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Abstract. Complex models can be simply described by notions such
as skeletons. These robust shape descriptors faithfully characterize the
geometry and the topology of an object. Several methods have been de-
veloped yet to obtain the skeleton from regular object representations
(e.g. 2D images or 3D volumes) but only a few attempt to extract the
skeleton from unstructured 3D mesh patches. In this article, we extract
a skeleton by topological thinning from vertex sets lying on arbitrary
triangulated surface meshes in 3D. The key idea comes down to eroding
a 2D set located on a discrete 2-manifold. The main difficulty is to trans-
pose the notion of neighborhood from the classical thinning algorithms
where the adjacency is constant (e.g. 26-adjacency in digital volumes, 8-
adjacency in 2D images) to the mesh domain where the neighborhood is
variable due to the adjacency of each vertex. Thus we propose a thinning
operator dedicated to irregular meshes in order to extract the skeleton
of a vertex set. To estimate the robustness of our technique, several tests
and an application to the feature line detection are presented as a case-
study.

Keywords: surface skeleton extraction, topological thinning, irregular
mesh.

1 Introduction

The skeleton is a robust shape descriptor faithfully characterizing the topology
and the geometry of an object. This notion is widely used for various appli-
cations such as video tracking [4], shape recognition [12], surface sketching [9],
and in many other scientific domains. Several techniques have been proposed
to extract the skeleton from binary 2D images [13], 3D closed meshes defin-
ing a volume [1], or 3D cubic grids [8]. However few have been dedicated to
the extraction of skeletons from a binary information located on an arbitrary
triangulated mesh. Rössl et al. [10] have presented a method in which some
mathematical morphology operators have been ported to triangulated meshes.
The main interest of this approach is to combine an efficient computation and
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a simple implementation. However, regarding the operator definitions and the
underlying algorithm, several drawbacks have been pointed out which mainly
lead to unexpectedly disconnected skeletons [7].

Contributions
In this article, we propose a novel method to extract the skeleton of unstruc-
tured mesh patches by a topological thinning process. To figure out the issues
of skeletonization of heterogeneous and arbitrary triangulated meshes, we ex-
tend the concepts introducted in [10]. The presented approach herein strictly
relies on the mesh connectivity to achieve the extraction of the final skeleton.
Therefore, for the sake of understanding, the basic method of Rössl et al. is de-
scribed in Section 2 with an assessment of its abilities and drawbacks. Section 3
details the proposed approach and introduces the additional definitions and the
novel algorithm. The results of our method including tests on irregular meshes
as well as on the performance of the algorithm are shown in Section 4. Finally,
an application to the feature line detection is presented in Section 5.

2 Basic Notions and Definitions

2.1 Position of the Problem

Let S be an arbitrary manifold surface represented by an unstructured mesh
patch M such as M = (V , E , T ). The sets V , E , and T correspond, respectively,
to the vertices, the edges, and the triangles composing M, the piecewise linear
approximation of S. The vertices are denoted by pi, with i ∈ [0;n[ and n = |V|
being the total number of vertices of M. The neighborhood N of a vertex pi is
then defined as following:

N (pi) = {qj | ∃ a pair (pi, qj) or (qj , pi) ∈ E}. (1)

In such a case, mi = |N (pi)| represents the total number of neighbors of pi.
Let now consider a binary attribute F on each vertex of V . The set R ⊆ V is

then written as follows:

∀pi ∈ R ⇐⇒ F (pi) = 1. (2)

The attribute F may be defined from beforehand process such as a manual selec-
tion, or a thresholding based on geometrical properties (triangle area, principal
curvatures, etc.). Then, an edge e = (p, q) belongs to R if and only if p, q ∈ R.
Similarly, a triangle t = (p, q, r) belongs to R if and only if p, q, r ∈ R.

The main objective is to finally develop a technique to extract the skeleton of
the set R by using a topological thinning based on the mesh connectivity.

2.2 The Existing Approach

The skeletonization algorithm introduced by Rössl et al. consists in an itera-
tive constraint thinning. This relies on a classification of each vertex of R. The
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authors proposed then three vertex types and c(pi), the complexity of the vertex
pi such as:

c(pi) =

mi−1∑

j=0

|F (qj)− F (qk)|, (3)

where k = j + 1 mod mi and qj , qk ∈ N (pi).

Definition 1. A vertex pi is considered as complex if and only if c(pi) ≥ 4.
The set of all complex vertices is named C.

A complex vertex pi thus potentially corresponds to a part of a skeleton branch
if c(pi) = 4, or a connection through several branches if c(pi) > 4.

Definition 2. A vertex pi is marked as center if and only if and N (pi) ⊆ R.
The set of all center vertices is named E.

Definition 3. A vertex pi is called disk if and only if ∃qj ∈ N (pi), qj ∈ E that
is a center. The set of all disk vertices is named D.

A disk vertex corresponds to a simple point: a point that does not modify the
expected skeleton topology if it is removed [3]. We denote X the complementary
of the set X in the region R.

