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Abstract. In recent years, the theory behind distance functions defined
by neighbourhood sequences has been developed in the digital geometry
community. A neighbourhood sequence is a sequence of integers, where
each element defines a neighbourhood. In this paper, we establish the
equivalence between the representation of convex digital disks as an in-
tersection of half-planes (H-representation) and the expression of the
distance as a maximum of non-decreasing functions.

Both forms can be deduced one from the other by taking advantage
of the Lambek-Moser inverse of integer sequences.

Examples with finite sequences, cumulative sequences of periodic se-
quences and (almost) Beatty sequences are given. In each case, closed-
form expressions are given for the distance function and H-representation
of disks. The results can be used to compute the pair-wise distance
between points in constant time and to find optimal parameters for
neighbourhood sequences.

1 Introduction

A discrete distance function is often defined by using the concept of minimal
cost paths obtained by weighted paths and/or neighbourhood sequences [10].
The paths in the traditionally used city-block d4 and chessboard d8 distance
functions [9] are restricted to the four (and eight) closest neighbours of each
grid point in Z

2. In [5,2], different weights for closest neighbours and diagonal
neighbours are considered giving the weighted distances and in [10,2], the neigh-
bourhood that is allowed in each step is not constant, but defined by a neigh-
bourhood sequence. In [11], both weights and neighbourhood sequences are used
to define the distance function. One benefit with the path-generated, discrete,
distance functions over the Euclidean distance is when computing point-to-point
distances on non-convex domains with the constrained distance transform. The
cDT labels each object pixels with the distance to the closest seed pixels, where
paths that define the distances are not allowed to cross obstacle pixels. With
minimal cost-path distances, the cDT can be computed using standard shortest-
path techniques for weighted graphs resulting in a linear time algorithm. A
bucket sorting implementation of the Dijkstra’s algorithm is used in [12]. See
also [11].
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A neighbourhood sequence is an integer sequence, but the link between the
theory on integer sequences and the theory on discrete distance functions has
not been examined in detail yet. In this paper we will apply the theory on integer
sequences and use the Lambek-Moser inverse, which is defined for non-decreasing
integer sequences, to express the weighted ns-distance. We apply the so-obtained
expression to parameter optimization. In [3], neighbourhood sequences on the
form of Beatty sequences are considered.

By establishing a link between integer (neighbourhood) sequences and the
Lambek-Moser inverse, this paper enables the use of Beatty sequences for dis-
tance computations. The inverse of a Beatty sequence can be written in closed
form and any element can be computed in constant time. This property is use-
ful for efficient computation (using, for example, wave-front propagation, con-
strained (geodesic) DT), [11]. Moreover, we give H-representation of digital disks,
which is useful for, for example, parameter optimization by the link between
digital disks and their enclosing polyhedron given in this paper.

2 Integer Sequences – The Lambek-Moser Inverse and
Beatty Sequences

We denote sequences of integers as f = (f(1), f(2), . . . ). The Lambek-Moser
inverse of the non-decreasing sequence f , denoted by f †, is a non-decreasing
sequence of integers defined by [4]:

∀m,n ∈ N
2
+, f(m) < n ⇔ f †(n) �< m ⇔ f †(n) ≥ m . (1)

In Lambek and Moser’s paper, f and f † are only defined for positive indices.
However, (1) still holds without altering f † if we extend the domain of f to Z

with f(m) = 0, ∀m ≤ 0 (the same applies to f †):

∀m ∈ Z, ∀n ∈ N+,m ≤ 0 or f(m) < n ⇔ f †(n) ≥ m .

Proposition 1. f †(f(m) + 1) + 1 is the rank of the smallest term greater than
m where f increases [7,8].

If we extend f with f(0) = 0, and define g by g(0) = 0, g(n+1) = f †(f(g(n))+
1) + 1, then f(g(n)) takes, in increasing order, all the values of f , each one
appearing once [7,8].

A Beatty sequence is the sequence obtained by taking the integer parts of the
multiples of an irrational constant τ : (�τ	, �2τ	, �3τ	, . . . ) [1]. Beatty sequences
with parameter τ ≥ 1 are non-decreasing. We call Rational Beatty sequence the
sequence produced with a rational parameter τ . Hajdu introduced the use of
Beatty sequences in the context of discrete distances [3].

