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Abstract. We have proposed a complete set of basis Euler operators
for updating cell complexes in arbitrary dimensions, which can be clas-
sified as homology-preserving and homology-modifying. Here, we de-
fine the effect of homology-preserving operators on the incidence graph
representation of cell complexes. Based on these operators, we build a
multi-resolution model for cell complexes represented in the form of the
incidence graph, and we compare its 2D instance with the pyramids of
2-maps, designed for images.
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1 Introduction

Cell complexes, together with simplicial complexes, have been used as a model-
ing tool in a variety of application domains. Several data structures have been
designed in the literature for representing the connectivity of a cell complex (inci-
dence and adjacency relations among the cells in the complex), such as incidence
graphs, introduced in [6], and n-maps, introduced informally in [7].

Many topological operators have been designed for building and updating
data structures representing 2D and 3D cell complexes. In [3], we have proposed
a set of Euler operators which form a minimally complete basis for building
and updating cell complexes in arbitrary dimensions in a topologically consis-
tent manner. We distinguish between operators that preserve the homology of
the complex, and the ones that modify it in a controlled manner. Homology-
preserving operators add (or remove) a pair of cells of consecutive dimension,
but they do not change the Betti numbers of the complex. Homology-modifying
operators add (or remove) an i-cell, and increase (decrease) the ith Betti number.

Here, we define the effect of homology-preserving operators on the incidence
graph, based on which we build a multi-resolution model for the topology of the
complex, that we call the Multi-Resolution Cell Complex (MCC'). We present
some experimental results validating the M CC, and we compare its 2D instance
with the pyramidal model used for images represented in the form of a 2-map.
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2 Background Notions

We review some notions on the topology of cell complexes (see [I] for details).
A k-cell in the Euclidean space E™ is a homeomorphic image of an open k-
dimensional ball, and a cell d-complex in E™ is a finite set I" of cells in E™ of
dimension at most d, 0 < d < n, such that (i) the cells in I" are pairwise disjoint
and (ii) for each cell v € I', the boundary of ~ is a disjoint union of cells of I".
Intuitively, an n-dimensional quasi-manifold is an m-dimensional complex
which can be obtained by gluing together n-cells along (n — 1)-cells (for de-
tails see [I1]). In a quasi-manifold, an (n — 1)-cell belongs to the boundary of
at most two n-cells. The notion of quasi-manifold is weaker that the notion of
pseudo-manifold. Recall that a simplicial complex X' is a pseudo-manifold if (i)
X is homogenous (each simplex is a face of some n-simplex), (ii) each (n — 1)-
simplex in X' is an (n — 1)-face of at most two n-simplexes and (iii) X is strongly
connected (for any two distinct n-simplexes o and 7 in X there is a sequence
o = 01, 02,..,0,, = T, such that o; and ;41 share an (n— 1)-simplex, 1 <i < n).
A variety of data structures have been proposed for representing the topology
of cell complexes. Some represent the cells in the complex explicitly, e.g. incidence
graphs, which can be used to represent arbitrary cell complexes, and abstract
cellular complexes [9]. Some represent them implicitly, e.g. n-maps, which are
used to represent orientable quasi-manifolds without boundaries.
An Incidence Graph (IG) [6] representing a cell complex I' is a multigraph
G = (N, A), such that:

1. the set of nodes N is partitioned into n + 1 subsets Ny, NVy,...,IN,,, such that
there is a one-to-one correspondence between the nodes in N; (which we call
i-nodes) and the i-cells of I',

2. there are k arcs joining an i-node p with an (i+ 1)-node ¢ if and only if i-cell
p appears k times on the boundary of (i + 1)-cell ¢ in I".

We model the incidence (multi-)graph as an ordinary labeled graph, in which
each node is labeled with the dimension of the corresponding cell, and each arc
between two nodes is labeled with its multiplicity ¢ (the number of arcs between
the two nodes in the corresponding multi-graph). If I" is a simplicial complex
then all the arcs in A are simple (with label equal to one).

