
Model-Based Implementation

of Parallel Real-Time Systems

Ahlem Triki3, Jacques Combaz2, Saddek Bensalem3, and Joseph Sifakis1,2

1 EPFL, Lausanne, Switzerland
joseph.sifakis@epfl.ch

2 Verimag/CNRS, Gières, France
{jacques.combaz,joseph.sifakis}@imag.fr

3 Verimag/Grenoble University, Gières, France
{ahlem.triki,saddek.bensalem}@imag.fr

Abstract. One of the main challenges in the design of real-time systems
is how to derive correct and efficient implementations from platform-
independent specifications.

We present a general implementation method in which the application
is represented by an abstract model consisting of a set of interacting com-
ponents. The abstract model executes sequentially components interac-
tions atomically and instantaneously. We transform abstract models into
physical models representing their execution on a platform. Physical mod-
els take into account execution times of interactions and allow their par-
allel execution. They are obtained by breaking atomicity of interactions
using a notion of partial state. We provide safety conditions guarantee-
ing that the semantics of abstract models is preserved by physical models.
These provide bases for implementing a parallel execution engine coordi-
nating the execution of the components. The implementation has been val-
idated on a real robotic application. Benchmarks show net improvement
of its performance compared to a sequential implementation.

1 Introduction

Model-based design allows deriving correct implementations from formal speci-
fications of the application. It involves successive transformations from abstract
models, i.e. platform-independent representations of the application software, to
concrete system models taking into account platform properties such as hard-
ware architecture constraints and execution times.

A model-based design flow for real-time systems seeks satisfaction of two types
of properties. Correctness, that is preservation of the essential properties of the
application software. This is usually established under the assumption that the
available resources are sufficient for running the application. Efficiency, that is
the available resources such as memory, time, and energy are used in an optimized
manner. A key issue in this context is the efficient use of the parallelism offered
by the platform, e.g. by multi-core architectures.

V. Cortellessa and D. Varró (Eds.): FASE 2013, LNCS 7793, pp. 235–249, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

236 A. Triki et al.

Existing model-based implementation techniques use specific programming
models. Synchronous programs can be considered as a network of strongly syn-
chronized components. Their execution is a sequence of non-interruptible steps
that define a logical notion of time. In a step each component performs a quan-
tum of computation. An implementation is correct if the worst-case execution
times (WCET) for steps are less than the requested response time for the sys-
tem. For asynchronous real-time programs e.g. Ada programs, there is no notion
of execution step. Components are driven by events. Fixed priority scheduling
policies are used for sharing resources between components. Scheduling theory
allows to estimate system response times for known periods and time budgets.

Recent implementation techniques consider more general programming mod-
els [1–3]. The proposed approaches rely on a notion of logical execution time
(LET) which corresponds to the difference between the release time and the due
time of an action, defined in the program using an abstract notion of time. To
cope with uncertainty of the underlying platform, a program behaves as if its
actions consume exactly their LET: even if they start after their release time
and complete before their due time, their effect is visible exactly at these times.
This is achieved by reading for each action its input exactly at its release time
and its output exactly at its due time. Time-safety is violated if an action takes
more than its LET to execute.

We present a general implementation method for real-time systems based on
an abstract timed model. In this model, the application software is a set of com-
ponents whose behavior is defined by timed automata [4]. As shown in [5], using
timed automata allows more general timing constraints than LET used in [1–3],
such as lower bounds, upper bounds, and time non-determinism. Components
can synchronize their actions and communicate through (multiparty) interac-
tions. In addition to interactions, we also consider priorities which are partial
order relations between interactions. Priorities are essential for building correct
real-time systems. They allow direct expression of real-time scheduling policies
used for meeting the timing constraints of the application. Very often these poli-
cies also enforce determinism, which is necessary to have reproducible execution.
The operational semantics of the abstract model assumes a sequential, atomic
and instantaneous execution of the interactions. Following the approach in [5]
physical models can be automatically built from the abstract model. A physical
model represents the execution of the corresponding abstract model on a given
platform. It takes into account (non zero) execution times of actions by breaking
the atomicity of their execution. In this paper, we show how to build physical
models allowing parallel execution of interaction by extending the approach pre-
sented in [6] for untimed models. In such physical models, interactions can be
executed even from partial states, that is, even if one or more components are
still executing. We prove that the semantics of abstract models is preserved by
physical models when considering additional conditions characterizing safe exe-
cution. We explain how to compute these conditions using approximations of the
reachable states of the system. The correctness of the physical models requires
also that the platform is sufficiently fast for running the application.

Model-Based Implementation of Parallel Real-Time Systems 237

We define an execution engine that implements the operational semantics of
physical models. When a component completes its computation, it sends to the
engine its current state. The engine uses a scheduler that can execute component
interactions based on the partial knowledge of the state of the system. From an
initial state of the system, it proceeds as follows.

1. Compute the set of interactions enabled by the non-executing components,
i.e. the ones whose state is known. Some of the enabled interactions may be
unsafe to execute as they are potentially in conflict with other interactions
that may be enabled when the execution of busy components completes.