The inverse of the Beatty sequence f : m 
→ �τm	 with a scalar τ , is f † :
n 
→ �n

τ − 1 whereas the inverse of f : m 
→ ⌊
am
b + c

⌋
is f † : m 
→ ⌊

bm
a − c− 1

⌋

where a, b and c are integers.
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3 Distance Functions and H-Representation of Balls

3.1 Discrete Distances

Definition 1 (Discrete distance and metric). Consider a function d : Zn×
Z
n → N and the following properties ∀x, y, z ∈ Z

n, ∀λ ∈ Z:

1. positive definiteness d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y ,
2. symmetry d(x, y) = d(y, x) ,
3. triangle inequality d(x, z) ≤ d(x, y) + d(y, z) ,

d is called a distance function, or distance, if it verifies conditions 1 and 2 and
a metric with conditions 1 to 3.

Definition 2 (Closed Ball). For a given distance function d, the closed ball
D with radius r centered in c is the following set of points of Zn:

D(c, r) = {p : d(c, p) ≤ r} . (2)

A series of disks is increasing with respect to set inclusion:

∀r ∈ N, D(c, r) ⊆ D(c, r + 1) . (3)

Moreover, a discrete distance function is completely described by the sequence
of its balls.

d(O, p) = min
{
r : p ∈ D(O, r)

}
(4)

3.2 H-Representation of Balls

In this section, we will establish the link between digital disks (discrete poly-
topes) and H-polytopes.

Definition 3 (Polyhedron). A convex polyhedron is the intersection of a finite
set of half-hyperplanes.

Definition 4 (Polytope). A polytope is the convex hull of a finite set of points.

Theorem 1 (Weyl-Minkowski). A subset of Euclidean space is a polytope if
and only if it is a bounded convex polyhedron.

As a result, a polytope in R
n can be represented either as the convex hull of its

k vertices (V-representation) or by a set of l half-planes (H-representation):

P = conv({pi}1≤i≤k) =

{

p =

k∑

i=1

αipi : αi ∈ R+ and

k∑

i=1

αi = 1

}

, (5)

P =
{
x : Ax ≤ y

}
, (6)

where A is a l× n matrix, y a vector of n values that we name H-coefficients of
P . Given two vectors u and v, we denote u ≤ v if and only if ∀i, ui ≤ vi.
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Definition 5 (Discrete polytope). A discrete polytope Q is the intersection
of a polytope P in R with Z (Gauss discretization of P).

The minimal parameter representation introduced below is introduced in order
to avoid redundancies in the representation.

Definition 6 (Minimal parameter representation). A minimal parameter
H-representation of a discrete polytope Q, denoted Ĥ-representation, is a H-
representation of P =

{
x : Ax ≤ y

}
such that y is minimal:

P = {x ∈ Z
n : Ax ≤ y} and ∀i ∈ [1..l], ∃x ∈ P : Aix = yi , (7)

where Ai stands for the ith line of the matrix A.

The Ĥ function, introduced for convenience, gives the minimal parameter vector
for a given polytope P : Ĥ(P ) = max

{
Ax : x ∈ P

}
. As a consequence,

{x : Ax ≤ Ĥ(P )} is the Ĥ-representation of P = {x : Ax ≤ y}.

Definition 7 (Convex discrete set). A Set in Z is convex if it is a discrete
polytope.

By the construction above, any convex discrete set is given by a (Ĥ-representation
of a) discrete polytope.

Our main result, Theorem 2 below, gives a link between digital disks and
intersection of half-planes in R

2. The half-planes are given by the Lambek-Moser
inverse of the sequences fi and the matrix A. This result will be used as an
efficient representation for distance computation and parameter optimization.

Theorem 2. The following statements are equivalent:

D(O, r) = {p : Aip ≤ f †
i (r + 1), ∀i} (8)

d(O, p) = max
i

{fi(Aip)} (9)

Where, by convention, ∀i, ∀r ≤ 0, fi(r) = 0

Proof. Assume that (9) holds. By definition of a disk:

D(O, r) = {p : d(O, p) ≤ r}
= {p : max

i
{fi(Aip)} ≤ r}

= {p : fi(Aip) ≤ r, ∀i}
= {p : fi(Aip) < r + 1, ∀i}
= {p : Aip ≤ f †

i (r + 1), ∀i}
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Conversely,

d(O, p) = min{r : p ∈ D(O, r)}
= min{r : Aip ≤ f †

i (r + 1), ∀i}
= max

i

{
min{r : Aip ≤ f †

i (r + 1)}
}

= max
i

{min{r : fi(Aip) < r + 1}}
= max

i
{min{r : r ≥ fi(Aip)}}

= max
i

{fi(Aip)} ��

Each row Ai of the matrix A is a vector normal to a facet of the polytope. The
sequence fi represents the speed of the polytope growth in direction Ai which
does not need to be uniform as illustrated in Fig. 1.

