the previous work of knot area detection which represents an important step in
the proposed method. Afterwards, we detail our knot segmentation method. Fi-
nally, we present our results and comparisons with results of recent segmentation
algorithms.

2 Knot Areas Detection

In previous work, we present an histogram based method to isolate each tree
knot in an angular interval [9]. Since our work relies on this detection we recall
here the main steps of the algorithm.
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Fig. 2. Schema of the detection of slice intervals and angular intervals. In green a
slice and an angular sector corresponding to a peak in the z-motion histograms and
pie-charts. The [k − i, k + j] intervals are the computed intervals from each peaks.

We work with a 3D grey level image I of N × M × K resolution. A slice Sk

of size N × M is a subimage of I corresponding to a cross-section of the tree.
S1 and SK correspond respectively to the bottom and the top of tree when it is
scanned from bottom to top. We work also with the pith. Biologically, the pith is
the tree center, the growth rings center and the most important for us, the knot
origin. To localize the pith, we use an algorithm proposed by Fleur Longuetaud
[11] based on the growth rings detection. The pith position is defined as the
intersection point of the lines perpendicular to the growth rings. We obtain one
pixel by slice. The pith position will be used like center of all the angular sectors.

The z-Motion. By sliding the slices, we can observe that knots move from the
pith to the bark. Only the knots produce big motions due to a big contrast with
softwood. We name this motion the z-motion.

Definition 1. Let (Sk)k∈[1,K] be a set of K slices. The z-motion slice Zk is
defined as the absolute value of intensity variation between the two consecutive
slices Sk−1 and Sk :

Zk = |Sk − Sk−1|
The set of Zk images provides a new 3D image of dimension N × M × K − 1
where a big value implies a big motion. It is not a problem to have the first slice
S1 without corresponding z-motion slice. It is the first or the last slice and we
ignore these slices during the stem analysis: they are too noisy. The set of Zk is
used to identify slice intervals containing knots. In each of them, we identify the
angular intervals containing knots.

Let us see now how to use z-motion to determine slice intervals and angular
intervals containing knots.
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2.1 Slice and Angular Intervals

The first detection identifies the slice intervals (see Fig. 2). To determine these
intervals, we construct the histogram of z-motion sum (see Fig. 3). Each value
represents the sum of all pixels of a slice Zk. The peaks correspond to a slice with
a lot of big motions, meaning that we are in presence of knots. The algorithm
to determine significant peaks and the corresponding intervals is based on the
analysis of derivative gradient. It is detailed in [9].

Fig. 3. Histogram and pie-chart of z-motion sum. In each of them, we identify knot
intervals with the same algorithm.

Usually, the knots constitute a whorl1. This implies that there are several
knots in a slice interval. To isolate each knot of a whorl, we proceed to a second
analysis of z-motion in each slice interval [Zk−i, Zk+j ]. Each slice is divided in
360 angular sectors centered on the pith. We construct the pie-chart of z-motion
sum illustrated on the Fig. 3. One value corresponds to the z-motion sum on a
same angular sector taken on all the slices of [Zk−i, Zk+j ]. In the same way than
for the slices, we compute intervals of angular sectors. An angular interval is a
set of consecutive angular sectors containing just one knot (see Fig. 2).

3 A Suitable Segmentation in Angular Intervals

Let I be a billon’s image of size N ×M ×K. I can be seen as a sequence of slices
(Sk)k∈[1,K] or as a sequence of angular sectors (sd)d∈[1,D]. After the detection
process of slice intervals (see Section 2), we obtain a set (ix) of slice intervals.
The original image I restricted to an interval ix generates a slice subsequence
Px (see Fig. 4).

A detection process of angular sector is applied to each slice subsequence
Px. This process furnishes a set (αy) of angular intervals with usually just one
1 Knot group with the same origin, the pith, and organized in circle around the pith

axis (see Fig. 1(a)).
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Fig. 4. Notation illustration

knot. The slice interval Px restricted to an angular interval αy is an angular
subsequence Px,y similar to a piece of pie. In the following, we name “ knot
area ” the subsequences Px,y (see on the right of the Fig. 4).

