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Abstract. Simulation of stochastic graph transformation systems
(SGTS) allows us to analyse the model’s behaviour. However, complex-
ity of models limits our capability for analysis. In this paper, we aim to
simplify models by abstraction while preserving relevant trends in their
global behaviour. Based on a hierarchical graph model inspired by mem-
brane systems, structural abstraction is achieved by “zooming out” of
membranes, hiding their internal state. We use Bayesian networks repre-
senting dependencies on stochastic (input) parameters, as well as causal
relationships between rules, for parameter learning and inference. We
demonstrate and evaluate this process via two case studies, immunolog-
ical response to a viral attack and reconfiguration in P2P networks.

Keywords: stochastic graph transformation, abstraction, Bayesian net-
works, membrane systems.

1 Introduction

Graph transformation systems (GTS) are a rule-based approach to modelling
processes of structural change. Rules capture local behaviour in terms of pre-
conditions and effects of atomic operations. In stochastic graph transformation
systems (SGTS), each rule is assigned a probability distribution dictating the
delay in its application, once enabled [I0]. Such stochastic models allow us to
observe emergent, global behaviour through simulation. For example, in a model
of a peer-to-peer (P2P) network, we may specify operations of peers joining and
leaving the network, making connections, etc. while being interested in a global
property such as the probability of the overall network to be connected. Simi-
larly for a study of viral attack and immunological response on cell tissue, the
probability of tissue recovery or death will be of interest. This requires a detailed
model of reactions such as virus multiplication, immune reaction, cell death and
regeneration.

In any realistic scenario, such models will be large and complex. Detailed state
representations lead to large state spaces with a high rate of low-level change
and a large set of rules, creating scalability issues for analysis. Raising the level
of abstraction, a model can be reduced to improve scalability, but for the price
of potentially distorting analysis results. Related to the level of representation is
the choice of delay distributions for rules. For example in an abstract version of
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the immunological response model, a rule for a cell to be damaged beyond repair
specifies an operation that takes several steps in the concrete version. The delay
of the abstract rule should therefore correspond to the combined delays of the
steps required at the concrete level.

In this paper, we address the interconnected problems of structural abstrac-
tion and the choice of delay distributions and their parameters. Structural ab-
straction is based on a hierarchical graph model inspired by membrane sys-
tems [20], where details of the lower level of the hierarchy can be hidden. As a
result, the model becomes smaller in terms of the number of rules, the number
of graph elements in each graph, and therefore the number of matches per rule.
This increases the scalability of stochastic simulation, i.e., larger populations can
be simulated over longer periods of simulated time.

The abstraction problem arises when comparing model with reality as well
as between models at different levels of detail. We focus on the latter, which is
easier to experiment with using stochastic simulation. Referring to the concrete
and abstract models as SGT'S; and SGTSs, resp., the approach is based on
three key ideas: Structural abstraction at the type level induces instance level
projections of graphs and rules allowing us to relate concrete and abstract states
and operations. Dynamic, quantitative analysis of conflicts and dependencies
between operations allows us to discover cases where rules in SGT'S5 fail to re-
produce the causal relationships between rules SGT'S1, or vice versa, potentially
leading to the need to refine the abstract model. A Bayesian Network (BN) [21],
constructed as a result of the dependency analysis of SGT'S>, allows us to in-
fer stochastic parameters by training. In particular, training aims to match the
throughputs (number of applications / time) of the rules of the two models. Our
hypothesis is that by matching behaviour at this local level, we preserve the
trends (if not absolute values) in the global properties of the models.

This leads to the following process, with steps being iterated as required.

Derive SGT'S5 as projection of SGT'S; to a sub-type graph T'Gs of TG1.
Simulating SGT'S7, perform dynamic dependency analysis over SGT'S5.
Define a Bayesian network representing the dependencies of SGT'Ss.

o=

Use parameter sweep of simulations of SGTSs to create training data for
the BN. This process is known as learning in a BN.