Ak−1

Ak

Ak+1

0

2 1 2 3 4 5 6

3 3 3 3 3 4 5 6 7 ∞

4 4 4 4 4 4 5 6 7 7 ∞

6 6 5 4 4 5 5 6 6 7 ∞ ∞

∞ 7 7 6 6 6 6 7 7 7 7 ∞ ∞

∞ ∞ ∞ 7 7 7 7 7 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Fig. 1. Illustration of theorem 2. The normal vectors Ak−1 to Ak+1

are (2, 1),(1, 3) and (−1, 2). The sequences fk−1 to fk+1 are respectively
(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7,∞), (1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7,∞)
and (1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 6, 7, 7,∞) and their inverse sequences f†

k−1 to f†
k+1 are

(0, 2, 4, 6, 8, 10, 12, 15, 16), (0, 3, 5, 8, 12, 14, 16, 20, 24) and (0, 2, 4, 6, 9, 10, 12, 14, 15).
Distance values computed with (9) are given for each discrete point.
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4 Neighbourhood Sequences and Lambek-Moser Inverse

4.1 Weighted Neighbourhood Sequences

We recall some definitions on weighted neighbourhood sequences from [11]. Two
grid points p1 = (x1, y1),p2 = (x2, y2) ∈ Z

2 are ρ-neighbours, ρ ∈ {1, 2}, if

|x1 − x2|+ |y1 − y2| ≤ ρ and (10)
max {|x1 − x2|, |y1 − y2|} = 1.

The points p1,p2 are adjacent if p1 and p2 are ρ-neighbours for some ρ. Two ρ-
neighbours such that the equality in (10) is attained are called strict ρ-neighbours.
A ns B is a sequence B = (b(i))

∞
i=1, where each b(i) denotes a neighbourhood

relation in Z
2. If B is periodic, i.e., if for some fixed strictly positive l ∈ Z+,

b(i) = b(i+ l) is valid for all i ∈ Z+, then we write B = (b(1), b(2), . . . , b(l)).
We use

1B(k) = |{i : b(i) = 1, 1 ≤ i ≤ k}| and 2B(k) = |{i : b(i) = 2, 1 ≤ i ≤ k}|.
to denotate the number of 1:s and 2:s in the ns B up to position k.

A path, denoted P , in a grid is a sequence p0,p1, . . . ,pn of adjacent grid
points. A path is a B-path of length n if, for all i ∈ {1, 2, . . . , n}, pi−1 and pi

are b(i)-neighbours. The number of 1-steps and strict 2-steps in a given path P
is denoted 1P and 2P , respectively.

Definition 8. Given the ns B, the ns-distance d(p0,pn;B) between the points
p0 and pn is the length of (one of) the shortest B-path(s) between the points.

Let the real numbers α and β (the weights) and a B-path P of length n, where
exactly l (l ≤ n) pairs of adjacent grid points in the path are strict 2-neighbours
be given. The cost of the (α, β)-weighted B-path P is (n− l)α+ lβ. The B-path P
between the points p0 and pn is a (α, β)-weighted minimal cost B-path between
the points p0 and pn if no other (α, β)-weighted B-path between the points has
lower cost than the (α, β)-weighted B-path P .

Definition 9. Given the ns B and the weights α, β, the weighted ns-distance
dα,β(p0,pn;B) is the cost of (one of) the (α, β)-weighted minimal cost B-path(s)
between the points.

We denote the cumulative sum BΣ(k) of the ns B as

BΣ(k) =

k∑

l=1

B(l) = k + 2B(k)

The following construction gives a non-decreasing sequence of integers: f(k) =
BΣ(k − 1) + 1 = 2B(k − 1) + k.