An n-map (or n-dimensional combinatorial map) [2] is a finite set D of el-
ements, called darts, together with n permutations 8; on D, 1 < ¢ < n, such
that 3; is an involution, 2 < 7 < n, and §; o 8; is an involution, ¢ + 2 < j,
1,7 €4{1,,...,n}. Intuitively, a dart in D corresponds to an (n + 1)-tuple of cells
(coy .-, cn), where ¢; is an i-cell, 0 < i < n, and each ¢; is on the boundary of ¢; 1.
For an n-map M = (D, 51, ..,0n), n > 2, and a dart b in D, the 0O-cell incident
in b is the set of all darts that can be reached starting from b by applying any
combination of permutations in the set {61_1 ofa, .., 51_1 0 Bn}; the i-cell incident
in b, 1 <i < n,is obtained by applying permutations in {81, .., 8, }\{8i}. 2-maps
are widely used for image processing and geometric modeling. In the 2D case,
permutations 81 and (2 are usually denoted as o and «, respectively.
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The Euler-Poincaré formula expresses the necessary validity condition of a cell
complex with manifold or non-manifold carrier [I]. The Euler-Poincaré formula
for a cell d-complex I" with n; i-cells states that

d

d
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Here, b; is the ith Betti number of I', and it measures the number of independent
non-bounding i-cycles in I', i.e., the number of independent i-holes.

3 Related Work

A general idea of multi-resolution modeling is to provide several decompositions
of a shape at different, uniform or variable, scales. We review related work on a
hierarchical model for cell complexes, called combinatorial (or n-map) pyramid.

A 2-map pyramid [2] is a hierarchical data structure used for image analysis.
Each level in a 2-map pyramid is a 2-map. The first level describes the initial
full-resolution data; the other levels describe successive reductions of the pre-
vious levels. Usually, a pixel in the initial full-resolution 4-connected image is
represented as a vertex in a 2D cubical complex, and adjacency relation between
pixels is represented through edges in the complex. The reduction is obtained
by applying operators that merge regions in the lower level into one region in
the successive level (called contraction operators) and simplify the boundaries
between the new merged regions (called removal operators). Each region in a
coarser resolution image is a (connected) set of vertices, the representative of a
region is an element of this set, called a surviving vertex, and other elements are
called non-surviving vertices.

More formally, a 2-map (m + 1)-level pyramid P is the set P = {G*}g<p<m of
2-maps such that for each k, 0 < k < m, G¥ is obtained from G*~! by contracting
the cells (edges) in a set of cells C*~1 (contraction kernel) and removing the
cells (edges) in a set of cells RF~! (removal kernel). Several strategies have been
proposed to choose the sets of the removed and contracted cells [8].

Another general multi-resolution framework, used mainly for simplicial com-
plexes, called a Multi-Complex, has been introduced in [5].

4 Homology-Preserving Euler Operators

We review the Euler operators on cell complexes, proposed in [3], and we define
the effect of homology-preserving Euler operators on the IG representing them.
4.1 Homology-Preserving Euler Operators on Cell Complexes

Operators that modify a cell complex, by modifying the number of cells in the
complex and its Betti numbers, and maintain the validity of Euler-Poincaré
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formula, are called FEuler operators. In the literature, a variety of sets of basis
Euler operators have been proposed, mainly for the 2D and the 3D case.

In [3], we have proposed a minimal set of Euler operators on cell complexes
in arbitrary dimensions, which subsume all the other Euler operators proposed
in the literature. These operators can be classified as:

— homology-preserving operators: MiC (i + 1)C' (Make i-Cell and (i+1)-Cell),
— homology-modifying operators: MiCiCycle (Make i-Cell and i-Cycle).

Homology-preserving operators MiC(i + 1)C' change the number of cells in the
complex I', by increasing the number n; of i-cells and the number n;; of (i+1)-
cells by one. The Euler characteristic and the Betti numbers of the complex
remain unchanged. Homology-preserving operator MiC(i + 1)C can create two
new cells p and ¢ from an existing i- or (i + 1)-cell, or insert the new cells in the
complex.

The first type of MiC(i + 1)C operator has two instances. It either splits an
existing i-cell p’ in two by splitting its co-boundary, and creates an (i + 1)-cell
q bounded by the two i-cells p and p’, or dually, it splits an existing (i + 1)-cell
p’ into two by splitting its boundary, and creates an i-cell ¢ separating the two
(i 4+ 1)-cells p and p’. In both cases, the created i-cell appears exactly once on
the boundary of the created (i 4+ 1)-cell.

The second type of MiC(i + 1)C operator either creates an i-cell and an
(i + 1)-cell bounded only by the i-cell, or dually, it creates an (i + 1)-cell and
an i-cell bounding only the (¢ + 1)-cell. In both cases, the created i-cell appears
exactly once on the boundary of the created (i + 1)-cell.