5. Enter throughput data of SGT'S; as evidence into the network and infer the
stochastic parameters of SGT'S3 needed to replicate SGT'Sy’s throughputs.
This process is known as inference in a BN.

6. Test the parameters by running stochastic simulations of SGT'Ss.

We demonstrate and evaluate this process via two case studies based on models
of a P2P network and immunological response introduced in Sect. Bl full details
of which are given in [4] and [3] respectively. Background on SGTS and BN is
given in Sects.Pland @l resp. Sect. d also introduces the derivation of a BN from a
SGTS and describes stochastic parameter training. Sect. [l evaluates the results
of the case studies, and Sect. [[ concludes the paper.
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2 Stochastic Graph Transformation

A typed graph transformation system G = (T'G, P, ) consists of a type graph TG,
defining node/edge types and attributes, a set of rule names P and a function 7
defining for each name p € P a rule 7(p) = L — R consisting of T'G-typed graphs
L, R whose intersection L N R is called the interface of the rule. The left-hand
side L represents the precondition and the right-hand side R the postcondition
of the rule, whose applications transform instance graphs, also typed over T'G.
Rules can be equipped with negative application conditions (NACs) specifying
forbidden context. Formally, the application G L% H of rule p at a match m :
L — G subject to NACs, is defined by the single-pushout (SPO) approach [16].
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Fig. 1. Rule R2 for viral attack on last maintainer of a living cell (concrete model)

An example rule is shown in Fig. [[I It models the reaction in which a virus
destroys the last maintainer in a cell (as indicated by the NAC), changing its
status to dying. Fig. 2 shows the type graph for the viral attack model, defining
a hierarchy of tissues, cells and organelles. Rules like those of Fig. [l are defined
over this type graph.

A stochastic graph transformation system SG = (TG, P, 7, F) consists of a
graph transformation system G = (TG, P,7) and a function F : P — [0,1]®+
associating to each rule name in P a probability distribution function F(p) :
Ry — [0,1]. Generalised SGTS, based on semi-Markov processes, allow the
specification of arbitrary distributions of delays as opposed to just exponential
distributions [14]. Exponential distributions model processes which depend on
occurrences of random events, such as the collision between virus and immuno
in a cell. They are characterised by a rate, i.e., the inverse of the average delay
between two such events, if enabled. For operations with defined start and end
points, such as the death of a cell once all maintainers are removed by viruses,
normal (or lognormal) distributions are appropriate, given by mean and variance.
Once started, there is an expected waiting time for the process to finish.

Given a start graph Gg, the behaviour of SG can be explored by simulation.
For this purpose, the simulation tool GraSS [24] has been developed. The simula-
tion works as follows. For a graph G, events E(G) are pairs (p, m) of a rule p and
an enabling match m. States (G, t,w) of the simulation are given by the current
graph G, the simulation time ¢, and the schedule w : E(G) — R mapping events
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to their scheduled times. Initially, the current graph is the start graph G = Gy,
the time is set to ¢ = 0 and the scheduled time w(p,m) = RNp(,) for each
enabled event (p,m) is selected randomly based on p’s probability distribution.
Then, for each simulation step

1. the first event e = (p,m) is identified and rule p applied at match m to the
current graph G producing the new current graph H via G 22 H.

. the simulation time is advanced to ¢t = w(e)

3. the new schedule w’, based on an updated set of enabled events E(H), is
defined by removing from the schedule all events in E(G)\ E(H) and adding
new events (p',m’) € E(H) \ E(G) with time w'(p’,m’) = RNp(, selected
randomly based on p’’s distribution.

[\

The result is a (simulation) run s = (Go,to) P ... Podin (Gn,tn), ie, a
transformation sequence where graphs labelled by time stamps tg,...,t, € Ry

with ¢; < t;4q1 for alli € {0,...,n— 1}.