Example 1. Given the neighbourhood sequence B = (1, 2, 1, 2, 2), the cumulative
sum is BΣ(m) =

⌊
8
5m
⌋
, its inverse is BΣ†(m) =

⌈
5
8m− 1

⌉
, the non-decreasing

sequence f defined above is f(m) =
⌊
8
5m− 3

5

⌋
, and its inverse is f †(m) =⌈

5
8 (m− 1)

⌉
.
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m 1 2 3 4 5 6 7 8 9 10 11

B(m) 1 2 1 2 2 1 2 1 2 2 1

BΣ(m) 1 3 4 6 8 9 11 12 14 16 17

BΣ†
(m) 0 1 1 2 3 3 4 4 5 6 6

f(m) 1 2 4 5 7 9 10 12 13 15 17
f †(m) 0 1 2 2 3 4 4 5 5 6 7

The following formula for weighted ns-distance is given in [11].

d(0, (x, y)) = α(2k − x− y) + β(x+ y − k), where (11)
k = min{l : l ≥ x+max{0, y − 2B(l)}} (12)

Proposition 2 below gives an alternative formula for (12). Since the Lambek-
Moser inverse f † of a Beatty sequence can be written on closed form, it is very
efficient to compute.

Proposition 2. min{l : l ≥ x+max{0, y − 2B(l)}} = max{x, f †(x+ y + 1)}

Proof.

{k = min{l : l ≥ x+max{0, y − 2B(l)}}}{
k ≥ max{x, x+ y − 2B(k)}
k − 1 < max{x, x+ y − 2B(k − 1)}

}

⎧
⎨

⎩

k ≥ x
k ≥ x+ y − 2B(k)
k = x or k ≤ x+ y − 2B(k − 1)

⎫
⎬

⎭
⎧
⎨

⎩

k ≥ x
k + 2B(k) ≥ x+ y
k = x or k + 2B(k − 1) ≤ x+ y

⎫
⎬

⎭
⎧
⎨

⎩

k ≥ x
f(k + 1)− 1 ≥ x+ y
k = x or f(k) ≤ x+ y

⎫
⎬

⎭
⎧
⎨

⎩

k ≥ x
k + 1 > f †(x + y + 1)
k = x or k ≤ f †(x+ y + 1)

⎫
⎬

⎭
⎧
⎨

⎩

k ≥ x
k ≥ f †(x + y + 1)
k = x or k ≤ f †(x+ y + 1)

⎫
⎬

⎭
��

Corollary 1. (11) can be rewritten as:

d(0, (x, y)) = (2α− β)max{x, f †(x+ y + 1)}+ (β − α)(x + y) . (13)
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Example 2. With α = 4, β = 5 and B from Example 1.

d(0, (x, y)) = 3max
{
x, f †(x+ y + 1)

}
+ x+ y

= max
{
4x+ y, 3f †(x+ y + 1) + x+ y

}

= max
{
f1

((
4 1

) (
x y

)t)
, f2

((
1 1

) (
x y

)t)}

as in (9) where f1 : m 
→ f1(m) = m and f2 : m 
→ 3f †(m+ 1) +m.

m 1 2 3 4 5 6 7 8 9 10 11

f1(m) 1 2 3 4 5 6 7 8 9 10 11

f †
1 (m) 0 1 2 3 4 5 6 7 8 9 10

f2(m) 4 8 9 13 17 18 22 23 27 31 32

f †
2 (m) 0 0 0 0 1 1 1 1 2 3 3

4.2 Specific Cases

Example 3 (Special case I – Weighted distances). B = (2), BΣ = (2, 4, 6, . . . ), f =
(1, 3, 5, 7, . . . ) = 2k − 1, f † = (0, 1, 1, 2, 2, 3, 3, 4, 4, . . .) = �k

2 	 When x ≥ y ≥ 0,
max{x, f †(x + y + 1)} = x, so (13) becomes:

d(0, (x, y)) = (2α− β)x+ (β − α)(x + y)

= αx+ (β − α)y

which is consistent with [2] and can be written in the form of (9) with the matrix
A =

(
α β − α

)
and the function f1 : m 
→ f1(m) = m which Lambek-Moser

inverse is f †
1 : m 
→ m − 1. A similar distance formulation for chamfer norms

with arbitrary large masks was given in [6, (20)].

Example 4 (Special case II – ns-distances). A ns-distance is a special case of wns-
distance for which path costs are computed with unitary weights (α = β = 1).
Then (13) becomes:

d(0, (x, y)) = max{x, f †(x+ y + 1)} .

