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Abstract. A 3D object decomposition method is presented, which is based on 
the decomposition of the linear skeleton guided by the zones of influence. 
These are the connected components of voxels obtained by applying the reverse 
distance transformation to the branch points of the skeleton. Their role is to 
group sufficiently close branch points and to detect perceptually meaningful 
skeleton branches that are in a one-to-one relation with the object parts. 

1 Introduction 

According to the structural approach to shape analysis, an object can be interpreted as 
constituted by a number of perceptually meaningful parts and its description can be 
given in terms of the description of the various parts and of their spatial relationships. 
This approach has been inspired by the behavior of the human visual system, as 
discussed in [1-4]. One of the advantages of such a structured representation is a 
greater robustness under changes in viewing conditions. 

The skeleton is a tool often employed to achieve a structural analysis of the object 
it represents [5-12]. In fact, the skeleton is a linear subset of the object reflecting the 
topological and geometrical features of the object and such that each skeleton branch 
is in correspondence with one of the parts understood as constituting the object. Thus, 
a decomposition of an object into its constituting parts can be guided by a 
decomposition of the skeleton into its constituting branches.  

Parts associated with skeleton branches meeting in common points, the branch 
points of the skeleton, overlap with each other. If decomposition into disjoint parts is 
preferred, care is necessary to deal with the overlapping regions. 

We have suggested shape decomposition methods guided by skeleton 
decomposition for both 2D and 3D objects. In the 2D case, we decomposed the 
skeleton into its constituting branches and obtained object decomposition into 
partially overlapping parts [5,6]. In the 3D case, we favored decomposition into 
disjoint parts and to this purpose we suggested a suitable partition of the skeleton 
[10,11]. In particular in [11], we partitioned the skeleton into three types of 
components, respectively called complex sets, simple curves and single points, which 
correspond to three types of object parts, respectively called kernels, simple regions 
and bumps. Simple regions and bumps protrude from the kernels. In turn, kernels can 
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be interpreted as sort of main bodies of the object. Kernels were identified in 
correspondence with the positions where different skeleton branches meet. 

In this paper, we work with 3D objects and propose a decomposition method that is 
inspired by our work in 2D as concerns the decomposition of the skeleton into its 
constituting branches, and shares with our 3D method the fact that the object is 
decomposed into disjoint parts. The current method will face the problem of 
identifying skeleton branches corresponding to meaningful object parts, and will deal 
with the assignment of each overlapping region to only one of the proper object parts 
overlapping each other. 

The object parts obtained as described in this paper are somehow analogous to the 
simple regions and bumps of the decomposition method in [11]. In both cases, object 
decomposition is into disjoint parts. An important difference between the two 
methods is that with the current method no region merging is necessary to achieve an 
object decomposition in accordance with human intuition. Other analogies and 
differences will be discussed in Section 4. 

2 Preliminaries 

We consider objects rid of cavities in binary voxel images in cubic grids. The 26-
connectedness is used for the object and the 6-connectedness for the background. The 
neighbors of a voxel p are the 26 voxels sharing with p a face, an edge, or a vertex.  

The distance between two voxels p and q is defined as the length of a minimal 
discrete path linking p to q. The three integer weights wf=3, we=4 and wv=5 are used 
to measure the unit moves from a voxel towards its face-, edge- and vertex-neighbors 
along the path, respectively. This choice of weights is motivated by the fact that the so 
obtained <3,4,5> weighted distance provides a reasonably good approximation to the 
Euclidean distance [13].  

According to the model proposed by Blum [14], the skeleton of an object is a 
subset of the object consisting of points symmetrically placed within the object, 
having the same topology of the object, and such that each skeleton point is associated 
with its distance from the background. The value of a skeleton point can be 
interpreted as the radius of a ball that, centered on the point, is bi-tangent to the 
object’s boundary and is included in the object. The object can be recovered starting 
from its skeleton by computing the envelope of the balls associated to its points.  

For 3D objects, the above model originates a surface skeleton, which consists of 
the union of surfaces and curves. The surface skeleton of objects rid of cavities can be 
furthermore reduced to originate a skeleton exclusively consisting of curves. Only 
partial object recovery from such a skeleton is possible, unless the object consists of 
parts with tubular shape. In fact, only in such a case the symmetry points are mostly 
aligned along symmetry axes, while in the general case symmetry points are placed 
along symmetry planes and axes.  