Graph transformation rules describe immunological response at a cellular
level, as well as auxiliary operations such as virus replication, cell death and
regeneration. Stochastic simulation allows us to determine the probability of tis-
sue death once invaded by a set number of viruses. The average time taken for a
tissue to come to either eliminate the viruses or suffering death can also be ex-
tracted. These are examples of global properties, as opposed to more local ones
such as the throughput, i.e., the number of applications over time, of particular
rules of the system.

3 Structural Abstraction

Since stochastic simulation is resource intensive, we aim to simplify hierarchical
models, such as the one discussed above, by hiding details at the lowest level
of the hierarchy. Formally, an abstraction relation f : SG; — SGs between
the concrete SGTS S§G; = (TGy, P1, 71, F1) and the abstract SGTS S§Gy =
(T'Gs, Ps,ma, F») is given by an inclusion of the type graphs TG C TGy and
a surjective mapping f : P; — P5 of rule names that is compatible with the
projection of rules of SG; to T'Gs.

Fig.Plshows the abstract type graph, forgetting about the contents of cells but
retaining viruses, which can also exist in the tissue between cells. Attributes alive,
dying, virusCount provide a boolean or numerical representation of information
that is held in graphical form in the concrete model, but lost in the abstract one.
These aggregating attributes are redundant in the concrete model, as expressed
by invariants such as The number of Virus nodes connected to a Cell node by
par edges equals the value of the virusCount attribute of that Cell node. Such
invariants can be expressed in OCL or using a graphical constraint and either
tested during the simulation or verified statically.

For an instance graph G of T'G; such as in the top right of Fig. Bl G|r¢,
denotes its projection to the abstract type graph via a pullback, as shown in the
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Fig. 2. Type and instance graphs for immunological response
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Fig. 3. Rule A IR2 for viral attack on last maintainer of a living cell (abstract model)

bottom right. The contents of cells are hidden in the abstraction. In a similar way,
rules in the concrete model are projected to the abstract type graph to create
the set of abstract rules. The result is shown in Fig. Bl for the rule in Fig.[I], where
the aggregating attributes retain aspects of the structural details (e.g., dying).
Formally, for all p € Py, m2(f(p)) = m1(p)|rq, i-e., the rule associated to concrete
p equals that of abstract f(p) upon projection to the abstract type graph [I1]. If
a concrete rule does not have any effect on cells or aggregating attributes (i.e.,
elements typed in T'G2), but is only concerned with manipulating elements lost
in the abstraction (i.e., those typed in TG1 \ T'G2), the result of the projection
is a rule with no effect at all. We call such rules idle. Applications of idle rules as
part of a sequence can be skipped because they do not change the graph. Thus,
the abstract system may have less (non-idle) rules and abstract sequences may
be shorter than their concrete counterparts. While idle rules can be disregarded,
NACs in non-idle rules either have to be preserved entirely (no negative elements
are lost under projection) or completely removed (at least one negative element
is lost) by the projection [2].

Figure [3] shows the result of projecting the rule depicted in Figure[ll the virus
destroying the last maintainer of a Cell, onto the abstract type graph. In this
case, the rule is not idle and the single NAC is lost entirely. Abstraction leads
to a smaller set of rules, and a smaller number of graph elements for each rule
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application and graph, making simulation less resource-intensive (see Section ().
The full set of concrete and abstract rules can be found at [3].

. . p1,m P ,m .
Given a transformation sequence 51 = (Gy = --- ==" (,,) in SG1, there

. . f(p1),milra F(pn);manlra:
exists a corresponding sequence f * (s1) = (Go|ra, e L =

Gnlra,) in 8Go. That means, under the assumptions above, mapping fx : Gf —
G5 provides us with an abstraction not just of states and operations, but also of
transformation sequences: Behaviour is preserved under abstraction [11].

We continue deriving the abstract model by defining its rules’ probability
distributions. After determining the type of distribution to be used, we create
a Baysian network based on the causal relationships between rules, from which
the distributions are inferred.