2. Among the enabled interactions, determine the subset of enabled interac-
tions that are safe to execute. Safe interactions preserve the semantics of
the application software. If all components have completed, the state of the
system is fully known and all the enabled interactions are safe.

3. If the set of safe interactions is empty, wait for more components to complete
their execution and go to 1. Otherwise, select a safe interaction according to
a real-time scheduling policy (e.g. Earliest Deadline First) and execute it.

The rest of the paper is structured as follows. Section 2 explains how to build
physical models and discusses the problem of their correctness. Section 3 defines
the implementation method in terms of an execution engine. It also provides ex-
perimental results for a robotic case study showing the interest of the approach.
The last section concludes the paper.

2 Modeling Parallel Real-Time Systems

2.1 Preliminaries

We consider discrete-time models, that is, time is represented using the set of
non-negative integers denoted by N. We assume that time progress is measured
by clocks. Clocks are non-negative integer variables increasing synchronously. A
clock can be reset (i.e. set to 0) independently of other clocks. Given a set of
clocks X, a valuation v : X → N is a function associating with each clock x its
value v(x). Given a subset of clocks X′ ⊆ X and a clock value l ∈ N, we denote
by v[X′ �→ l] the valuation that coincides with v for all clocks x ∈ X \ X′, and
that associates l to all clocks x ∈ X′. It is defined by:

v[X′ �→ l](x) =

{
l if x ∈ X′

v(x) otherwise.

Guards are used to specify when actions are enabled. We consider simple con-
straints on clocks X which are atomic formulas of the form x ∼ k, where x ∈ X,
k ∈ N, and ∼ is a comparison operator such that ∼∈ {≤,≥}. They are used to
build general constraints defined by the following grammar:

c := true | false | x ≤ k | x ≥ k | c ∧ c | c ∨ c | ¬c.
We simplify ¬(x ≤ k) into x ≥ k + 1, and ¬(x ≥ k) into x ≤ k − 1 This allows
putting any constraint c into the following disjunctive form: c = c1∨ c2∨ . . .∨ cn

238 A. Triki et al.

such that expressions ci are conjunctions of simple constraints. The evaluation
of a clock constraint c for a valuation v of clocks X denoted by c(v), is obtained
by replacing each clock x by its value v(x).

A guard g is a clock constraint c with an urgency type τ ∈ { l, d, e }, denoted
by g = [c]τ . Urgency types are used to specify the need for an action to progress
when it is enabled (i.e. when its clock constraint is true) [7]. Lazy actions (i.e.
non-urgent) are denoted by l, delayable actions (i.e. urgent just before they
become disabled) are denoted by d, and eager actions (i.e. urgent whenever they
are enabled) are denoted by e.

The predicate urg[g] that characterizes the valuations of clocks for which the
guard g = [c]τ is urgent is defined by:

urg[g](v) ⇐⇒

⎧
⎪⎨

⎪⎩

false if g is lazy, i.e. if τ = l

c(v) ∧ ¬c(v + 1) if g is delayable, i.e. if τ = d

c(v) if g is eager, i.e. if τ = e.

We denote by G(X) the set of guards over a set of clocks X.
Given guards g1 = [c1]

τ1 and g2 = [c2]
τ2 , the conjunction of g1 and g2 is

denoted by g1 ∧ g2 and is defined by g1 ∧ g2 = [c1 ∧ c2]
max τ1,τ2 , considering

that urgency types are ordered as follows: l < d < e. Henceforth, given a guard
g = [c]τ and a valuation v, we also write g(v) for the expression c(v).

2.2 Abstract Models

Definition 1 (abstract model). An abstract model is a timed automaton
M = (A,Q,X,−→) such that:

– A is a finite set of (observable) actions. In addition to actions A, we consider
internal action β. We denote by Aβ the set of actions A ∪ {β}

– Q is a finite set of control locations
– X is a finite set of clocks
– −→⊆ Q×(Aβ×G(X)×2X)×Q is a finite set of labeled transitions. A transition

is a tuple (q, a, g, r, q′) where a is an action executed by the transition, g is
a guard over X and r is a subset of clocks that are reset by the transition.

We write q
a,g,r−→ q′ for (q, a, g, r, q′) ∈−→.

An abstract model describes the platform-independent behavior of the system.
Timing constraints, that is, guards of transitions, take into account only user
requirements (e.g. deadlines, periodicity, etc.). The semantics assumes timeless
execution of actions.

Definition 2 (abstract model semantics). An abstract model M =
(A,Q,X,−→) defines a transition system TS. States of TS are pairs (q, v), where
q is a control location of M and v is a valuation of the clocks X.

– Actions. We have (q, v)
a−→ (q′, v[r �→ 0]) if q

a,g,r−→ q′ in M and g(v) is true.

– Time steps. For a waiting time δ ∈ N, δ > 0, we have (q, v)
δ−→ (q, v + δ) if

for all transitions q
a,g,r−→ q′ of M and for all δ′ ∈ [0, δ[, ¬urg[g](v + δ′).

