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Abstract. We present a technique for automatically weaving structural
invariant checks into an existing collection of classes. Using variations on
existing design patterns, we use a concise specification to generate from
this collection a new set of classes that implement the interfaces of the
originals, but with the addition of user-specified class invariant checks.
Our work is notable in the scarcity of assumptions made. Unlike previous
design pattern approaches to this problem, our technique requires no
modification of the original source code, relies only on single inheritance,
and does not require that the attributes used in the checks be publicly
visible. We are able to instrument a wide variety of class hierarchies,
including those with pure interfaces, abstract classes and classes with
type parameters. We have implemented the construction as an Eclipse
plug-in for Java development.

1 Introduction

Several, if not most, mainstream languages include features to support object-
oriented programming, yet most of these (C++, C#, Java, Python, etc.) lack
any native language support for the specification and runtime checking of class
invariants. While it is usually easy enough to implement the invariant predicates
themselves, manual addition imposes further requirements in order to implement
the operational requirements of invariant checking and to handle the interplay of
invariant specification and inheritance. Class invariants are further troublesome
in that they involve direct access to an object’s attributes. This makes manual
addition particularly unappealing, as the available choices are invasive with re-
spect to the original interface and implementation (to which we may not have
access), compromise encapsulation, and are error-prone if done manually.

This paper presents a lightweight, non-invasive technique for automatically
extending a collection of class definitions with a corresponding collection of struc-
tural invariant checks. The invariants are given as a stand- alone specification,
which is woven together with the original source files to produce a new collection
of drop- in replacement classes that are behaviorally indistinguishable from the
originals in the absence of invariant- related faults but will expose such faults in
a way that the original classes do not. Each replacement is defined to be a sub-
class (indeed, a subtype [1]) of the original class whose functionality it extends,
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and it can thus be substituted in any context in which the original occurs. The
generation is itself completely automatic, and the incorporation into a test har-
ness or other program is nearly seamless. We focus here on the Java language,
a choice that complicates the overall strategy in some ways while simplifying it
in others.

2 Background and Related Work

A class invariant is a conjunction of predicates defined on the values of an
object’s individual attributes and on the relationships between them. It char-
acterizes an object’s “legal” states, giving the predicates that must hold if the
object is to represent an instance of that abstraction. Usually, a class invariant
is given in conjunction with the contracts for each publicly-visible method of
a class, i.e., the preconditions that must hold on arguments to each method
call and the consequent guarantees that are made as postconditions upon the
method’s return. Unlike the contracts, however, a class invariant is a property
concerning only an object’s data values, even (especially) when those values are
not publicly visible. An invariant must hold at every point between the object’s
observable actions, i.e. upon creation of any object that is an instance of this
class and both before and after every publicly-visible method call [23]. At other
points, including non-visible method calls, it need not hold, and runtime checks
are disabled in this case. Further, since runtime invariant checks can impose a
non-trivial performance penalty on a system, in general, it is desirable to have a
mechanism for leaving the checks in place during testing, while removing them
from a final, production system. Finally, there is an important interplay between
the subtype relation (which determines when one object can safely be substi-
tuted in a context calling for another [1]) and class invariants: if B is a subtype
of A (as well as a subclass) then the invariant for B must include all of the
constraints in A’s invariant [213].

Some languages offer native support for invariant checking, but for Java and
other languages that lack this, including such checks is challenging. A common
approach is to make use of the language’s assertion mechanism, by including
assertions of the invariant at the end of each constructor body and at the begin-
ning and end of the body of each public method [2]. If the language’s assertions
mechanism is used, disabling the checking functionality after testing is usually
quite easy. However, this approach carries the disadvantage of requiring the class
designer to code not only the predicates themselves but also an explicit handling
of the inheritance requirements and the full execution model, discussed above.
Both of these tasks must be implemented for each invariant definition, in each
class.

To avoid the implementation burden of the assertions approach, we can use a
tool that generates the invariant checks from either specialized annotations of the
source code [45lJ6] or reserved method signatures [7I89]. Essentially, such tools
offer language extensions to resemble native support for invariant definitions.
In comparison to assertion-based approaches, they eliminate the requirement of
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implementing the execution model, a clear advantage. As with the assertions
approach, annotation approaches are invasive, in that they require modification
of the original source code. More substantially, the approach generally requires
the use of a specialized, nonstandard compiler, whose development may not keep
up with that of the languag.