4 From SGTS to Bayesian Networks

In general, abstract rules may follow different types of distributions than their
concrete counterparts. In particular, a rule representing an entire sequence of
concrete steps could be normally distributed even if each concrete rule has an
exponential distribution. Simulating the concrete model, we can detect matches
for abstract rules and so measure the delays between the enabling and application
of the rule. Plotting this data allows us to decide the shape of the distribution.

Having determined the types of the distributions, we use Bayesian networks to
derive their parameters. The structure of the network is defined by the conflicts
and dependencies of abstract rules. We say that rule p enables p’ if there exists

a sequence G 25 X =2 H such that the match m’ for p’ in X cannot be
extended to G, i.e., the second step is dependent on the first. This is the case if
p creates elements required for p’s application, or deletes elements that violate

a negative application condition of p’. Dually, given H 22 g p/;—m; H’, rule p
disables p’ if the match m’ for p’ is not preserved in H, i.e., the application of
p is in conflict with the subsequent application of p’. This happens if p deletes
elements needed for p’s application or creates elements violating p’s NAC.

While conflicts and dependencies can be analysed statically, like with many
static methods this often results in an over approximation of the actual de-
pendencies and conflicts occurring in simulation runs. A dynamic approach can
take into account reachability, i.e., only report cases where the steps concerned
are reachable from the start state. It can also provide statistics on how many
matches for p’ are generated or destroyed on average per application of p, thus
allowing us to judge the significance of a dependency or conflict.

Since we are not able to simulate the abstract system before defining its
stochastic parameters, we execute the concrete model and use our abstraction
function f : SG7 — SGj to derive abstract runs to record what we call diagonal
conflicts and dependencies between concrete and abstract rules: According to
our notion of abstraction, abstract rules f(p) arise from concrete ones p that are
not idle under projection to the abstract type graph T'Gs. At the same time,
each abstract rule, being typed over TGy C T'Gq, is also implicitly typed over
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TGq. Therefore, it is possible to check for conflicts and dependencies between
concrete and abstract steps while simulating the concrete system. Since overlaps
of concrete and abstract rules can only be based on elements that are preserved
in the abstraction, a dependency between a concrete rule p non-idle under pro-
jection and an abstract rule f(p’) is also a dependency between the abstract
counterpart f(p) and f(p'), and vice versa. The same is true for conflict. That
means, diagonal conflicts and dependencies can be used in place of abstract ones.

The result of the analysis is recorded in the dynamic incidence matriz
DIM : P x P, — R where P C P; is the subset of concrete rules with non-
idle projections. For each rule p € P the matrix describes the average change
in the number of matches for rules in P; caused by p’s application. The run-
time conflicts and dependencies recorded here provide the information needed
to derive the structure of the BN.

A BN is an acyclic graph Gg = (V, E, sre,tg, A). V is a set of vertices such
that each v € V represents a variable (discrete or continuous). F is a set of
directed edges such that each e € E has a source and target vertex src(e) and
tg(e) in V, respectively. The function A : V' — [0, 1]®+ assigns to each vertex a
probability distribution such that for all v € V', A(v) = Q(v|Vjn (v)) where Vi, (v)
is the set of nodes with edges towards v. @) represents a probability distribution
for the value of v given the values of all variables on which v is conditionally
dependent. The foundations of BNs in Bayes’ Theorem are discussed in [I2].

We use the BN’s vertices to represent parameters of abstract rules’ probability
distributions as well as average rule throughputs. For exponential distributions,
this parameter is the rate. For lognormal distributions, we represent the mean
only. The variance is inherited from corresponding rules in the concrete model
and confirmed via plotting the distributions of delays for abstract rules measured
in concrete simulations. We therefore have a BN consisting of two distinct sets of
nodes: input nodes representing stochastic parameters and output nodes repre-
senting the average throughput for each rule. For each rule an edge connects its
parameter and throughput node, modelling the dependency of the throughput on
the rule’s distribution. In addition, conflicts and dependencies are represented
as edges between throughput nodes. Because of the way data is propagated
through the network by the training algorithm, the direction of edges between
throughput nodes is irrelevant. We can therefore avoid cyclic networks, even if
dependency and conflict relations are cyclic, by choosing a total order on rule
names to direct edges in the network from “smaller” to “larger” names.