This can be written in the form of (9) with A =

(
α β − α
1 1

)
=

(
1 0
1 1

)
,

f1 : m 
→ m and f2 : m 
→ f †(m+ 1). The Lambek-Moser inverses of f1 and f2
are f †

1 : m 
→ m− 1 and f †
2 : m 
→ f(m)− 1. I.e.

D(0, r) = {p : gi(Aip) < r + 1, ∀i}
= {p : Aip ≤ f †

i (r + 1), ∀i}

=

{
p :

(
1 0
1 1

)
p ≤

(
f †
1 (r + 1)

f †
2 (r + 1)

)}
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m 1 2 3 4 5 6 7 8 9 10 11

B(m) 1 2 1 2 2 1 2 1 2 2 1

f †(m) 0 1 2 2 3 4 4 5 5 6 7

f1(m) 1 2 3 4 5 6 7 8 9 10 11

f †
1 (m) 0 1 2 3 4 5 6 7 8 9 10

f2(m) 1 2 2 3 4 4 5 5 6 7 7

f †
2 (m) 0 1 3 4 6 8 9 11 12 14 16

5 Optimization

In this section, we will find parameters α, β, τ that minimize the rotational de-
pendency of the wns-distance. The digital disk obtained by wns is

D(0, r) = {p : Aip ≤ f †
i (r + 1), ∀i}

Now, we restrict the cumulative neighbourhood sequence BΣ to rational Beatty
sequences, i.e. on the form BΣ(m) = �τm	, 1 ≤ τ ≤ 2.

αx1 + (β − α)y1 ≤ f †
1 (r + 1)

x2 + y2 ≤ f †
2 (r + 1)

With f †
1 (r + 1) = r and equality above and x = x1 = x2 and y = y1 = y2, we

calculate the coordinates of the vertices of the H-polytopes:

x =
r + (α− β)f †

2 (r + 1)

2α− β

y =
αf †

2 (r + 1)− r

2α− β

With equality above and x = x1 and y2 = y1 = 0,

x =
r

α

By symmetry, the whole polygon is given by the vertices
(
r + (α− β)f †

2 (r + 1)

2α− β
,
αf †

2 (r + 1)− r

2α− β

)

,
( r
α
, 0
)
.

Optimization Procedure. Loop over integer α, β in some predefined interval
and rational τ (that defines the Beatty sequence) between 1 and 2.

Find the parameters α, β, τ that gives the minimum P 2A for each value up
to Rmax that is attained for the specific parameters.
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Example 5. τ : 500 uniform samples between 1 and 2. 1 ≤ α ≤ β ≤ 10 (and
2α ≤ β).

radius τ α β mean P 2A/(4π)

α 2 t t 1.27

2α 1.5 t t 1.1667

3α 2 3 4 1.1207

4α 2 7 9 1.0937

5α 2 7 9 1.0748

6α 2 7 9 1.0658

7α 2 7 9 1.0605

8α 2 7 9 1.0567

9α 1.834 7 9 1.0537

10α 1.834 7 9 1.0489

Note that in Example 5, the neighbourhood sequence always start with a 1 due
to the definition of f . In Example 6, we use f ′(k) = f(k) + 1 instead, which
means that the first element in B instead is always a 2.

Example 6. τ : 500 uniform samples between 1 and 2. 1 ≤ α ≤ β ≤ 10 (and
2α ≤ β). f ′(k) = f(k) + 1

radius τ α β mean P 2A/(4π)

α 1 t t 1.1312

2α 1 t t 1.1312

3α 2 5 6 1.1081

4α 1.6680 4 5 1.1024

5α 1.75 7 9 1.0758

6α 1.75 7 9 1.0644

7α 1.75 7 9 1.0567

8α 1.6680 7 9 1.0504

9α 1.6680 7 9 1.0458

10α 1.6680 7 9 1.0424
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6 Conclusions

In this paper, we express digital distance functions in terms of integer sequences.
Our main result, Theorem 2, gives a link between digital distance functions that
can be written on the form (9) and the corresponding digital disks. The obtained
expressions are elegant and, most importantly, can be computed efficiently. Since
the inverse of Beatty sequences can be computed in constant time, this holds
also for distance functions written on the form given in Theorem 2.

We give examples on how the new way of expressing the distance functions can
be applied to well-known digital distance functions such as weighted distances
and distances based on neighbourhood sequences. The so-obtained formulas are
used to find optimal parameters for short neighbourhood sequences.

We also believe that the results presented in this paper has the potential
of having large impact on the development of the theory on digital distance
functions.
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