In the digital space, the skeleton of a 3D object can be computed according to the 
model of Blum by identifying the centers of maximal balls in the distance transform 
of the object. The distance transform DT is a multi-valued replica of the object, where 
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each voxel is labeled with its distance from the background. Thus, each voxel in DT 
can be interpreted as the center of a ball with radius equal to the corresponding 
distance label. In particular, a voxel whose associated ball is not included by any 
other single ball in the object is called center of maximal ball CMB. The object can be 
recovered by the union of the balls associated to the CMBs of the object. The ball 
associated to any distance labeled voxel p can be obtained by applying to p the 
reverse distance transformation [15].  

In this paper, we compute DT by using the <3,4,5> weighted distance. There, to 
establish whether a voxel p is a CMB it is enough to compare the distance label of p 
with the distance labels of its 26 neighbors, by suitably taking into account the 
weights wf, we and wv [16]. As for the skeleton used to guide object decomposition, 
we refer to the linear skeleton obtained by the algorithm for DT based skeletonization 
suggested in [17]. We are aware that when using a linear skeleton a difference 
generally exists between the input object and the union of the only balls associated 
with the voxels of its skeleton. Thus, our decomposition method is completely 
effective only in case of objects that are perceived as consisting of parts with tubular 
shape, since in this case the above difference is negligible. This is the object domain 
considered in the following. 

3 The Method 

Let S be the skeleton of the object at hand. A voxel p of S is an end point when it has 
only one neighbor in S, is a normal point when it has two neighbors in S, and is a 
branch point when it has more than two neighbors in S. A skeleton branch is a curve 
of S entirely consisting of normal points, except for the two extremes of the curve that 
are end points or branch points. 

Balls associated to a set of distance labeled skeleton voxels by the reverse distance 
transformation may overlap and merge into connected components. Let us consider 
the balls associated with all the branch points of S. Each group of these balls forming 
a connected component is called zone of influence of the branch points it includes. 
Branch points that are neighbors of each other or are closer to each other than the sum 
of their associated distance labels are included in the same zone of influence.  

Intersecting object parts are mapped into branches of an ideal continuous skeleton 
that meet in a single branch point. In turn, more than one single branch point is 
generally found in the digital skeleton S in correspondence with intersecting object 
parts. However, in any such a case the branch points are likely to be very close to 
each other, so that they are included in a unique zone of influence. Thus, the zones of 
influence can be used to group branch points of S actually corresponding to a single 
branch point configuration of the skeleton that would ideally represent the object at 
hand. Obviously, the number of zones of influence may be smaller than the number of 
branch points of S. 

In the following, the zones of influence are used to correctly identify the 
configurations where skeleton branches meet with each other. They are also used to 
count the number of perceptually meaningful branches of the skeleton and, hence, the 
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number of object decomposition parts. To this aim, connected component labeling is 
accomplished on the zones of influence, as well as on the set that is obtained from S 
by removing from it all voxels that result to be included in any zone of influence.  

Short branches may exist in S, whose voxels are all included in a zone of influence, 
e.g., see Fig. 1. These short branches do not correspond to meaningful object parts 
and, hence, should not be counted. This is guaranteed since connected component 
labeling of S is done after removal of the skeleton voxels placed in zones of influence.  

 

Fig. 1. A zone of influence (gray) including a short skeleton branch 

3.1 Detecting Skeleton Components 

To illustrate our object decomposition method, let us refer to the object “horse”, 
shown in Fig. 2 top left, which will be used as running example. The skeleton S 
computed by the algorithm [17] is shown in Fig. 2 top right, where red, black and 
green are used for branch points, normal points and end points, respectively. We note 
that S includes six branch points, six end points, and nine skeleton branches. The two 
zones of influence resulting after applying the reverse distance transformation to the 
six branch points of S are shown in Fig. 2 bottom left; finally, the result obtained by 
applying connected component labeling to the zones of influence and to the voxels 
outside them is shown in Fig. 2 bottom right, where different colors represent 
different identity labels.  

 

  

  

Fig. 2. From top left to bottom right: the object “horse”, its skeleton, the zones of influence and 
the result of connected component labeling 
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Still with reference to Fig. 2, we note that out of the nine skeleton branches 
initially detected in the skeleton S, only seven branches having at least one voxel 
outside the zones of influence are identified as having perceptual significance. These 
skeleton branches correspond to the object parts of which the object can be interpreted 
as constituted. The seven object parts intersect with each other in correspondence of 
the zones of influence. However, as it will be explained in the following, the actual 
overlapping region among the object parts in correspondence of a given zone of 
influence is likely to be larger than the zone of influence itself. 