Definition 1 (BN of SGTS). Assume SG = (TG, P, w, F') with arbitrary total
order < on P. The BN representing SG is a graph B = (V, E| src,tg, \) with
functions

— fin : P — V assigning to each rule a vertex representing its stochastic param-
eter (rate or mean for exponentially or lognormal distributions, respectively);
— fout : P — V assigning to each rule a vertex representing its throughput;

such that

— for every p € P, there is exactly one edge in B from fou(p) to fin(p);
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— for all p1,p2 € P such that p1 disables or enables ps, there is exactly one
edge in B between their respective output nodes, from fout(p1) to four(p2) if

p1 < D2, or from four(p2) t0 four(p1) if P2 < p1.

To generate the DIM, while running the stochastic simulation of the concrete
model we trace matches for abstract rules, their creation and destruction by con-
crete rule applications. The matrix records the average change in the number of
matches over the entire simulation time. The results are given in Table [l with a
negative number indicating a net conflict between two rules (more matches being
destroyed than created), and a positive entry a net dependency. The resulting
BN is shown in Fig. @l

Table 1. Dynamic incidence matrix for abstract rules over concrete model (aggregate
of diagonal conflicts and dependencies)

Applied Concrete Rule
Abstract rule VC IR VA2 CD TD CR VT VM SM

A VC 0 -0.408 -1.0 0 0 0 0.44 0.943 0
A IR 0 -0.408 -1.0 0 0 0 0.44 0.943 0
A VA2 0 -0.408 -1.0 0 0 0 0.44 0.943 0
A CD 0 0 1.0 -1.0 0 0 0 0 0
A TD 0 0 0 0.0347 -1.0 O 0 0 0
A CR 0 0 0 0544 0 -1.45 0 0 0
AVT 0 0 3.8 -183 0 0.0744 -0.642 0O 0
A VM 0 0 -0.0548 0 0 0.0208 0 -1.0 0.00755
A SM 0 0 0 5.82 -788 0 0 -4.70 -0.00708

While the structure of the net is fixed by the dependencies and conflicts, the
net itself is not complete without a probability distribution A at each node.
Tools, such as Bayes Server [I], are able to learn these distributions if sufficient
training data is available for every variable. The data must be varied enough
so that the network can learn the effect of changes in values of one variable on
another. Each row of training data includes stochastic parameters and resulting
throughputs for all abstract rules, as measured by a batch of simulations.

The purpose of training is to match the throughputs measured for the abstract
model with those of the concrete one. Once the probability distributions are
learnt for every abstract variable in the network, we enter the known through-
puts from the concrete model as evidence, i.e., fixing the values of the nodes
representing outputs. The probability distributions at the remaining unknown
variables, the stochastic parameters, will be perturbed as a result of this evi-
dence, giving us their most likely values given the required throughput. This
process is iterated, starting with a broad sweep of abstract stochastic parame-
ters and refining their choices successively to sample the vicinity of parameters
derived in the previous iteration. Thus, subsequent rounds of learning more and
more precisely replicate the throughputs of the concrete model by the abstract
one.
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Fig. 4. BN representing dependencies and conflicts in the abstract model

In order to decide when to stop the process, we have to assess how closely
concrete and abstract throughputs are matched with a given set of parameters.
This is done by simulating the abstract model, measuring its throughputs, and
calculating the distance between these and the concrete model’s by the formula
below as the product of the differences between average throughputs for each
rule. If y.(p) and y.(f(p)) are the average throughputs for non-idle concrete rule
p and its abstract counterpart, respectively:

M=T] Ye(p) = ya(f ()

peEP yc(p)

A value closer to zero indicates a better match between concrete and abstract
throughputs. However, M also gives an intuitive judgement of distance. For
example, for a set of 9 abstract rules as with our case study, a value of M at
107? indicates that on average the throughput for each rule is within 10% of
that measured in the concrete model.