Figure[Ilillustrates a sequence consisting of M0C1C(p1,q1) (second type, sec-
ond instance), M1C2C(p2, g2) (first type, second instance) and M0C1C(ps, g3)
(first type, first instance) in 2D. Figure B illustrates a sequence consisting of
M1C2C(p1,q1) and M2C3C(p2,q2) (both of first type, second instance) in 3D.
For brevity, we will consider only the operators of the first type.

L2 2 3

Fig. 1. A sequence consisting of MOC1C, M1C2C and MOC1C on a 2D cell complex;
MOC1C creates 0-cell p1 and 1-cell g1, M1C2C creates 1-cell g2 and 2-cell p2, MOC1C
creates 0-cell ps and 1-cell g3

The inverse KiC(i+1)C (Kill i-Cell and (i+1)-Cell) operators delete an i-cell
and an (¢ 4 1)-cell from I'. The first type of KiC(i 4+ 1)C operator is feasible in
the following two cases:

(i) the deleted (i + 1)-cell g is bounded by exactly two i-cells (the deleted i-cell
p and the non-deleted i-cell p’) and the deleted i-cell p appears exactly once
on the boundary of (i + 1)-cell g¢;
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Fig. 2. A sequence consisting of M1C2C and M2C3C on a 3D cell complex; M1C2C
creates 1-cell g1 and 2-cell pi1, M2C3C creates 2-cell g2 and 3-cell p2

(ii) the deleted i-cell ¢ bounds exactly two (i 4+ 1)-cells (the deleted (i + 1)-cell p
and the non-deleted (i + 1)-cell p’) and the deleted i-cell ¢ appears exactly
once on the boundary of (i + 1)-cell p.

In the first case, the effect of the operator is that the deleted i-cell p is replaced
with the non-deleted i-cell p’ in the boundary of each (i 4+ 1)-cell r in the co-
boundary of the deleted i-cell p. One copy of (i+1)-cell ¢ is merged into (i+1)-cell
r for each time i-cell p appears on the boundary of (i + 1)-cell r. The second
case is dual.

Homology-modifying operators change both the number of cells in the complex
I' and its Betti numbers, and they change the Euler characteristic of I'. They
increase the number n; of i-cells and the number b; of non-bounding i-cycles by
one. The inverse KiCiCycle (Kill i-Cell and i-Cycle) operators delete an i-cell
and destroy an i-cycle, thus decreasing the numbers n; and b; by one.

4.2 Homology-Preserving Euler Operators on Incidence Graphs

KiC(i 4+ 1)C operator on an IG G = (N, A) deletes an i-node and an (i 4+ 1)-
node from N, and suitably reconnects the remaining nodes. Its first instance is
feasible on IG G if

— (i + 1)-node ¢ is connected to exactly two different i-nodes p and p’, and
— there is exactly one arc in A connecting (i + 1)-node ¢ and i-node p.

The effect of KiC(i + 1)C(p,q) on G is that

— nodes p and ¢, all the arcs incident in (i 4 1)-node ¢ and all the arcs incident
in 4-node p and connecting p to (i — 1)-nodes are deleted,

— all the arcs incident in i-node p and connecting p to (i + 1)-nodes are re-
placed with arcs connecting i-node p’ to the same (i + 1)-nodes for each arc
connecting i-node p’ to (¢ + 1)-node q.

In terms of the ordinary labeled incidence graph, let us denote as ¢'(p’,r) the
label of the arc (p/, r) after the simplification, where 7 is an (i+1)-node connected
to the deleted i-node p. The label ¢'(p’,r) is increased by the product of the
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label of the arc connecting nodes p’ and ¢ and the label of the arc connecting
nodes p and r (¢'(p',r) = (', 7) + 0, q) - w(p,7)).

The second instance of the KiC(i + 1)C operator can be expressed as a mod-
ification of the IG G = (N, A) in a completely dual fashion.

The inverse MiC(i + 1)C on an IG G = (N, A) also has two instances. The
first instance is specified by the two inserted nodes ((i + 1)-node ¢ and i-node p),
the ¢-node p’ that is the only i-node apart from i-node p that will be connected
to (i 4 1)-node ¢, the (i + 2)-nodes that will be connected to (i + 1)-node ¢, and
the (i — 1)-nodes and (i + 1)-nodes that will be connected to i-node p, together
with the multiplicity (labels ¢’) of all the inserted arcs. It is feasible if all the
specified nodes are in N, and the label ¢(p’,r) before the refinement for each
(i + 1)-node r that will be connected to i-node p is greater than or equal to
(P, q) - ¢ (p,r). Its effect is to add nodes p and ¢ in N and all the specified
arcs in A and to set ¢’ (p', 1) = (P, r) — &' V', q) - ¢'(p,r). The second instance
has a completely dual effect.