Model-Based Implementation of Parallel Real-Time Systems 239

In an abstract model, time can progress only if no transition is urgent. Urgency
corresponds to priorities induced by the timing constraints: urgent transitions
have priority over time progress. We denote by wait(q, v) the maximal waiting
time allowed at (q, v). Notice that it satisfies wait(q, v + δ) = wait(q, v) − δ for
all δ ∈ [0,wait(q, v)], and is formally defined as follows:

wait(q, v) = min
({

δ ≥ 0
∣
∣
∣

∨

q
ai,gi,ri−→ qi

urg[gi](v + δ)
}
∪ { +∞ }

)
.

Given an abstract model M = (A,Q,X,−→), a finite (resp. an infinite) execution
sequence of M from an initial state (q0, v0) is a maximal sequence of observable

actions and time-steps (qi, vi)
σi
� (qi+1, vi+1), σi ∈ A∪N and i ∈ { 0, 1, 2, . . . , n }

(resp. i ∈ N), such that � is the transitive closure of −→ for β-transitions, that

is, (qi, vi)
σi
� (qi+1, vi+1) if (qi, vi)

β

−→∗ (q′i, v
′
i)

σi−→ (q′′i , v
′′
i)

β

−→∗ (qi+1, vi+1).

Example 1. Consider an abstract model M = (A,Q, {x},−→) with two actions
A = {sync1, p}, two states Q = {q1, q2}, a single clock x, and two transitions
−→= { (q1, sync1, ∅, {x}, q2), (q2, p, [10 ≤ x ≤ 20]d, ∅, q1)} (see Figure 1). It
can be easily shown that the execution sequences of M from the initial state

(q2, 0) are infinite repetitions of the sequence (q2, 0)
δ1−→ (q2, δ1)

p−→ (q1, δ1)
δ2−→

(q1, δ1 + δ2)
sync1−→ (q2, 0), where 10 ≤ δ1 ≤ 20.

q2q1

{x}sync1

p [10 ≤ x ≤ 20]d

Fig. 1. Example of abstract model

Definition 3 (composition of abstract models). Let Mi = (Ai,Qi,Xi,−→i

), 1 ≤ i ≤ n, be a set of abstract models. We assume that their sets of actions
and clocks are disjoint, i.e. for all i �= j we have Ai ∩ Aj = ∅ and Xi ∩ Xj = ∅.
A set of interactions γ is a subset of 2A, where A =

⋃n
i=1 Ai, such that any

interaction a ∈ γ contains at most one action of each component Mi, that is,
a = { ai | i ∈ I } where ai ∈ Ai and I ⊆ { 1, 2, . . . , n }. The composition of
the abstract models Mi, 1 ≤ i ≤ n, by using a set of interactions γ, denoted by
γ(M1, . . . ,Mn), is the composite abstract model M = (γ,Q,X,−→γ) such that
Q = Q1 × Q2 × . . .× Qn, X =

⋃n
i=1 Xi, and −→γ is defined by the rules:

a = {ai}i∈I ∈ γ

g =
∧

i∈I

gi r =
⋃

i∈I

ri ∀i ∈ I . qi
ai,gi,ri−→i q′i ∀i �∈ I . q′i = qi

(q1, . . . , qn)
a,g,r−→γ (q′1, . . . , q

′
n)

240 A. Triki et al.

∃i ∈ {1, . . . , n} . qi
β,gi,ri−→i q′i ∀j �= i . q′j = qj

(q1, . . . , qn)
β,gi,ri−→γ (q′1, . . . , q

′
n)

A composition M = γ(M1, . . . ,Mn) of abstract models Mi, 1 ≤ i ≤ n, can
execute two type of transitions: interactions a = {ai}i∈I ∈ γ which corresponds
to synchronizations of actions ai of models Mi, i ∈ I, and internal actions β of
the models Mi. An interaction a = {ai}i∈I ∈ γ is enabled from a state of M if
all actions ai are enabled.

In a composite model M = γ(M1, . . . ,Mn), many interactions can be enabled
at the same time introducing a degree of non-determinism in the behavior of
M . In order to restrict non-determinism, we introduce priorities that specify
which interaction should be executed among the enabled ones. A priority on
M = γ (M1, . . . ,Mn) is a relation π ⊆ γ ×Q× γ such that for all q the relation
πq = { (a, a′) | (a, q, a′) ∈ π } is a partial order. We write aπqa

′ for (a, q, a′) ∈ π
to express the fact that a has weaker priority than a′ at state q. That is, if both
a and a′ are enabled at state q, only the action a′ can be executed. Thus, priority
aπqa

′ is applied only when the conjunction of the guards of a and a′ is true. Let

q
a,g,r−→γ q′ and q

a′,g′,r′−→γ q′′ be transitions of M such that g = [c]τ and g′ = [c′]τ
′
.

Applying priority aπqa
′ boils down to transforming the guard g of a into the

guard gπ = [c ∧ ¬c′]τ and leaving the guard g′ of a′ unchanged.
Henceforth, we denote by enq(a) the predicate characterizing the valuations

of clocks for which an interaction a is enabled at state q. It is defined by:

enq(a) =

⎧
⎪⎨

⎪⎩

false if �(q, a, g, r, q′) ∈−→γ
∨

(q,a,[c]τ ,r,q′)∈−→γ

c otherwise.