The segmentation process described in this section is applied to each knot
area Px,y. It begins by a 3D connected component extraction based on the grey
level. The objective of this extraction is to eliminate the connected components
resulting from noise as growth rings. The chosen threshold is −100 to be sure
to not cut the knots (in general fixed beetween −90 and −70 by biologists). As
a reminder, the grey level interval corresponding to the wood density in X-Ray
images is [−900, 530]. As a result, we obtain one or more connected components
and we keep the biggest (within the meaning of voxel number) in a new binary
knot area Bx,y with the same dimensions than Px,y.

The proposed algorithm is applied on each 2D slice Sx,y of Bx,y. It consists of
the four main steps described in the following sub-sections (see Fig. 5).

3.1 Step 1: 2D Connected Component Extraction

The first step consists in a 2D connected component extraction applied on Sx,y.
It potentially contains a part of the biggest connected component of Bx,y. We
can have more than one connected component in the 2D slice Sx,y while Bx,y

contains only one connected component. It is a previous or a next slice of Bx,y

that merges the different connected components of Sx,y.
After the 2D connected component extraction, we keep the components with

more than 152 pixels. We name this new slice S′
x,y. In Fig. 5(a), we have an

example of S′
x,y with just one connected component drawn in pink. The two

dark pink lines represents the bounds of the αy angular interval.

3.2 Step 2: Contour Detection

We search P0 in S′
x,y, the nearest pixel to the pith belonging to a 2D connected

component found at the previous step. To do this, we use Andres’s circle [4]
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with an increasing radius. The Andres’s circle ensures to visit all the surface
of S′

x,y by a complete paving of plan. The found pixel P0, drawn in red and
green in Fig. 5(b), is the first point of the contour C. From P0, we applied an
algorithm based on the Moore’s neighborhood to determine the other C points
of the nearest connected component of the pith.

To obtain better results in the next step, we smooth the contour C with an
averaging mask of radius 3. It is the smoothed contour Cs that appears in blue
in Fig. 5(b).

(a) Step 1: connected com-
ponent extraction

(b) Step 2: contour detec-
tion

(c) Step 3.1: dominant point
detection

(d) Step 3.2: main dominant
point detection

(e) Step 4: segmented knot

Fig. 5. Knot segmentation algorithm in four steps

3.3 Step 3: Dominant Points

The objective of this step is to find the junction points PL and PR between
knot and sapwood inside the smoothed contour Cs. The proposed method uses
the dominant point notion (characteristic points of the contour) and a criterion
based on distances to the pith to discriminate them.
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Step 3.1: Dominant Point Detection. We detect the dominant points of
Cs with a method proposed by Nguyen et al. in [13]. The algorithm relies on
arithmetical discrete lines [16] and blurred segments [7].

The notion of blurred segment was intro- y

x

Fig. 6. A blurred segment

duced from the notion of arithmetical dis-
crete line. An arithmetical discrete line, noted
D(a, b, μ, ω), is a set of points (x, y) ∈ Z

2 that
verifies μ ≤ ax − by < μ + ω. A blurred seg-
ment with a main vector (b, a), lower bound μ
and thickness ω is a set of integer points (x, y)
that is optimally bounded (see [7]) for more
details) by a discrete line D(a, b, μ, ω). The
value ν = ω−1

max(|a|,|b|) is called the width of
this blurred segment. The upper figure shows
a blurred segment (the sequence of gray points) whose the optimal bounding
line is D(5, 8, −8, 11).

Nguyen et al. proposed the notion of maximal blurred segment. A maximal
blurred segment of width ν (see Fig. 6) is a blurred segment that can not be
extended to the left and the right sides. A linear recognition algorithm of width
ν blurred segments [7] permits for a given contour C to obtain the sequence
SCν of all its maximal blurred segments of width ν. We then scan the sequence
SCν : in each smallest zone of successive maximal blurred segments whose slopes
are increasing or decreasing, the candidate as dominant point is detected as the
middle point of this zone.