Instead, we can view the addition of runtime invariant checking across a class
hierarchy as a kind of cross-cutting concern, i.e. code that is defined across sev-
eral classes and hence resists encapsulation. Under this view, it is natural to
approach this problem as one of aspect-oriented programming (AOP) [I1], in
which we can use a tool such as Aspect]J [12] to define the checks separately
as aspects. The entry and exit points of each method become the join points,
the point cuts are inferred from a class’s method signatures, and the invariant
check itself becomes the advice [I3J14]. Unlike annotation-based approaches, as-
pect weaving can be done without the need for a non-standard compiler, either
through source code transformation or byte code instrumentation [I5]. However,
the AOP approach also presents several difficulties. For example, Balzer et al.
note that mainstream tools such as AspectJ lack a mechanism to enforce the
requirement that the definition of a class’s invariant include the invariant of its
parent class [I6]. It is possible to write invariant checking “advice” so that it
correctly calls the parent class’s invariant check, but this must be done manu-
ally (e.g. [13]). A similar problem occurs in implementing the correct disabling
of checks on non-public calls. Lastly, because aspects cannot in general be pre-
vented from changing an object’s state, the weaving of additional aspects may
compose poorly with the aspect that provides the invariant check [I7JT6II8]. It
is possible that another aspect could break the class invariant, and since inter-
leaving of multiple aspects is difficult to control, it is possible the two aspects
could interleave in such a way as to make the invariant failure go undetected.

The work closest in spirit to our own is the design pattern approach of Gibbs,
Malloy, and Power ([I9J20]. Targeting development in the C++ language, they
present a choice of two patterns for weaving a separate specification of invari-
ant checks into a class hierarchy, based on the well known decorator and wvisitor
patterns [21]. However, the decorator approach involves a fairly substantial refac-
toring of the original source code. Moreover, the authors note that this technique
interacts poorly with the need to structure invariant checks across a full class
hierarchy. The refactoring in this case is complex, and it requires the use of
multiple inheritance to relate the decorated classes appropriately, making it un-
suitable for languages such as Java, which support only single inheritance. Their
alternative is an application of the visitor pattern, in which the invariant checks
are implemented as the visit methods in a single Visitor class. This pattern usu-
ally requires that the classes on the “data side” implement an accept method,
which is used to dispatch the appropriate wisit method, but in their use of it,
only the top of the class hierarchy is modified to be a subclass of an “invari-
ant facilitator”, which handles all accept implementations. However, successful

! For example, JML has not seen active development since version 1.4 of the Java
language [10].
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implementation of the visit methods rests on the assumption that all fields are
either publicly visible or have their values readily available through the existence
of accessor (“getter”) methods. Unless the language simply lacks a mechanism
to hide this representation (e.g. Python), such exposure is unlikely to be the
case, as it violates encapsulation, permitting uncontrolled manipulation of an
object’s parts, either directly or through aliasing [2].

The central thesis of our work is that, under assumptions common to Java
and other statically-typed OO languages, these limitations—source code modi-
fication, multiple inheritance, and public accessibility of fields—are unnecessary
for a design-pattern approach. The remainder of the present paper shows how
to relax them.

3 Weaving Invariant Checking from Specifications

Our approach draws from the Gibbs/Malloy/Power design pattern efforts and
from ideas in AOP in the treatment of invariant specifications as a cross-cutting
concern. We begin with an assumption that the class invariants are given in
a single specification file, separate from classes that they document. Each con-
straint is a boolean- valued Java expression, with the invariant taken to be the
conjunction of these expressions. We assume (though do not hope to enforce)
that these expressions are free of side effects, and that the invariant given for a
child class does not contradict any predicates in inherited invariants. Otherwise,
the particulars of the specification format are unimportant. The current version
of our tool uses JSON [22], but any format for semi-structured data will do.

We focus on the Java programming language, which means that we assume a
statically-typed, object-oriented language, with introspective reflection capabil-
ities, support for type parameters in class definitions, single inheritance (though
implementation of multiple interfaces is possible), and a uniform model of virtual
method dispatch. We make some simplifications of the full problem. Specifically,
we work only with synchronization- free, single-threaded, non-final class defini-
tions, and we consider only instance methods of a class that admit overriding,
i.e., non-static, non- ﬁna method definitions. We do not consider anonymous in-
ner class constructs nor the lambda expressions planned for Java 8 [23]. Finally,
we assume a class’s field visibility grants at least access through inheritance (i.e.
protected accessbility or higher). This last is made purely for the sake of simpli-
fying the technical presentation, since, as discussed in section [ introspection
makes it easy to handle variables of any accessibility.