Definition 4 (priority). Given a composite model M = (γ,Q,X,−→γ), the
application of a priority π to M defines a new model πM = (γ,Q,X,−→π) such
that −→π is defined by the rule:

q
a,g,r−→γ q′ g = [c]τ gπ =

[
c ∧ ¬

∨

aπqa′
enq(a

′)
]τ

q
a,gπ ,r−→ π q′

Example 2. Consider an abstract model M = πγ(M1,M2,M3) such that:

– abstract models M1, M2, and M3 are provided by Figure 2,
– interactions γ = {a1, a2, a3} are defined by a1 = {sync1, sync2, sync3}, a2 =

{p, q} and a3 = {r, s},
– priority π is such that a2πqa3 for any control location q of M .

From the initial state (q11 , q
1
2 , q

1
3 , 0), it can be easily shown that the execution se-

quences of M have the following form: ((q11 , q
1
2 , q

1
3), 0)

a1−→ ((q21 , q
2
2 , q

2
3), 0)

5−→
((q21 , q

2
2 , q

2
3), 5)

a3−→ ((q21 , q
3
2 , q

1
3), 5)

δ2−→ ((q21 , q
3
2 , q

1
3), 5 + δ2)

a2−→ ((q11 , q
1
2 , q

1
3), 5 +

δ2)
a1−→ ((q21 , q

2
2 , q

2
3), 0), where 5 ≤ δ2 ≤ 15. Notice that control location err can-

not be reached in M2 due to the application of priority a2πqa3 for q = (q21 , q
2
2 , q

2
3).

Model-Based Implementation of Parallel Real-Time Systems 241

q11 q12 q13

a2πa3

γ = {a1 = {sync1, sync2, sync3}, a2 = {p, q}, a3 = {r, s}}

M3
M1

sync1
{x}

p

[10 ≤ x ≤ 20]d
sync2

err

M2

q32

q

r q22
q

sync3{y}
s

[y ≥ 5]e

q21 q23

Fig. 2. Example of composition of abstract models with priorities

2.3 Building Physical Models

Abstract models are platform-agnostic representations of applications in which
action execution is atomic and instantaneous. Physical models represent the be-
havior of the application software running on a platform. They take into account
the fact that action execution may take non-zero time. To this purpose we break
atomicity of actions and introduce execution times. The transition of an action
a of an abstract model is replaced by a sequence of two consecutive transitions
of the corresponding physical model (see Figure 3). The first transition marks
the beginning of the execution of action a, and the second transition marks its
completion. These transitions are separated by a partial state denoted by ⊥.
The execution time of the action corresponds to the waiting time at state ⊥.

q q′
a rg ⊥t−→ q ⊥t q′

βa g r

Transition
t = (q, a, g, r, q′) in M .

Corresponding sequence of
transitions in M⊥.

Fig. 3. Transformation of transitions of the abstract model

Definition 5 (physical model). Let M = (A,Q,X,−→) be an abstract model.
We define the associated physical model as the timed automaton M⊥ = (A,Q ∪
Q⊥,X,−→⊥) such that:

– Q⊥ is the set of partial states such that there is one partial state for each
transition of M , that is, Q⊥ = { ⊥t | t ∈−→ }

– −→⊥ is defined by the rule:

q
a,g,r−→ q′ t = (q, a, g, r, q′)

q
a,g,r−→⊥ ⊥t ⊥t

β,[true]l,∅−→⊥ q′

In the physical model M⊥, we assume arbitrary execution times for actions,
ranging from 0 to +∞, which is modeled by the guard [true]l for β-transitions.
Notice that M⊥ can be further constrained if bounds of the execution times
of actions are known. For instance, if we know an estimate WCET (a) of the
worst-case execution time [8] of an action a, the associated timing constraint is
[xa ≤ WCET (a)]d instead of [true]l, where xa is a clock that is reset whenever

242 A. Triki et al.

a is started. This allows us to statically check the correctness of the application
running on the platform, but this is beyond the scope of this paper.

In a physical model M⊥, the execution of an action a by a transition t =
(q, a, g, r, q′) is followed by a lapse of time δ(a) ∈ N at the partial state ⊥t,
before a β-transition is executed:

(q, v)
a
� (⊥t, v[r �→ 0])

δ(a)
� (q′, v[r �→ 0] + δ(a)). (1)

This corresponds to the following execution sequence in the abstract model M ,
if such a sequence is feasible:

(q, v)
a
� (q′, v[r �→ 0])

δ(a)
� (q′, v[r �→ 0] + δ(a)). (2)

Notice that the time step δ(a) of M⊥ in (1) may not be a time step of M in (2)
if δ(a) > wait(q′, v[r �→ 0]), meaning that the physical model violates timing
constraints defined in the corresponding abstract model. In this case, we say
that the considered execution sequence is not time-safe. We compare execution
sequences of abstract and physical models based on the usual notion of weak
simulation [9]. It can be shown that if all execution sequences of M⊥ are time-
safe, then M⊥ is weakly simulated by M , considering that a state of the form
(⊥t, v) of M

⊥, t = (q, a, g, r, q′), is simulated by the state (q′, v) of M .
A correct implementation must execute only time-safe sequences. Time-safety

violations occur in a physical model when the execution time of an action is larger
than what is allowed by the timing constraints of the corresponding abstract
model. Correct implementations are obtained for platforms that are sufficiently
fast for executing the application without violating time-safety. In this case, the
physical model preserves the semantics of the abstract model as shown in [5].
When this cannot be ensured for a given platform, we propose to detect time-
safety violations at run-time and to stop the system in order to prevent the
application from incorrect executions.