4.3 Homology-Preserving Operators on 2-Maps

Simplification operators have been defined on 2-maps in terms of elimination of
darts from set D and modifications of permutations on the remaining darts. The
simplification operators are called removal and contraction. They are the same
as KO0C1C and K1C2C operators, respectively.

5 Multi-resolution Model

We have defined and implemented a multi-resolution model for the topology of
cell complexes represented through an IG, that we call a Multi- Resolution Cell
Complex (MCC). It is generated from the IG representing the cell complex at
full resolution by iteratively applying KiC(i + 1)C operators. The IG Gp =
(Np, Ap) obtained as a result of a specific simplification sequence (determined
by the error criterion adopted) applied to the initial full-resolution graph is the
coarsest representation of the topology of the complex, and we call it the base
graph. It is the first ingredient of the multi-resolution model.

The second ingredient is the set M of refinement operators, inverse to the
simplification operators applied in the simplification process.

The third ingredient of the multi-resolution model is a dependency relation
R on the set M plus pg, where pg is a dummy refinement that generates Gp =
(Np,Ap). We define a dependency relation between refinements in M U pg
as follows: refinement p, which introduces nodes p and ¢, directly depends on
refinement p* if and only if pu* creates at least one node that is connected to
either p or ¢ by u. The transitive closure of the direct dependency relation defined
above is a partial order relation, since a node is never introduced twice by the
refinements in M. A multi-resolution model for the topology of cell complexes
is, thus, a triple MCC = (Gp, M,R), where Gp is the IG representing the
cell complex at the coarsest resolution, M is the set of refinements inverse to
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the simplifications applied in the generalization process, and R is the direct
dependency relation defined over M.

The MCC can be encoded as a Directed Acyclic Graph (DAG), in which the
root corresponds to modification g, i.e., to the creation of the base graph Gp,
the other nodes correspond to the modifications in M, and the arcs represent
the direct dependency relation R.

6 Selective Refinement

We discuss how to extract a large number of adaptive representations from an
MCC = (G, M,R) and briefly discuss some algorithmic aspects.

The set U = {po, pi1, 2, .-, b} S M of refinements in M is closed with
respect to dependency relation R if for each 1 <1 < m in U, each refinement on
which refinement p; depends is in U. Let U = (po, pi1, 2, -.., bm) be a sequence
of the refinements belonging to &Y C M, such that, for each y; € U and each
refinement v on which p; depends, v = p; € U, 0 < j < . Then, U is called a
feasible sequence. The front graph Gy associated with a feasible sequence U is the
graph obtained from the base graph G g by applying the sequence of refinements
U. It can be shown that any two feasible sequences U; and Us obtained from
the same closed set U produce the same front graph. Thus, a closed subset U of
refinements can be applied to the base IG G g in any total order U that extends
the partial order, producing an IG Gy at an intermediate resolution. If a feasible
sequence U contains all refinements in M, then the front graph Gy associated
with U is the same as the IG at full resolution.

An MCC encodes the collection of all representations of a cell complex, at
intermediate levels of resolution, which can be obtained from the base repre-
sentation G by applying a closed set of modifications on Gg. From an MCC
it is thus possible to dynamically extract representations of the topology of a
cell n-complex at uniform and variable resolutions. The basic query for extract-
ing a single-resolution representation from a multi-resolution model is known as
selective refinement.

A selective refinement query on an M CC' consists of extracting from it the
IG with the minimum number of nodes, satisfying some application-dependent
criterion. This criterion can be formalized by defining a Boolean function 7 over
all nodes of an M CC, such that the value of 7 is true on nodes which satisfy the
criterion, and false otherwise. An IG G = (N, A) is said to satisfy a criterion 7 if
function 7 assumes the value ¢true on all nodes in N. Thus, a selective refinement
query consists of extracting from the M CC an intermediate graph of minimum
size that satisfies 7. Equivalently, it consists of extracting a minimal closed set U
of modifications from M such that the corresponding complex satisfies 7. Such
closed set of modifications uniquely determines a front graph, which is obtained
from the base graph Gg = (N, Ag) by applying to it all modifications from U
in any order that is consistent with the partial order defined by the dependency
relation. The criterion 7 can be defined based on various conditions posed on the
cells in the extracted complex, like the size of the cell (which may be expressed
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as the maximum distance between its vertices or the diameter of its bounding
box) or the portion of the complex in which the maximum resolution is required
(while in the rest of the complex, the resolution may be arbitrarily low).