This method is used on the Cs contour detected at the previous step on the
S′

x,y slice, with a width ν = 3. Let (Pn)1≤n≤NP be the sequence of the NP

dominant points obtained on the Cs contour (see example in Fig. 5(c)).

Pp

Px-2
Px-1

Px

Px+1

(a) Px = ¬MDP (b) Decision tree
Pp

Px-2

Px
Px1 2

Px-+

(c) Px = MDP

Fig. 7. Decision tree of the MDP criterion with illustration of two different executions.
In (a), C1 is false and C2, C3 and C4 are true. In (c), C4 is false.
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Step 3.2: Main Dominant Points Detection. We want to identify the two
main dominant points (MDP), PL and PR, with L, R ∈ [1, NP ], L < R and
respectively on the left and on the right of P0 (see Fig. 5(d)). The left and right
sides are defined from the pith position and the orientation of the αy angular
interval: left in counterclockwise, right in clockwise. We are still working on the
slice S′

x,y and the two points make the junction between knot and sapwood on
this slice.

We test successively each dominant point Pn with the decision tree presented
in Fig. 7. They are tested in clockwise from P1 to determine PL and in counter-
clockwise from PNP to determine PR.

For each dominant point Px, the MDP criterion is based on the euclidean
distances d between the pith point Pp and four dominant points:

• Px−2, Px−1, Px and Px+1 when we search PL,
• Px+2, Px+1, Px and Px−1 when we search PR.

The Fig. 7 presents the tree decision and examples of the MDP criterion for
PL. The first condition C1 ensures that Px is not a MDP when the next dom-
inant point Px+1 moves far enough away from the pith (more than 10 pixels)
relatively to Px. The following conditions C2 to C4 ensure a distance order such
as d(Pp, Px−2) < d(Pp, Px−1) < d(Pp, Px+1). These conditions reflect the stem
shape and the pith circularity: they identify the first dominant point that does
not move away from the pith.

The main dominant point detection furnishes zero, one or two points from
which we can separate the knot from the pith. We need to treat the three cases
to obtain a segmentation of any slice S′

x,y.

3.4 Step 4: Knot Segmentation in Sapwood from MDP

From each found MDP, we define a cut line to separate knot from sapwood.
These lines are named ΔL for PL and ΔR for PR. Each of them is built from two
points: the considered MDP and the mean point of the previous dominant points
for PL, respectively the following dominant points for PR. Moreover, we define
the segment ΔMDP linking PL to PR when we find two MDP (see Fig. 8(c)).

We consider three cases depending on the number of MDP, illustrated by the
Fig. 8. On each of them, the light pink area corresponds to the segmented knot.

No MDP. In this case we considered that all the connected component of S′
x,y

corresponds to the knot. There are two typical cases involving no MDP detection:
• when the knot and the sapwood are not connected (see Fig. 8(a)),
• when the knot is completly included in the sapwood.

One MDP. When there is only one MDP, PL or PR, the part of the connected
component section corresponding to the knot is:

• on the right to PL if PL is the detected MDP (see Fig. 8(b)),
• on the left to PR if PR is the detected MDP.
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(a) No MDP detected. (b) One MDP detected (c) Two MDP detected.

Fig. 8. Knot estimation based on the number of main dominant points

Two MDP. It is the most common case. It occurs most often when the knot is
in contact whith the sapwood. In this case, we define the segment ΔMDP which
allows to separate the knot in two parts: the upper part and the lower part.
They correspond respectively to the knot parts inside and outside the sapwood
(see Fig. 8(c)).

We segment separately the two parts. The lower part is segmented by defining
a contour C1. C1 is composed of the two parts of Cs, (PR, P0) and (P0, PL), and the
segment ΔMDP . All pixels inside C1 and belonging to the considered connected
component of S′

x,y belong to the knot. The second part, above the ΔMDP so
inside the sapwood, is a restricted area of the considered connected component
of S′

x,y. It is the connected component part simultaneously on the right of ΔL,
on the left of ΔR and on the top of ΔMDP .