Composition. In Definition 5, physical models M⊥ represent the behavior of
a single abstract model M running on a platform. In [5] the physical model of a
composition M = πγ(M1, . . . ,Mn) of abstract models Mi is M

⊥. That is, each
execution of an interaction a = {ai}i∈I ∈ γ is split into two transitions executed
sequentially, one for the beginning of the execution of a, and the other one
for its completion. The time elapsed between the execution of these transitions
corresponds to the execution time of a. Notice that during this time all the
components M1, . . . , Mn are waiting for the completion of interaction a, even
the ones that are not participating to a (i.e. components Mi, i /∈ I), that is, in
M⊥ interactions are executed sequentially. We propose a different definition for
physical models that can execute interactions in parallel.

Given a composition πγ(M1, . . . ,Mn) of abstract models Mi, 1 ≤ i ≤ n, the
physical model M‖ = πγ(M⊥

1 , . . . ,M⊥
n) is computed in two steps.

1. For each component Mi we compute its corresponding physical model M⊥
i

representing the execution of Mi on a dedicated execution platform.
2. The physical model M‖ is obtained by composing physical models M⊥

i ,
1 ≤ i ≤ n, with respect to interactions γ and priority π.

Model-Based Implementation of Parallel Real-Time Systems 243

In the physical model M‖, the execution of an interaction a = {ai}i∈I of the
abstract model M can be decomposed as follows. First, the beginning of the
execution of a is represented by a single transition in M‖, as in M⊥. Second,
each componentM⊥

i completes by executing its internal β-transition. In contrast
to M⊥ in which the completion of a corresponds to a single β-transition, in M‖

components complete asynchronously and independently. This allows to start
new interactions even if one or more components are still executing.

Example 3. Consider the abstract model M = πγ(M1,M2,M3) of Example 2.
Figure 4 shows the corresponding physical modelM‖ = πγ(M⊥

1 ,M⊥
2 ,M⊥

3). Con-
sider that execution times for actions sync1, sync2, and sync3, are respectively
4, 7, and 12. Consider also that the execution time is 5 for actions p, q, r, and s.

It can be easily shown that M‖ admits the single execution se-

quence: ((q11 , q
1
2 , q

1
3), 0)

a1−→ ((⊥t121
,⊥t122

,⊥t123
), 0)

4−→ ((q12 ,⊥t121
,⊥t123

), 4)
3−→

((q21 , q
2
2 ,⊥t123

), 7)
a2−→ ((⊥t211

,⊥t2e2
,⊥t123

), 7)
5−→ ((q11 , err, q

1
3), 12). Notice that

this execution sequence leads to a state that is not reachable in M due to prior-
ity a2πqa3. Since a3 is disabled at partial state (q21 , q

2
2 ,⊥t123

), the priority cannot

apply to a2 which is executed. That is, the physical model M‖ is not correctly
implementing the semantics of the abstract model M .

q11

q21

β

⊥
t21
1

β

p

M⊥
1

{x}

γ = {a1, a2, a3}

a2πa3

β

q23

q13
β sync3

⊥
t123⊥

t21
3

{y}

M⊥
3

[10 ≤ x ≤ 20]d ⊥
t2e2

β

M⊥
2

sync1

⊥
t121

q12
β

qr

err⊥
t122

⊥
t23
2

q

⊥
t31
2

sync2

q32

β

q22

β
s

[y ≥ 5]e

Fig. 4. Physical model of Example 2

Correctness. Consider a compositionM‖ = πγ(M⊥
1 , . . . ,M⊥

n) of physical mod-
els M⊥

i = (Ai,Qi ∪ Q⊥
i ,Xi,−→i), i ∈ {1, . . . , n} and the corresponding abstract

model M = πγ(M1, . . . ,Mn). Given a state (q, v) of M‖, q = (q1, . . . , qn), a
component Mi is busy at (q, v) if it is in a partial state qi ∈ Q⊥

i . Otherwise, Mi

is said to be ready. We say that a state (q, v) is partial if at least one component
is busy, otherwise (q, v) is said to be global.

As shown in Example 3, the physical model M‖ may violate the semantics
of M due to incorrect execution from partial states. From global states, the
transitions executed in M and M‖ are the same. We consider that M‖ is correct
if it can be weakly simulated by M , considering that partial states (q, v) of M‖

are related through the simulation relation to global states (qg, v) of M , such
that qg is the control location reached from q after all busy components complete.
Notice that the uniqueness of qg comes from the fact that the execution of β-
transitions is deterministic and confluent [6].