3.2 Identifying Object Decomposition Components 

Ideally, by subtracting from the input object the zones of influence we should obtain a 
number of connected components of object voxels equal to the number of skeleton 
branches counted by connected component labeling. However, notwithstanding the 
fact that the image domain considered in this work includes only objects perceived as 
consisting of parts with almost tubular shape, a difference unavoidably exists between 
the volume of the input object and the volume of the object that could be obtained by 
applying to S the reverse distance transformation. Each zone of influence is certainly 
adjacent somewhere to the original background, but such an adjacency does not 
regard the whole surface delimiting the zone of influence. Thus, the number of 
achieved connected components of object voxels is generally smaller than expected. 
See Fig. 3 top left, where a section (black voxels) of the set that would be obtained by 
subtracting from “horse” the zones of influence (gray voxels) is shown. We observe 
that only one connected component of object voxels would remain after subtraction, 
while our aim is to decompose that part of the object into the four regions (torso, tail 
and the two back legs) that are in correspondence with the four detected perceptually 
meaningful skeleton branches. 

To solve the above problem, we need to expand the zones of influence, so as to 
identify the proper overlapping regions. We aim at overlapping regions such that the 
cuts resulting in the object, when subtracting the overlapping regions from the input 
object, are in correspondence with significant curvature changes along the boundary 
of the object. To avoid both a too little expansion that would not produce the desired 
separation of the object parts, and an excessive expansion that would originate parts 
with unnatural separation cuts, we exploit distance information available in DT. In 
practice, the voxels of the zones of influence are labeled with the distances pertaining 
to them in DT. Then, the expansion is achieved by applying the reverse distance 
transformation to the so obtained distance labeled zones of influence.  

The above process guarantees that the surfaces of the overlapping regions have a 
high adjacency degree with the original background. At the same time, reverse 
distance transformation also guarantees that unnatural cuts are not produced when the 
overlapping regions are subtracted from the input object. In fact, the zones of 
influence are nearly convex regions and this geometric property is preserved when the 
zones of influence are expanded. Thus, the overlapping regions cannot extend beyond 
the curvature minima along the boundary of the object. The overlapping regions 
obtained for the running example are shown in Fig. 3 top right.  
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We remark that the number of object parts has already been determined by 
counting the number of connected components of skeleton voxels outside the zones of 
influence. Thus, care should be taken to avoid diminishing such a number due to a 
possible fusion of the regions obtained when applying the reverse distance 
transformation to the distance labeled zones of influence. To this aim, a topology 
preserving reverse distance transformation is taken into account so as to avoid fusion. 
In practice, topology is maintained by setting to the background value the voxels that, 
though reached by the expansion of the zones of influence, result to be at the same 
distance from more than one zone of influence.  

The overlapping regions are subtracted from the input object and the identity labels 
assigned to the voxels of the perceptually meaningful skeleton branches are finally 
used to label the connected components of object voxels they belong to. See Fig.3 
bottom left, where the components of object voxels are colored as the corresponding 
perceptually meaningful skeleton branches. In his way, the preliminary object 
decomposition shown in Fig. 3 bottom right is obtained, where each overlapping 
region, colored as the influence zone from which has been obtained, still has to be 
ascribed to the proper component of object voxels. 

 

   

  

Fig. 3. From top left to bottom right: section showing in gray the voxels of the zones of 
influence; the overlapping regions obtained by applying the topology preserving reverse 
distance transformation to the zones of influence; the components of object voxels obtained by 
subtracting from the object the overlapping regions; and the preliminary decomposition of the 
object before ascribing the overlapping regions to the proper object parts 

For the sake of completeness, we point out that when computing the set difference 
between the input object and the overlapping regions, some connected components 
composed by a small number of object voxels may exist, which do not include any 
skeletal voxel. Such components are likely to exist since their voxels were not 
reached when applying the reverse distance transformation to the zones of influence 
due to the fact that S does not include all the CMBs of the object. These components 
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do not correspond to meaningful object parts and their voxels are assigned to the 
overlapping regions they are adjacent to. 

3.3 Ascribing the Overlapping Regions 

According to our model, the object should be decomposed into a number of disjoint 
parts equal to the number of perceptually meaningful skeleton branches. To reach this 
goal, a decision must be taken to ascribe each overlapping region to only one of the 
disjoint components of object voxels adjacent to it. 