5 Evaluation

The BN in Fig. [ was implemented in Bayes Server. A sample tissue consisting
of 18 cells with 5 initial viruses was created as a start graph for simulation,
using 12271 different sets of stochastic parameters with 50 simulation runs of
each. The global behaviour variables measured were total percentage of tissue
deaths (as opposed to complete virus eliminations), and average simulated time
to complete tissue death or virus elimination. Once learning and inference were
completed, in each iteration the extracted stochastic parameters were used to
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run 6 stochastic simulation batches on the abstract model, each of 100 runs, to
measure its throughputs and determine the distance with the concrete model.
The abstract immunological response model underwent 3 iterations of parameter
training before termination criteria were met. The resulting average throughputs
of each iteration along with the associated distances M are shown in Table 2
The minimum value of M achieved was 2.71 x 10~8 for the second iteration.

Table 2. Throughputs (TP) in concrete and abstract immunological response models

Concrete Abstract Abstract Abstract
Model MO(':lel Model MO(.:lel

Iteration 1 Iteration 2 Iteration 3
A IR TP average 1.041 0.750 0.763 0.809
A VA2 TP average 0.333 0.406 0.371 0.381
A VM TP average 0.333 0.415 0.407 0.408
A VC TP average 0.996 0.748 0.720 0.776
A VT TP average 1.066 0.798 0.771 0.819
A SM TP average 20.443 21.743 20.313 21.005
A CD TP average 0.333 0.406 0.371 0.381
A CR TP average 0.125 0.101 0.097 0.105
A TD TP average 0.012 0.017 0.015 0.015

Distance Measure, M 1.15 x 10°% 271 x 1078  7.60 x 10~8

The throughputs show a good congruence between concrete and abstract
model. Perturbation of any of the parameters in the abstract model increases
the distance measure M, indicating that training was successful in finding a
minimum distance of local behaviours. With the second iteration as the final pa-
rameter set for the abstract model, the global behaviours deviate significantly.
For example, the average percentage of tissue death in the abstract model (Itera-
tion 2) was measured as 42.7%, as opposed to 30.2% in the concrete model. This
is not unexpected since not all rules in the concrete model are also present as ab-
stract rules. Hence, the distributions of abstract rules have to account for delays
of rules lost in the abstraction. For example, the reaction rule in Fig. Il depends
on rules, hidden in the abstract view, of creating the immunos from A resources,
an auxiliary species in each cell. The delay of the immunological response reac-
tion rule has to encompass this preliminary process. At the same time, immune
reaction is in conflict with, for example, the multiplication of viruses. Increasing
the delay will therefore change the balance of the corresponding race condition,
thus limiting the ability of delay to compensate for rules missing in the abstract
model.

It should be pointed out that the model could easily be trained to replicate
global rather than local behaviour, but this would limit its use significantly,
making it too specific on the particular property of interest. Alternatively, to
ensure a closer match of the functional behaviour, aggregating attributes could
be introduced to Cell as counters for all of the remaining types that are hidden.
However, bringing the abstract model closer to the concrete one would of course
counter our original objective of simplifying the model.
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While global properties are not reproduced with their absolute values, trends
and dependencies are preserved. Fig. Bl shows the result of a sensitivity analysis
where we alter the delay of the Cell Regeneration rule to monitor its effect on the
percentage of tissue death occurring before simulation time reaches 200 arbitrary
units. We alter the mean parameter of the lognormal distributions proportion-
ately. The graph shows a similar trend in both models, with an increase in tissue
death, subject to fluctuations due to variance in simulation runs, followed by a de-
cline as cell regeneration slows down. While the maxima do not agree, they occur
at approximately similar points. This shows that while global properties may not
be deduced from simulations of an abstract model, we can still infer patterns and
trends of global behaviour. This in itself is a useful insight into a model.
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Fig. 5. Sensitivity of % Tissue Death on Cell Regeneration (concrete vs abstract)

Running a simulation of 100 runs on a 64bit Intel Core i5 2.53GHz CPU with
6GB of memory, using the 32bit Eclipse plug-in version of the software resulted
in a 72% saving in runtime for the abstract model over the concrete one.