244 A. Triki et al.

Consider the execution of an interaction a inM‖ = πγ(M⊥
1 , . . . ,M⊥

n) from the
partial state (q, v), and the corresponding global state (qg, v) in M . As explained
in [6], if a is enabled at (q, v), it is also enabled at (qg, v). However, in order to
respect the semantics of the abstract model M , a should be disabled due to
priority π if there exists an interaction b enabled at state (qg, v) such that aπqg b.
The priority π is defined only on global states qg. Thus, a should be blocked
if enabledness of interaction b cannot be decided at (q, v). Notice also that the
application of priority aπqgb depends on the global state qg.

Similarly, a time step δ enabled in M‖ at partial state (q, v) can be disal-
lowed in M at the corresponding global state (qg, v) if δ > wait(qg, v), i.e. if an
interaction a involving busy components is urgent at state (qg, v+ δ′) s.t. δ′ < δ.

To prevent M‖ from incorrect execution, we define the predicate safe(q,v)(σ)
characterizing the states from which execution of an interaction σ ∈ γ or of a
time step σ ∈ N will not violate global state semantics. Clearly, for global states
(q, v) we have safe(q,v)(σ) = true (i.e. the behavior of M‖ is already safe for
global states). For an interaction a, a partial state (q, v) and its corresponding
global state (qg, v), the predicate safe must satisfy:

safe(q,v)(a) ⇒ �b ∈ γ . aπqg b ∧ (qg, v)
b
� (q′, v′). (3)

For a time step δ, safe must also satisfy:
safe(q,v)(δ) ⇒ δ ≤ wait(qg, v). (4)

Any predicate safe satisfying the conditions (3) and (4) ensures correct exe-
cution in M‖. Ideally, safe should be obtained by using equivalence instead of
implication in (3) and (4), corresponding to the less restrictive predicate allow-
ing the maximal parallelism in the system. However, its computation requires
the knowledge of the reachable global state (qg, v) from any partial state (q, v),
which cannot be obtained in practice for real systems. The next section explains
how to over-approximate safe, i.e. compute safe∗ such that safe∗ ⇒ safe.

3 Parallel Real-Time Implementation

We use concepts presented in the previous section to implement a parallel real-
time execution engine for BIP programs. The BIP—Behavior / Interaction /
Priority—framework [10] is intended for the design and analysis of complex,
heterogeneous embedded applications. BIP is a highly expressive, component-
based framework with rigorous semantics. It allows the construction of complex,
hierarchically structured models from atomic components characterized by their
behavior and their interfaces (communication ports). Such components are ab-
stract models extended with variables. Transitions are labeled by ports, boolean
guards on variables, and timing constraints that may involve expressions on
variables. Transition execution may assign new values to variables, computed
by user-defined functions (in C). Atomic components are composed by layered
application of interactions and priorities. Interactions express synchronization
constraints and define the transfer of data between the interacting components.
Priorities are used to filter amongst possible interactions and to steer system

Model-Based Implementation of Parallel Real-Time Systems 245

evolution so as to meet performance requirements e.g., to express scheduling
policies. Priorities define partial orders between interactions that can change
dynamically. They are provided as sets of rules including boolean guards on
components variables.

3.1 Computing Timing Constraints of Interactions

The execution engine which is responsible for the coordination between compo-
nents, computes enabled interactions on-line. To decide which interactions are
enabled at a given state, it expresses their guards based on a single global clock t.
This clock measures the absolute time elapsed since the system has been started
and is never reset. It is used to express timing constraints on local clocks of
components in the following manner. It uses a valuation w : X → N in order
to store the absolute time w(x) of the last reset of a clock x with respect to
the clock t. The valuation v of the clocks X can be computed from the current
value of t and w by using the equality v = t − w. Henceforth, states (q, v) are
represented as tuples (q, w, t), where w : X → N is a clock valuation giving the
most recent reset times and t ∈ N is the value of the current (absolute) time.

Given a state s = (q, w, t), the engine computes guards g = [cτ] of interactions
a as follows. It rewrites simple constraints x ∼ k, ∼∈ {≤,≥}, involved in c
using the global time t and reset times w, i.e. x ∼ k ≡ t ∼ k + w(x). This
allows reducing any conjunction of simple constraints into an interval constraint
l ≤ t ≤ u. By using the disjunctive form defined in Section 2.1 we can put c in
the following form:

c =

n∨

i=1

li ≤ t ≤ ui, (5)

such that ui+1 < li for all i ∈ {1, . . . , n−1}. We associate to a its next activation
time nexts(a) which is the next value of the global time for which a is enabled,
and its next urgency time deadlines(a) which is the next value of the global time
for which a is urgent. They are computed from (5) as follows:

nexts(a) = min1≤i≤n nexts([li ≤ t ≤ ui]
τ)

deadlines(a) = min1≤i≤n deadlines([li ≤ t ≤ ui]
τ),

such that for gi = [li ≤ t ≤ ui]
τ , nexts(gi) and deadlines(gi) are defined by:

nexts(gi) =

{
max { t, li } if t ≤ ui

+∞ otherwise,
deadlines(gi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ui if t ≤ ui ∧ τ = d

li if t < li ∧ τ = e

t if t ∈ [li, ui] ∧ τ = e

+∞ otherwise.