3.1 An Inheritance-Based Approach

As a first effort, we will try an approach that leverages the mechanism of in-
heritance and the redefinition of inherited method signatures through subtyping

2 The final keyword has two uses in Java: to declare single-assignment, read-only
variables and to prohibit extension of classes or overriding of methods. The latter
form is equivalent to the sealed keyword in C#, and it is this usage we avoid here.
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public class A’<T,/> extends A<S,/> {
private int § = 0;

public A(Ta ) {

super () ;
d =0 +1;
$20;

public 75, fa(oy, 0 {
6105 Ty, x = super. fa(P);  $20;

return x;
}

private boolean inv() { return pa; }

private void ¢1 () {
if (6 == 0 && !'inv())
( handle invariant failure )

d =0 +1;

}

private void ¢2() {
=06 -1;

if (6 == 0 & !'inv())
( handle invariant failure )
}

}

Fig. 1. Inheritance-based generation of invariant checks

polymorphism. The idea is to derive from a class and its invariant a subclass,
in which we wrap the invariant in a new, non-public method (perhaps with ad-
ditional error reporting features), similar to the “repOK” approach advocated
by Liskov and Guttag [2]. To this new subclass, we also add methods ¢; and
@2 to handle the checking tasks at (respectively) method entry and exit points,
and we use these to define constructors and overridden versions of every public
method.

Let A be a class, with parametric type expression T4 defined on type parame-
ters Sy, field declarations m, invariant p 4, constructor definition A(ﬂ) and
public method 74 f (5 2).

public class A<T4> {
7T’a_);
public A(Fa &) { ... }
public 7y, fA(m) { ... }
}

We extend A with runtime checking of p4 by generating the subclass in Fig. [
where T4 and S/ are identical to T4 and Sa (respectively), except perhaps for
renaming of type parameters (i.e., they are a-equivalent).

For each constructor in A’, the body executes the “real” statements of the
corresponding superclass constructor, followed by a check of p 4, whose execution
is itself controlled by the ¢o method. Likewise, the body of each public method
fa wraps a call to the superclass’s version between checks of p4, with execution
controlled by the ¢; and ¢o methods. If f4 returns a value, then this value
is captured in the overridden version in a “result” variable, x. A method or
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constructor call is publicly-visible precisely when the call stack depth on a given
A’ object is 0, and this value is tracked by the additional integer-valued field §.
The ¢1 and ¢ methods increment/decrement 0 as appropriate, evaluating pa
only if 6§ =0

The inheritance-based approach suggests an easy mechanism for reusing code
while adding the necessary invariant checks and capturing the distinction be-
tween publicly-visible and inner method calls. For the user, the burden consists
of replacing constructor calls to A with the corresponding calls for A’. This may
be an excessive requirement when A objects are used in production-level code,
but in many settings where invariant checking is desirable, such constructor calls
are limited to only a handful of sites. In the JUnit framework, for example, in-
tegration of A’ objects into unit tests for A is likely quite simple, as object
construction occurs mainly in the body of a single method, setUp.

Note the assumptions of uniform polymorphic dispatch and non-final decla-
rations here. If a class cannot be extended (e.g. String and other objects in the
java.lang package), then construction of a subclass that implements the invariant
checks is obviously impossible. Similarly, a method whose dispatch is statically
determined cannot be transparently overridden, and if declared final, it cannot
be overridden at all. In many languages (notably, C# and C++) the default
convention is static dispatch, with dynamic binding requiring an explicit virtual
designation; in such cases, the inheritance construction is far less convenient and
may be impossible without some refactoring of the original source code.

Unfortunately, our first attempt fails in two critical ways, which becomes
apparent when we attempt to construct the invariant-checking extension across a
hierarchy of class definitions. First of all, the inheritance hierarchy of a collection
of objects requires a corresponding structure in the composition of invariant
checks. This problem is very similar to the one encountered in the “decorator”
approach of [20], but the multiple-inheritance solution given there is unavailable
in a single-inheritance language such as Java. Consider a class B that is a subtype
of A (written B <: A):

public class B<Tp> extends A<Sp>{

=
public B(Tg Z}) { }
public 74, g(og5 2) { ...}
}

Figure[2 depicts the problenﬂ. The invariant for a B object, invg, must include
the A invariant—i.e., invg = inva A pg. However, a B’ object cannot access the
fields of its associated B object through inheritance and also reuse the function-
ality of the invs method. We might choose to have B” descend from A’ instead,

3 In the presence of concurrency, we would need a more sophisticated mechanism;
keeping track of the call stack depth on an object for each thread, synchronizing all
method calls on the object’s monitor lock, and so on.