The fusion of the two parts produces the segmented knot of the slice S′
x,y, in

light pink in Fig. 8(c).
The four steps of algorithm allow to segment a knot on a 2D slice Sx,y of

a 3D knot area Px,y. By merging all 2D segmented knots, we obtain the 3D
reconstruction of the knot of Px,y. But all slices of Px,y do not contain part of the
knot. It is necessary to detect in Px,y the interval [l, u] of slices containing a part
of the knot to obtain a clean 3D reconstruction. In fact, the slices outside [l, u]
contain just sapwood that the algorithm can segment as on the right of Fig. 9.
It is usually the case but we can see that the segmented connected component
does not contain knot. The [l, u] detection allows to reconstruct knot with just
slices containing a part of knot.

The slice interval [l, u] is computed from the distance to the pith of the first
dominant point P0 in each slice Sx,y of a knot area Px,y. We construct the
corresponding histogram H , illustrated on Fig. 9. In this histogram, we can
detect the knot interval [l, u]. The process starts with the localization of the
minimum, in red on Fig. 9. Afterwards, we seek the bounds l and u (in green
on Fig. 9) on each side of the minimum. A slice index j is the lower bound l,
respectively the upper bound u, if Hj−6 − Hj−1 < 5, respectively if Hj+6 −
Hj+1 < 5.
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Fig. 9. Histogram of distances to the pith of a knot area Px,y. On the right, an example
af sapwood segmentation in a slice without knot.

Fig. 10. Illustration of the segmentation results of the proposed approach (images
(a,b)) and comparisons with previous work (images (d,e)) [9]. Images (c,f) show com-
parison between our approach (c) and deformable model (f) [10]. The static and dy-
namic visualizations were generated with the DGtal library [1].
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Fig. 11. Experiments of various segmentation methods on the bottom left part of
image of Fig. 1(b). Images (a-d) show results obtained from a Component Tree based
approach [15] with different values of the user parameter α. Result of morphological
snake [3] is given in (e) and power watersheds [6] algorithm result is displayed with
two configurations of markers (images (f-i)). The result of our algorithm is displayed
in image (j) in light pink color.

4 Experiments and Comparisons

To evaluate the efficiency of our approach, the knot segmentation was applied
on a difficult sample of spruce containing continue areas of sapwood. The seg-
mentation results are presented on images (a-c) of Fig. 10. Note that we focus
on the extraction of the larger branches by constraining the segmentation from
a threshold on the minimal size of the segmented component. As comparison,
the basic knot segmentation (images (d,e)) is performed with a simple threshold
on the knot areas detected from previous work [9]. As shown in figure Fig. 10,
our approach is able to remove all sapwood areas without any markers.

Comparisons with Other Approaches. Before defining the proposed ap-
proach, we experimented several recent and promising segmentation methods.
The first one is the method of the Component Tree [15]. Even with a manual
adjustment of the markers and the numeric parameter, we can see that result
does not fit to the initial knot (images (a-d)) of Fig. 11. We also apply the power
watersheds [6] and morphological snake algorithms [3] respectively on images (e)
and (f-i). As comparison, the result of our segmentation method is displayed in
image (j). The images (c,f) of Fig. 10 complete the comparisons of our algorithms
(image (c)) with a 3D deformable model [10]. Contrary to our approach, the 3D
deformable model also segments together the sapwood with the knots.

5 Conclusion

This paper proposes a segmentation method applied to the wood knot problem.
Known as a difficult problem, we use histograms and discrete tools to propose a
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new solution. The resulting approach is efficient (running time around few min-
utes for a complete log, without optimization) in comparison to 3D deformable
model [10] (order of hours for the sample of Fig. 10). Some improvements can
be done in future work to apply segmentation on large and small knots simulta-
neously. The source code of the algorithm is available online [8].
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