We denote by γq the set of interactions enabled at control location q. The function
wait defined in Section 2.2 satisfies t+ wait(s) = mina∈γq deadlines(a).

3.2 Execution Engine Algorithm

The execution engine behaves as a controller for the application (see Figure 5).
It detects time-safety violation during the execution and allows execution of safe

246 A. Triki et al.

interactions only, based on the predicate safe of Section 2.3. As explained in Sec-
tion 2.3, given the current control location q the evaluation of safe depends on
the guards of interactions enabled at global control location qg reachable from q.
It also depends on the priority πqg that applies at qg. This requires knowing what
will be the validated guards after the completion of the busy components. This is
not possible in general, since they may depend on the values of the variables of
the busy components. Hence, when necessary they are over-approximated in the
following way. Clock constraints x ∼ k are approximated to true whenever k can-
not be evaluated statically (e.g. if k is an expression involving non-constant vari-
ables). Boolean guards are also approximated to true if they involve expressions
that cannot be evaluated statically. For given state s = (q, w, t), the execution
engine computes the next interaction to be executed as follows.

2. Compute

enabled safe interactions
Restrict 3.Check

Time-safety t = trfor notify

1.Wait

time-safety violated for partial state

4.Update 5.Schedule

interactions

for global statetime-safety violatedstop

notify when one Parallel Real-Time Execution Engine notify
components

Platform

component completes

no safe interaction

actual time tr

. . .
Application Software M⊥

nM⊥
2M⊥

1

Fig. 5. Architecture of parallel real-time engine

1. It waits for notification from components finishing their execution. Compo-
nents send their enabled ports (transitions), on which they are willing to
interact, with their guards.

2. Based on the received notifications, it computes the set of interactions γq en-
abled at q. Notice that they involve only ready components. They correspond
to the application of the operational semantics of interactions γ.
It restricts guards of enabled interactions to enable only safe execution. This
is achieved by applying the operational semantics of priority π, using the
approximated guards for the priority rules and for the interactions involving
busy components, which guarantees equation (3) of Section 2.3.

3. It checks if time-safety is violated, i.e. if tr > deadlines(a) for an interaction
a, where tr is the current value of the actual time. Notice that for interac-
tions involving busy components, to guarantee equation (4) of Section 2.3 we
compute deadlines based on approximated guards and considering delayable
guards as eager.

If time-safety is violated for some enabled interaction a ∈ γq the execution
is stopped1. If time-safety is violated for an interaction involving busy com-

1 Actually, instead of stopping the application any recovery policy can be considered
when time-safety is violated.

Model-Based Implementation of Parallel Real-Time Systems 247

ponents, the engine goes to 1 to wait for the completion of more components
in order to determine whether time-safety is actually violated or not.

4. It updates the global time t with the actual time tr, i.e. t := tr.
5. It chooses an enabled interaction a among the safe ones, that is, such that

nexts(a) < +∞ and nexts(a) ≤ mina′∈γ deadlines(a
′). The choice of a can

be based on a given real-time scheduling policy (e.g. EDF). The chosen
interaction a is executed as soon as possible, i.e. at the global time nexts(a).
If no such interaction exists, either s is a global state and there is a deadlock,
or s is a partial state and the engine goes to 1.

3.3 Use Case: A Robotic Application

We made experiments on the marXbot platform [11], a miniature mobile robot
composed of 3 main modules. The base module providing rough-terrain mo-
bility thanks to treels (combination of tracks and wheels). It embeds also 16
infrared proximity sensors for detection of obstacles. The rotating distance scan-
ner module including 4 infrared long range sensors is used to build 2D map of its
environment. And finally, the module of the main processor which is an ARM11
running Linux-based operating system and communicating through CAN bus
with 10 micro-controllers (dsPIC33) managing sensors and actuators.

We consider an experimental setup for an obstacle avoidance scenario. Ini-
tially, the robot moves straight and turns whenever it detects an obstacle. We
used BIP to implement the application, which is composed of (see Figure 6):

Priorities :

free

obstacle

obstacleL

obstacle

obstacleP

freeL

obstacleL

freeP

freeP

free

obstaclePfreeP freeL obstacleLArbiter

obstacle

free

newValues newValues

obstaclePfreeP

freeLfreeP

obstacleLobstacleP

newValues

AvoidObstLRange

newValues

freeP obstacleP AvoidObstProxy

speed

fr
ee

P

ob
sP

free

obstacle

speed

speed
free

obs speed

freeobstacle

freeobstacle

CtrlMotorRight

CtrlMotorLeft

free

freeL
obsL

obstacle

πfreeP obsL freeL obsL obsPπ obsP π

freeL

[x = P]e

{x}
[x = P]e

{x}
αL≤thresholdLαP ≤thresholdP

αL≥thresholdL
αP ≥thresholdP

Fig. 6. The obstacle avoidance application

– Components AvoidObstProxy and AvoidObstLRang responsible for reading
the values of the proximity and long range sensors. If one of these components
detects the presence of an obstacle, it transmits its direction to component

248 A. Triki et al.

Arbiter through interaction obs. Otherwise, it sends message free indicating
the absence of obstacle.