By observing an overlapping region, say ORk, and the adjacent components of 
object voxels, say P1, P2,..,Pn, we may note that while ORk is an almost convex set, P1, 
P2,..,Pn show a different degree of concavity in correspondence with the positions 
where they result to be adjacent to ORk. Let Ak denote the area of the surface 
bounding the overlapping region ORk, i.e., the number of voxels of ORk having at 
least one face-neighbor outside ORk. Moreover, let Ak(Pi) denote the portion of the 
area of the surface bounding the overlapping region ORk that is adjacent to Pi, i.e., the 
number of voxels of ORk having at least one face-neighbor in Pi. Then, we roughly 
evaluate how much ORk intrudes into the adjacent component Pi, by computing the 
ratio R= Ak(Pi)/Ak. We ascribe the overlapping region ORk to the adjacent component 
of object voxels that maximizes the ratio R. The choice of this criterion is due to the 
fact that in our opinion the more ORk intrudes in a given component Pi, the more the 
shape of Pi benefits if the overlapping region is ascribed to it. 

To accomplish the assignment of the overlapping regions in a computationally 
convenient manner, an adjacency matrix is built having as many rows as many are the 
overlapping regions and a number of columns equal to the number of components of 
object voxels plus one for the background. By inspecting the array where the 
preliminary decomposition of the object is stored, each time that a voxel of ORk is 
met having at least one face neighbor outside ORk, the proper element of the k-th row 
of the matrix is increased by one. In this way, once the matrix has been built, the 
value at row k and column j measures the portion of surface of ORk in common with 
the background or with one of the adjacent components of object voxels. Then, we 
can easily decide to which component of object voxels to assign each overlapping 
region. In the rare case in which for an overlapping region an identical ratio is 
obtained for more than one adjacent component, the overlapping region is assigned to 
any of such components. 

The adjacency matrix for the running example is shown in Table 1, where the two 
overlapping regions OR1 and OR2 are respectively those colored in green and blue in 
Fig. 3 bottom right.  

Table 1. The adjacency matrix fort he running example 

 background leg1 leg2 leg3 leg4 neck torso tail 
OR1 1517 44 33 0 0 125 411 0 
OR2 1622 0 0 70 53 0 414 5 
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The decomposition obtained for the running example is shown in Fig. 4 from two 
different view points. 

 

   

Fig. 4. The obtained decomposition seen from two different view points 

4 Experimental Results and Discussion 

We have tested our method on 3D objects taken from publicly available shape 
repositories, e.g., [18], as done by most of the researchers in this field. The obtained 
results are generally satisfactory. In particular, for some objects used also in [7, 9, 12] 
to show the performance of the corresponding decomposition methods, our results 
seem to be qualitatively better. In Fig. 5 a few examples are given to show the 
performance of our decomposition method. 

 

    

    

    

Fig. 5. From top to bottom: The skeletons of various input objects, the preliminary decompositions, 
and the resulting object decompositions 

The algorithm runs on a Pentium 4 (3 GHz, 2 GB RAM) personal computer and its 
computational cost is O(N), where N is the number of voxels in the image. The 
decomposition method is simple to implement, is rather fast and is completely 
automatic since it does not require any threshold. Of course, the quality of the results 
is influenced by the quality of the starting skeleton. In this respect, the skeletonization 
algorithm [17] has a positive impact on the decomposition method. In fact, due to the 
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use of the <3,4,5> distance that provides a good approximation of the Euclidean 
distance, the skeleton is rather stable under object rotation and for scale changes. 
Thus, stability also characterizes object decomposition. Moreover, the skeletonization 
algorithm includes a clever pruning step that, if the same object is presented in a 
different pose, allows us to obtain a skeleton with mostly the same structure. Actually, 
in this respect a key role for a satisfactory object decomposition is played by the 
zones of influence. In fact the skeleton of the same object in different poses may be 
characterized by a different number of branch points. However, due to the zones of 
influence we detect the same number of branch point configurations in all cases and, 
hence, the same number of perceptually significant skeleton branches. 

Stability of the decomposition method with respect to pose/size changes can be 
appreciated by referring to Fig. 6, for the object “armadillo”. We observe that the 
main parts of the armadillo (the torso, the four limbs, the tail, the ears and the muzzle) 
are detected in all poses as individual decomposition parts. This is due to the detection 
of the zones of influence, which identifies the same number of branch point 
configurations in all cases, and to the criterion adopted to assign the overlapping 
regions to the proper adjacent components of object voxels. In turn, small peripheral 
parts, such as the toes, are not always individually detected as object parts since they 
are not individually mapped into skeleton branches. 