Definition 4. The skeleton operator of R is defined as a constrained thinning:

skeletonize(R) = R \ (D ∩ C ∪ E). (4)

After applying the skeleton operator until idempotence on R, the set of the
remaining vertices, corresponding to the final skeleton, is called SkR. During
each pass, the skeleton operator removes the boundary disk vertices. Figure 1
illustrates the execution of the algorithm. After obtaining the skeleton SkR of
R, it is possible to remove the smallest branches. This last operation is called
pruning and defined as follows:

prune(SkR) = SkR \ C. (5)

This pruning step is shown by Figure 1 (d).

2.3 Result Assessment

Due to the simplicity of the used operators, the computational time of the Rössl
et al. method is very low, and the skeleton extraction is thus almost instan-
taneous on meshes composed of 50K triangles. However, the accuracy and the
continuity of the obtained skeleton deeply depends on the mesh configuration.
In other words, a same set R defined on two different triangulations of S could
lead to skeletons with two topologies drastically different. Moreover, the lack of
continuity also occurs in the case of particular configurations that are shown in
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Fig. 1. Illustration of the Rössl et al. algorithm. From left to right: (a) a set of vertices
R, (b) classification of R, (c) thinning until idempotence, and (d) resulting skeleton
after pruning.

Figure 2 because the removal of disk vertices can modify the topology of the
skeleton. Figure 3 illustrates the unexpected results and disconnections gene-
rated by the execution of the skeletonization. Once the vertices P1 and P2 are
removed (b), the skeleton becomes disconnected at this location (c). However,
some vertices would change to complex if a new classification step was applied.
This kind of vertices represents relevant points in a topological point of view
and thus, should not be deleted.

Another issue occurs since pruning is applied: the ending vertices of the skele-
ton are removed. As a matter of fact, when the set R contains no center and
no complex vertex, the pruning operator removes all the vertices. This case is
illustrated by Figure 4.

3 A Skeletonization Method for Any Arbitrary
Triangulated Mesh

Both a new definition of particular vertices and a new algorithm have been
elaborated to solve the disconnection issues previously raised up in Section 2.
These two key points of the approach we propose are successively presented
below.

3.1 Additional Definitions

The different classes of vertices proposed by Rössl et al. aim at describing the
topology of R. However, they are not sufficient as there are still vertices that
are unmarked and that are then not considered in the skeletonization. For this
reason, we introduce the outer class.
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Fig. 2. Example of unexpected results by applying the Rössl et al. method. From left
to right: (a) the set of feature points R, (b) classification of R, (c) skeletonization of
R, (d) resulting skeleton after pruning.

Definition 5. A vertex pi is marked as outer if and only if F (pi) = 1 and
pi /∈ (C∪D∪E). The set of outer vertices is named O and is defined as follows:

O = R \ (C ∪D ∪E) (6)

As it has been shown previously, a vertex may change from one class to another
and, as a side-effect, this may lead to potential disconnections during the skele-
tonization. To counteract this issue, we propose to define a priority between the
classes.

Definition 6. The disk class has a lower priority over the other classes.

If a vertex is already classified as disk, it can change to complex, center or outer
if necessary.

3.2 Algorithm

If the skeleton operator defined by Rössl et al. is directly applied to an unstruc-
tured patch, the final result may suffer from disconnections as some disk vertices
are deleted while they characterize the topology of the object. To correct this
issue, the algorithm we propose does not remove all the disk vertices but only
those that will not be converted to a different priority class after the operator
application. This requires to add an additional step in the algorithm: at each
application of the skeleton operator, the class of a vertex is recomputed before
its deletion. For example, if a disk vertex becomes a complex vertex, the vertex
is not removed.

However, the resulting skeleton may be too thick using this technique (e.g.
if it is composed of only outer vertices). For this reason, a final cleaning step
is added to obtain the expected skeleton. At this stage, the skeleton must be
composed of complex vertices (i.e. the skeleton branches or nodes) and outer
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Fig. 3. Execution of the skeletonization operator [10]: (a) vertex classification, (b)
execution of the algorithm, (c) final skeleton with a broken topology

Fig. 4. Example of a particular configuration: while the vertices of R are not classified,
they will be deleted by the pruning operator of Rössl et al.

vertices, the ending points of the branches with only one complex vertex in their
neighborhood. Thus, to obtain the final skeleton, a two steps process is applied:

– the outer vertices that have more than two neighbors belonging to R are
removed;

– the outer vertices with at most one neighbor belonging to R are kept.