To evaluate the results on another example, a second case study was created,
based on the model of a P2P VoIP network. Full details are given in [4], but
the objective was for concrete and abstract models to be functionally bisimilar
[13], no rules become idle upon abstraction and conflicts and dependencies are
preserved and reflected. All distributions are exponential. However, the models
still differ in their stochastic behaviour, due to different numbers of matches for
corresponding rules at both levels caused by the projection. Parameter training
took 3 iterations, the best results being produced during the second iteration at
a distance M of 2.94 x 10719, The global behaviour matches more closely than
in the immune response model: Percentage of disconnected super peer pairs is
11.4 in the concrete model vs. 12.8 in the abstract one, and that of connected
clients only varies between 60.4 and 60.3.

Fig. [ shows the dependency of the percentage of disconnected super pairs on
the rate of the CreateShortcut rule, which creates redundant links to reduce the
probability of loss of connectivity. Just as in the immune response case, there is
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Table 3. Throughputs (TP) measured in concrete and abstract VoIP models

A NC TP average
A LC TP average
A NS TP average
A PC TP average
A TL TP average
A TS TP average
A TU TP average
A CS TP average

Distance Measure, M  3.93 x 10~°

Abstract
Concrete
Model Model
Iteration 1
1.230 1.080
1.250 1.154
0.902 0.897
0.016 0.020
0.729 0.763
0.909 0.907
0.472 0.285
0.623 0.963

Abstract Abstract
Model Model
Iteration 2 Iteration 3
1.197 1.198
1.251 1.228
0.821 0.874
0.030 0.024
0.796 0.782
0.841 0.888
0.358 0.379
0.780 0.876
2.94x 107 1.10 x 107°
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a very good match of the trends in both models, even if absolute values are not
exactly replicated throughout. Again, there is a significant gain in performance

on abstraction, with a 66% reduction in runtime for 20 simulation runs.

Average % disconnected super pairs

/1000
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10x

100x 1000

CreateShortcutrate (x=1.0in concrete model, x=1.001 in abstract model)

—+— Concrete

~8— Abstract

Fig. 6. Sensitivity of % Disconnected Super Pairs on CreateShortcut rate (concrete vs

abstract)

Summarising, we were able to show that

— abstraction by projection, with aggregating attributes replacing some of the
graphical structure lost, provides a simple and effective way of reducing the
complexity of the model, increasing scalability;

— our approach to parameter training using Bayesian networks, defined on the
basis of dynamic dependency and conflict analysis, allows us to find a good
match of the local behaviours of concrete and abstract models as given by

the throughputs of corresponding rules;

— absolute values of global properties are only replicated closely where the
models are functionally (but not stochastically) bisimilar;
— trends in global properties, as expressed by their sensitivity with respect to
the parameters of essential rules, are reproduced faithfully even if models

are not bisimilar;
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Before turning to related work, let us discuss possible threats to the validity of the
evaluation. During training, variances of lognormal distributions for abstract rules
are inherited from the corresponding concrete rules. For the Bayesian network,
these variances are therefore not variables, but constants. Mean and rate param-
eters are inferred so as to replicate the concrete model’s throughputs as closely as
possible, given these variances. Fixing the variances obviously limits the flexibility
of training and thus leads to larger deviations of abstract from concrete through-
puts. However, while being one reason for not matching throughputs perfectly,
this limitation of training does not affect the validity of the experiments, which
are aimed at showing the match of global properties or trends.