 

   

   

   
Fig. 6. The skeleton of “armadillo” in different poses/sizes, top, the preliminary decomposition, 
middle, and the decomposition after assignment of the overlapping regions, bottom 

We have also tested stability of decomposition when the object is deformed, e.g., by 
stretching it without tearing it apart or sticking distinct parts together. For example, see 
Fig. 7, where the decomposition of a deformed version of “horse” is shown. We note that 
also in this case two overlapping regions are found, which are still assigned to the torso. 
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Fig. 7. The preliminary decomposition of a deformed version of “horse”, top, and the 
decomposition into the same number of disjoint parts as that achieved for the non deformed 
“horse”, bottom 

As pointed out in the introduction, this decomposition method has some analogies 
with our previous decomposition method [11]. Both methods decompose the skeleton 
and generate object decompositions into disjoint parts. Moreover, the overlapping 
regions and the components of object voxels obtained by subtraction of the 
overlapping regions from the input have some analogy with the kernels and with the 
simple regions and bumps detected in [11]. However, the two methods are rather 
different, both as concerns the model and as concerns the computational cost. 

As concerns the model, in [11] we give a prominent role to the kernels, while in 
this paper the key role is played by the object parts that correspond to the perceptually 
meaningful skeleton branches. The one-to-one correspondence between the skeleton 
components identified during the skeleton decomposition process and the parts into 
which the object is decomposed is maintained by the current process, which produces 
as many object parts as many are the detected perceptually significant skeleton 
branches. In turn, with the method in [11] the one-to-one correspondence is 
maintained only if no merging phase is accomplished; on the other hand, merging is 
almost always necessary in order to obtain a decomposition more in accordance with 
intuition.  

As regards the computational cost, the current method is noticeably cheaper. The 
object parts are simply obtained by subtraction from the input of the overlapping 
regions, while a 2-step more sophisticated and expensive process was used in [11] to 
build the various regions starting from the skeleton components. Moreover, a 
concavity filling algorithm had to be used in [11] to move a number of voxels from 
any kernel to the adjacent regions, so as to have almost planar separation cuts where 
significant changes of curvature occurred along the boundary of the object. In turn, 
this is no longer necessary in the new method, due to the criterion adopted to identify 
the overlapping regions. Finally, merging was a necessary step in [11], which implies 
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an additional computational effort and the use of merging thresholds, while such a 
step is not necessary in the current work.  

As already said, our method effectively works for objects perceived as composed 
by the superposition of parts with tubular shape, possibly characterized by different 
width. According to our method, the overlapping regions cannot individually exist, 
nor are divided among the adjacent components of object voxels. The component to 
which an overlapping region is ascribed is the one whose shape appears as completed 
by the assignment of the overlapping region. Such a component is characterized by 
width comparable to the width of the adjacent overlapping region, while the 
remaining adjacent components have smaller width.  

To extend the applicability of the method to an image domain wider than that 
including only objects that are perceived as composed by parts with tubular shape, 
some considerations on the assignment of the overlapping regions can be done. For 
example, think of a rounded pincushion from which a number of pins come out. We 
can assume that a unique large overlapping region exists, which exhausts the portion 
of the 3D space occupied by the cushion. If such an overlapping region is assigned to 
one of the pins, the shape of the so obtained object part would have no perceptual 
evidence. The boundary of the compound part (cushion plus pin), in fact, would not 
be characterized by that good continuity that a human observer would consider 
adequate to perceive that compound object part as a whole. A feature that would 
certainly characterize the adjacency matrix built for the pincushion is that the ratio R 
remains always rather small, since the cushion intrudes very little within the pins. 
Thus, a way to extend the decomposition method to a wider domain is to introduce a 
threshold on the minimal value that the ratio R should have in order a compound 
region (overlapping region plus adjacent component of object voxels) can be 
reasonably perceived as a whole. Selecting the proper value for such a threshold will 
be argument of future investigations.  If for all components of object voxels adjacent 
to a given overlapping region the ratio R is below the threshold value, the overlapping 
region is not assigned to any component and is taken as an individual decomposition 
part. Obviously, the method would be no longer fully automatic, since a threshold has 
to be set, the one-to-one correspondence between perceptually meaningful skeleton 
branches and object parts would be no longer guaranteed, since overlapping regions 
may be individual decomposition parts, but the method would have larger 
applicability.  

5 Concluding Remarks 

In this work we have introduced a 3D object decomposition method based on skeleton 
decomposition. The objects of interest are understood as constituted by parts with 
tubular shape and possibly different width. Starting from the linear skeleton of the 
object, the zones of influence, i.e., the regions where different skeleton branches 
meet, are identified. The zones of influence are used to group branch points 
sufficiently close to each other, and to identify the perceptually meaningful skeleton 
branches. Then, the overlapping regions, i.e., the object regions where object parts 
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intersect, are identified and components of object voxels are obtained by subtraction 
of the overlapping regions from the input object. The overlapping regions are finally 
ascribed to the adjacent components of object voxels that better benefit of such an 
assignment. 
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