– From messages received from AvoidObstProxy and AvoidObstLRang,
Arbiter computes the new direction of the robot, which is sent to com-
ponents CtrlMotorLeft and CtrlMototRight which are the controllers of
the motors

– CtrlMotorLeft and CtrlMototRight determine the speed to apply to the
left and right treels, based on the direction received from Arbiter.

To avoid collisions, we give priority to obstacles detected by AvoidObstProxy
over the ones detected by AvoidObstLRang, which is implemented by rule obsL
π obsP . We also give priority to presence of obstacles over than their absence,
corresponding to rules freeP π obsL and freeL π obsP .

Using BIP, we generated C++ code for the main processor. We compared
the application running with the parallel engine proposed in Section 3, with the
same application running with the sequential engine of [5]. Its performance is
measured by varying the period used for reading sensors in AvoidObstProxy and
AvoidObstLRang. For each tested period, we ran the application 5 times under
similar conditions. As shown in Figure 7, with the sequential engine the minimal
period for a correct operation of the robot is 130 ms. For smaller periods time-
safety may be violated which stops the application. The minimal period with the
parallel engine is 60 ms, which drastically improved the reactivity of the robot.

40 60 8020 100 160

100

80

60

40

20

Period P in ms

T
im

e−
sa

fe
ty

 v
io

la
tio

n
ra

te
 in

 %

Sequential
Parallel

140120

Fig. 7. Time-safety violations for sequential and parallel executions

The parallel engine executes each component using a thread, allowing
AvoidObstProxy and AvoidObstLRang to wait in parallel for new values of the
sensors sent by the microcontrollers. In contrast, the sequential engine treats the
interaction with the microcontrollers sequentially leading to the addition of the
waiting times.

4 Conclusion

We have presented an implementation method for real-time applications. It
is based on a general abstract timed model, a platform-independent repre-
sentation in which the application is a set of components subject to timing
constraints, multi-party interactions, and priorities. Abstract models assume se-
quential, atomic and instantaneous execution of interactions between the compo-
nents. We formally defined physical models describing the execution of abstract

Model-Based Implementation of Parallel Real-Time Systems 249

models on a given platform. They take into account (non zero) execution times
of interactions, and allow their parallel execution by breaking their atomicity.

In real-time systems, priorities are essential for the expression of scheduling
policies and resource management. We show that special care should be taken to
preserve global state semantics when executing interactions subject to priorities
in parallel. Global state semantics assumes a perfect knowledge of the system
state. In parallel execution, the execution engine has only a partial knowledge of
the system’s state. We provide a condition for safe parallel execution of enabled
interactions. The condition guarantees that despite partial state knowledge, if an
interaction is enabled at a partial state then it will remain enabled in the global
state reached after all the executing components have completed their execution.
We have implemented a parallel execution engine that correctly schedules the
execution of interactions based on an approximation of the safety condition.
The approach has been validated on a real robotic application for which we
generated C++ code. We provided benchmarks for this application showing net
improvement of performance with respect to a sequential implementation.

References

1. Ghosal, A., Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A.: Event-Driven Pro-
gramming with Logical Execution Times. In: Alur, R., Pappas, G.J. (eds.)
HSCC 2004. LNCS, vol. 2993, pp. 357–371. Springer, Heidelberg (2004)

2. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language for
embedded programming. Proc. of the IEEE 91(1), 84–99 (2003)

3. Aussaguès, C., David, V.: A method and a technique to model and ensure timeliness
in safety critical real-time systems. In: ICECCS, pp. 2–12. IEEE Computer Society
(1998)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

5. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time
applications. In: Carloni, L.P., Tripakis, S. (eds.) EMSOFT, pp. 229–238. ACM
(2010)

6. Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed Semantics and
Implementation for Systems with Interaction and Priority. In: Suzuki, K.,
Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048,
pp. 116–133. Springer, Heidelberg (2008)

7. Bornot, S., Gößler, G., Sifakis, J.: On the Construction of Live Timed Systems. In:
Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 109–126. Springer, Heidelberg
(2000)

8. Wilhelm, R., Altmeyer, S., Burguière, C., Grund, D., Herter, J., Reineke, J.,
Wachter, B., Wilhelm, S.: Static Timing Analysis for Hard Real-Time Systems.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 3–22.
Springer, Heidelberg (2010)

9. Milner, R.: Communication and concurrency. PHI Series in computer science.
Prentice Hall (1989)

10. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM, pp. 3–12. IEEE Computer Society (2006)

11. Magnenat, S.: Software integration in mobile robotics, a scienc to scale up machine
intelligence. PhD thesis (2010)

	Model-Based Implementation
of Parallel Real-Time Systems
	Introduction
	Modeling Parallel Real-Time Systems
	Preliminaries
	Abstract Models
	Building Physical Models

	Parallel Real-Time Implementation
	Computing Timing Constraints of Interactions
	Execution Engine Algorithm
	Use Case: A Robotic Application

	Conclusion
	References