Moreover, as for the skeleton operator, each vertex complexity change is checked
before removing this vertex. Examples of resulting skeletons are shown in Fi-
gure 6 and the impact of the algorithm modification with the update step is
presented in Figure 7: disk vertices are deleted (b) after checking their classes
(c). During the deletion of P1 and the update step, the class of P2 changes
from disk to complex and P4 from outer to complex. Thus, these vertices are
not removed and the extracted skeleton is fully connected and faithfully cha-
racterizes the topology of R (d). The complete method of skeleton extraction is
summarized by the algorithm presented on Figure 5.
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repeat

forall the vertices pi ∈ R do

if pi is a disk vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change then
delete pi

until idempotence

repeat

forall the vertices pi ∈ R do

if pi is an outer vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change and if |N (pi)| > 2 then
delete pi

until idempotence

repeat

forall the vertices pi ∈ R do

if pi is an outer vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change and if |N (pi)| > 1 then
delete pi

until idempotence

Fig. 5. Extraction of the skeleton

4 Results

Some results of skeleton extraction on meshes are presented in Figures 8, 9
and 10. The obtained skeletons describe the geometry and the topology of the
original set R. The used meshes are relatively homogeneous in Figure 8 while,
in Figures 9 and 10, the algorithm has been tested on irregular meshes to show
the robustness of the proposed approach to unstructured meshes. It may be
noticed that the resulting skeletons are the expected ones and reflect correctly
the topology and geometry of the original set R in a proper way.

Moreover, since the definitions and the operators used to extract the skeleton
are very simple, the computational time of the proposed approach is also very
low, even if an additional checking step has been added. It is possible to process
a mesh with 100K vertices in 1 second. The tests have been ran on an Intel Core
2 Duo 2.8 Ghz.

To complete the algorithm tests and to evaluate the robustness of the proposed
approach, an application dedicated to the feature line detection is presented in
the following section.
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Fig. 6. Illustration of the proposed approach: (a) region R, (b) vertex classification,
(c) execution of the thinning algorithm with update, (d) final skeleton fully connected

Fig. 7. Detailed view of the thinning process: (a) vertex classification, (b) execution of
the skeleton operator, (c) update of vertex classes after deletion, (d) final skeleton

Fig. 8. Application of the skeletonization algorithm on regular triangulated 3D meshes
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5 Application to the Feature Line Detection

The detection of features within 3D models is a crucial step in shape analysis. It
is possible to extract from the surface of an object simple shape descriptors such
as lines (drawn on the surface). Generally, the methods of feature line detection
focus on the estimation of differential quantities and the research of curvature

Fig. 9. Skeleton extraction on irregular 3D meshes

Fig. 10. Extraction of the skeletons on meshes with mixed and unstructured meshes



212 D. Kudelski, S. Viseur, and J.-L. Mari

Fig. 11. Algorithm of feature lines extraction: (a) curvature estimation, (b) definition
of the set R, (c) extraction of lines from R by the proposed thinning approach

Fig. 12. Comparison of results obtained from feature detection applied on Dinosaur
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extrema. However, these techniques are based on third-order differential pro-
perties and it leads to a common issue: they produce disconnected feature lines
because of flat and spherical areas and because of the noise present in data sets.
Thus, it is particularly difficult to generate intersections between feature lines.
To overcome these recurrent issues, we propose to apply our method to extract
salient lines of a model.

In order to define sets over triangulated 3D meshes, we use the algorithm
proposed by Kudelski et al. [6]. We compute the mean curvature H through a
local polynomial fitting in the least-squares sense [5]. The binary attribute F is
then defined at each vertex pi as follows:

Hpi > 0 =⇒ F (pi) = 1. (7)

Finally, the objective is to thin the set, corresponding to potential feature parts
of the mesh, in order to obtain lines describing the geometry and the topology
of the object.

Figure 11 illustrates the process of feature line detection. The obtained charac-
teristic lines are fully connected and describe accurately the topology of the sets.
Then, due to the use of second-order differential properties (i.e., the mean cur-
vatures), the feature extraction is more robust. Moreover, this type of approach
allows to generate intersections between feature lines which it is not possible
with classical approaches (Figure 12).

6 Conclusion

In this article, we have proposed an efficient and general new algorithm to ex-
tract in a robust way the skeleton of a set R defined on a triangulated mesh
by topological thinning. This approach relies on the definitions presented by
Rössl et al. [10]. However, the latter generates, for some mesh configurations,
unexpected skeletons that are generally more disconnected than they should. To
overcome this issue, an additional definition of vertex categories has been added.
Then, we have improved the thinning process by integrating a priority between
vertex classes. Tests have been applied on different categories of meshes (homoge-
neous and heterogeneous) and set configurations. These tests and the application
of feature line extraction, presented in the end, illustrate the efficiency of the
approach.

As future work, a formal proof based on [2] and issued from the notion of
simple vertices (by analogy to simple points) may need to be considered. Indeed,
the Rössl et al. article does not include formal validations because the vertices
classification is incomplete. With the changes we have made, the disk vertices
truly correspond to simple points lying on a discrete 2-manifold. Thus it will
be possible to transpose the notion of geodesic neighborhood in order to define
topological numbers associated with simple vertices.

A second prospect is related to the position of the skeleton nodes. They may
be still discussed and further works have to be dedicated to this subject. In-
deed, the defined operators do not integrate any geometrical information and
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the extraction of the skeleton only relies on a one-ring neighborhood. However,
as the position of the skeleton is generally easier to correct than the topology,
post-processing steps could be envisaged to optimize the skeleton position. A
possible improvement of our method will be to refine the node placement by
energy minimization during the extraction to evolve like active contours. In this
way, the resulting skeleton will describe in a better way both the topology and
the geometry of the set lying on the mesh.
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