We have implemented a depth-first algorithm for the selective refinement
query. The algorithm starts from the coarse IG G g and recursively applies to it
all refinements p; which are required to satisfy the error criterion. In order that
a new modification p be applied, all its ancestor modifications need to be applied
before © to maintain the partial order. It can easily be proven that the result
of a selective refinement algorithm is a graph G = Gy with minimal number
of nodes among the graphs that can be extracted from the M CC, such that all
nodes in Gy satisfy criterion 7.

7 Experimental Results

The purpose of experiments is twofold. In the first set of experiments, we have
tested two simplification strategies to build the M CC': one approach is based
on performing simplifications one at the time, and the other on performing a
set of independent simplifications. In the second set, we show the capabilities
of the MCC to extract adaptive representations at variable resolutions, and
compare timings for the two approaches. We have performed the experiments
on 2D and 3D simplicial complexes available on the Web and encoded in an IG,
that become cell complexes after undergoing some simplification. The initial
size of these complexes is between 400K and 953K triangles for 2D data sets,
and between 68K and 577K tetrahedra for 3D data sets. Experiments have been
performed on a desktop computer with a 3.2Ghz processor and 16Gb of memory.

To build the M CC, we start from the IG at full resolution and perform all the
feasible simplifications in the order guided by some criterion 7 until the coarsest
representation is reached. The implementation of the simplification algorithm is
independent of criterion 7. We have used a geometric criterion computed on the
vertices of the deleted cells, and we have implemented two different simplification
approaches. In the first one, called step-by-step simplification, simplifications
are extracted from the priority queue in ascending order and performed if still
feasible. After each simplification, the local connectivity of the nodes involved in
it changes and each new feasible simplification is enqueued. The algorithm ends
when there are no more feasible simplifications.

The second approach, called batch simplification, tries to execute at each step
a large number of feasible independent simplifications (that involve nodes not
involved by any other already selected simplification). At each step, we build a
priority queue with all the feasible simplifications sorted in ascending order. We
select a set of simplifications from the queue, we perform all of them, and we
initialize a new priority queue.

In Table [I] we summarize the results obtained with the two approaches. The
columns show, from left to right, data set name (Data set), total number of
cells (Cells), number of simplifications (Simpl. Num.), time needed to perform
them (Simpl. Time), time needed to build the MCC (MCC Time), storage
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cost of the MCC (MCC storage), time needed to perform all the refinements
in the MCC (Ref. Time), storage cost of the cell complex at full resolution
(Full complex) and storage cost of the base complex (Base complet).

Table 1. Experimental results for the DAG construction. The storage cost is expressed
in Megabytes and the computation time in seconds.

Data Cells Simpl. Simpl. MCC MCC Ref  Full Base

set Num. Time Time storage Time complex complex

Step-by-step simplification
Eros 2859566 1429781 74.4 5.3 2549 18.1 349.0 0.0002
Hand 1287532 643694 354 2.3 1172 7.58 157.1 0.01
9D VaseLion 1200002 599999 26.7 2.1 105.8 6.8 146.4 0.00028
Batch simplification

Eros 2859566 1429781 218.8 6.4 241.0 18.7 349  0.0002

Hand 1287532 643741 99 26 1207 7.6 157.1  0.004

VaseLion 1200002 599999 90.7 2.3 110.5 7.7 146.4 0.00028

Data Cells Simpl. Simpl. MCC MCC Ref  Full Base

set Num. Time. Time. storage Time complex complex

Step-by-step simplification
VisMale 297901 147594 45.1 0.6 404 5.1 48 0.46
Bonsai 1008357 498790 380.6 2.7 146.9 27.2 162.5 1.8

3D Hydrogen 2523927 1248743 8643.8 7.8 395.7 419.5 407.4 4.4

Batch simplification
VisMale 297901 148116 69.2 0.7 37.6 25 48 0.28
Bonsat 1008357 501524 305.8 2.69 126.4 10.4 162.5 0.89
Hydrogen 2523927 1253913 1412.9 7.4 321.3 339 4074 2.7