The quality of the fit between concrete and abstract throughputs also depends
on the distance measure used to control the iteration of training and simulation.
The measure M introduced in Sect. ] has been chosen for its ability to cope
with smaller datasets, and its linear variation, over more elaborate notions such
as Student’s t-test and Mahalanobis distance [§]. Again, this choice could affect
the quality of the match between concrete and abstract throughputs, but not
the experiments themselves.

Obvious threats to the validity of the experiments are the selection of the
experiments themselves as well as the limited number of simulation runs. As to
the former, we have chosen case studies from two different domains, focussing
on different global properties (probability of global outcomes vs. number of oc-
currences of certain patterns) and considering different degrees of abstraction.
A larger number of simulation runs, especially for the sensitivity analysis, was
beyond the available resources.

6 Related Work

Work on abstraction in graph transformation has followed a variety of motiva-
tions. In [19], it is a means to improve comprehensibility of complex GTS by
hiding and retrieving substructures as required. To enable analysis of models,
many approaches aim at reducing the state space or behaviour representation. [5]
uses neighbourhood abstraction to group graph elements via an equivalence rela-
tion up to some radius defining a node’s neighbourhood. This allows the level of
precision to be adjusted if the current abstraction does not allow the verification
of properties. [25] uses a similar approach, but abstracted nodes are characterised
by satisfaction of temporal logic formulae representing some behavioural prop-
erty of the concrete system. In [22], based on shape graphs introduced in [23],
nodes are grouped by structural similarity with multiplicities to capture concrete
representations of an abstract shape. Several states are therefore combined into
a single structure. In counterexample-guided abstraction refinement based on
unfoldings [15], the behaviour of a GTS is represented by a Petri graph repre-
senting an approximated unfolding. In all approaches, abstraction works at the
level of the state space or unfolding, or requires a different notion of GTS at the
abstract level. Our approach is based on abstraction of standard typed GTS.
We simplify type graph, start graph and rules, but the graph transformation ap-
proach is unchanged. Analogous to the use of aggregating attributes to increase
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precision, many approaches provide means to fine-tune the level of abstraction to
the properties of interest. In our case these are based on preserving or reflecting
essential conflicts and dependencies, rather than reachability.

While this work focuses on a non-deterministic, discrete, stochastic approach to
modelling reactions, [7] is a similarly rule-based technique that aims to formulate a
reduced, deterministic system of differential equations (ODEs) for a reaction sys-
tem. This is achieved by framing the dynamics in terms of functionally distinct
patterns known as fragments (rather than traditionally disjoint species), followed
by methods derived from abstract interpretation to further reduce the number of
ODEs. Also from a continuous, deterministic paradigm, [6] derives a refinement
from a more abstract representation of a reaction system, both by replacing reac-
tants with subtypes, or by adding possible reactivity. The resulting system pre-
serves numerical properties (analogous to global trends in our work) without hav-
ing to perform expensive model-fitting for each subsequent refinement.

With an aim related to our training of stochastic parameters, [I7] presents
an algorithm known as PEGG (Parameter Estimation for Graph Grammars)
which can extract parameters for rules in context-free graph grammars from
sequences of graphs resulting from the application of rules. This is useful for
modelling based on observations of a system that is executable but with unknown
parameters, where parameter estimation aims to determine these parameters.
While conceptually close, the limitation to context-free graph grammars means
that the approach is not applicable to general graph transformation systems.

7 Conclusion

We have demonstrated a methodology for abstraction of GTS and training their
stochastic parameters. Evaluating the approach in two case studies we found
that, while absolute values of global properties are not always preserved, the
abstract model replicates faithfully trends and dependencies of the concrete one.
In future work we plan to explore the relation between the number of matches
of concrete and abstract rules and their stochastic parameters as well as the
possibility of scaling systems by enlarging or reducing their start graphs.
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