We can notice that the time needed to perform all the refinements is always
much less than the time needed to perform all the simplifications (refinement
is 5 to 10 times faster than simplification). An important aspect is that the
storage cost of the M CC structure plus the base graph is less than the storage
cost of the graph at full resolution, with the exception of the largest tested
(Hydrogen) data set using the step-by-step method. Although the total number
of simplifications is slightly higher for the batch simplification approach, the
time required to perform all simplifications that lead to the base complex is less
in the case of step-by-step simplification, since it requires fewer computations.
On the other hand, the M CC' generated through batch simplification uses less
memory and consequently can be visited in less time. We have observed that
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Table 2. Experimental timing results (in seconds) for extraction at variable resolution

2D 3D

Data Refinement Time Data Refinement Time
Perc. Perc.

set step-by-step batch set step-by-step batch
50% 0.80 0.92 50% 3.45 0.12

Eros 80% 1.42 1.01 VisMale  80% 3.77 0.15
100% 2.63 2.60 100% 4.01 0.53
50% 0.31 0.57 50% 15.3 0.65

Hand 80% 0.45 0.65 Bonsai 80% 17.4 0.69
100% 1.20 1.19 100% 19.1 1.88
50% 0.73 0.69 50% 106.3 8.1

VaseLion 80% 1.01 0.99 Hydrogen 80% 127.7 8.7
100% 1.10 1.06 100% 172.1 11.3

the DAGs produced by the batch simplification have less dependency relations
compared to the ones produced by step-by-step simplification.

In Table Pl we show timing results for performing extractions at variable res-
olution. Column Perc. indicates the desired percentage of operations performed
inside a query box. Refinement Time indicates the time needed to perform the
required number of refinements with the step-by-step method (step-by-step) or
the batch (batch) simplification methods. The query box has been chosen by
hand to cover a relevant part for each data set and with size between 15 and
30 percent of the whole data set at full resolution. We can observe that the
extraction times for refinements are similar for the two methods in the 2D case,
while they differ considerably in the 3D case. Note that in 2D each 1-node in
the incidence graph is connected with at most two different 0-nodes and two
different 2-nodes, while in 3D there is a variable number of arcs between 1-nodes
and 2-nodes: a larger number of arcs in the IG leads to a larger number of de-
pendency relations in the M C'C. This has a a significant impact in the use of a
simplification method that reduces the M CC' complexity.

In Figure [3] we show examples of refinement queries at uniform and variable
resolution performed on the VaseLion data set. The holes that seem to appear
in the crown of the lion are rendering artifacts.

8 Discussion and Outlook

We compare the 2D instance of the MCC' defined on IGs with the pyramid
model defined on 2-maps.

The first advantage of the MCC over pyramidal models is its space effi-
ciency. This is a consequence of the fact that the IG occupies less memory than
the n-map representing the same complex. Each dart in an n-map corresponds
to a path in the I'G representing the same n-dimensional cell complex from an
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Fig. 3. In (a), (b) and (c) the representations obtained from the MCC' after 10000,
50000 and 2000000 refinements, respectively. In (d), the complex at full resolution of
the VaseLion data set. In (e) the representation obtained with a query at variable
resolution.

n-node to a 0-node. For each dart, the set of n involutions is encoded plus a
pointer for each entity which points to the geometric and attribute description
of such entities, as discussed in [10]. This leads to a storage cost of B * (2n + 1)
items, where B is the number of darts. For n = 2, it can be easily seen that
B = 4n;, where n; denotes the number of 1-cells in the complex, while the
number of arcs in the IG is equal to 4ny (they can be encoded through 8n;
pointers), and the number of nodes is equal to the total number of cells in the
complex. In general, we can observe that each path in the IG is defined by a set
of n — 1 arcs, and the storage cost is less than B * (n — 1) items, since the paths
overlap. We have evaluated on a set of 2-complexes and 3-complexes, the ratio
between the storage cost for the IG and for the n-map; the value for this ratio
is around 50% for 2-complexes, and around 18% for 3-complexes.

The second advantage is a wider representation domain. IGs can represent
arbitrary cell complexes, while n-maps can represent (closed orientable) quasi-
manifolds, which are a class of pseudo-manifolds.

We plan to apply the homology-preserving operators to the computation of
homology of a cell complex. An arbitrary cell complex at full resolution can
be simplified by applying a sequence of homology-preserving operators, until
no further simplification is possible. Homology can be computed on the simpli-
fied complex using standard techniques [I]. Homology generators on the simpli-
fied complex can be computed using the method similar to the ones in [T24],
proposed for images and complexes represented as n-G-maps, respectively, and
propagated from such complex to the full-resolution complex using the M CC.
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