4 There and throughout this paper, we write [S/7]T to denote the substitution of
type expression 7 for the type parameter S in expression 7', and use the shorthand
[S1/71,S2/72] T to denote the composition of type expressions [S1/71] [S2/72] T.
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A<T A>

—
Ta

7f, f4 (Sf, v)

T \'\ <<bind>>

[S,180] Ty —_[&<T, >

<<bind>> boolean inv , ()
[S, ] Sgl Ty A
B<Tp>
?}: <<bind>>

9
ISl ATy *

4 )
TgB 8p (083 2

\ ?
<<bind>>
[Sg | SglTg
\ B <TB. >

boolean invg ()

Fig. 2. Design flaw in the naive inheritance approach

but this only works if all fields in B are publicly accessible. As discussed above,
this is unlikely to be the case.

The second, related failure is that inheritance does not facilitate a correct
binding of the type parameters. Again, this is clear from Fig.[2l An instantiation
of B supplies a type 7 to the parameters Sp, which is used in turn to bind
the parameters S4 with argument [Sp/7,54/Sg] Ta. When we instantiate B’
instead, this same 7 binds the parameters Sp/, with the resulting chain of ar-
guments binding A’s parameters S4 as [Sp//7,S5/SB",Sa/SB8] Ta. For correct
use of the A’ invariant check in this B’(r) object, we would need to bind the
type parameter of A’, S4/, in the same way we do A’s parameter, S4; i.e. with
argument [Sp/ /7,54 /Sp1,Sa/Sa] T4, abinding that cannot be ensured, unless
B’ is a subclass of A’.

3.2 Exposing the Representation

Though unsuccessful on its own, we can use the inheritance approach of Section
[BI] as the basis for an auxiliary pattern, which we call an exposure pattern. The
idea is to construct from the original hierarchy a corresponding set of classes that
offers the interface of the original collection and in addition, a controlled exposure
of each object’s representation. The machinery for checking the invariants is
factored into separate classes, as discussed in Section B.3] below.
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Consider a class definition

public class A<T4> {
T1 Q13 ... Tk Ak

public AGA ) { ... }
public 75, fa(oy, 2 { ...}

}

We derive the exposure interface

public interface IAp<T > {

T1 Ya; O3

Tm Yam O3

}

and exposed class

public class Ag<T,,> extends A<S,/> implements [Ap<S,,> {
private int § = 0;
private void ¢1 (0 { ...}
private void ¢2() { ...}
protected boolean inv(InvV v) { ...}

public Ag(Fa ) {
super(?); 5§ =6+ 1; ¢20);

public 75, fa(os, 3) {
6105 15, x = super.fa(F); $20;

return x;

}

public 71 Va; Of return a;; }

public T Va,, Of return ap; }

}

where T4/, Tar and Sar, San are a-equivalent to T4 and S, as above. Note
that the fields a ...a,, include all of the original a; ...a; and perhaps others,
as discussed on page [[71] below. The constructors and public methods in Ag
are overridden in exactly the same manner as in the A’ class of Section Bl and
likewise the implementation of the ¢1() and ¢2() methods. The representation
exposure happens through the ~v,,(), a set of raw “getter” methods that expose
each of the object’s fields. In the presence of inheritance, the corresponding
structure is realized not in the derived class but in the derived interfaces. Thus,
for example,

public class B<Tp> extends A<Sp>{
71 b ... T b
public BTz ) { ... }
public 74 f(am){ o}

}
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A<T > A<T > TAE<T 4>

V\ v

4 A <<bind>> <<bind>> A
IS,] 8417y IS0 Syl Ty
~

Ag<T, >
<<bind>> <<bind>> <<bind>>
1S4/ Sp1 Ty ISy S51 Ty IS4/ Sl Tgn

B<Tp> B<Tp> IBE<Tp.>

M E 4

<<bind>> <<bind>>

[Sp! SplTg [Sgi ! Spl Tgu

BE<TB,>

Fig. 3. Exposure pattern construction

gives rise to the interface and class definitions

public interface IBp<Tpgn> extends I[Ag<Sgn> {

T1 Yo, O

Tn Yo, O3
}

public class Bg<Tpg/> extends B<Sp/> implements IBg<Sg/> { ... }

The construction is illustrated in Fig. [3l

Correctness. Since the type expressions in a class definition are copied to its
exposed class and interface (perhaps with a-renaming of the parameters), it is
easy to see that

Proposition 3.1. For any type expression T, an instance of a class A has type
A<T(1)> if and only if Ag and IAg have types Ag<T(7)> and IAg<T(T)>,
respectively. O

The construction of the accessor methods is less obvious. While we construct
va; () for each of the fields {ai,...,ar}, we may need to construct others, as
well, in case the invariant p4 makes reference to any inherited fields for which
we have not already constructed an interface. This can happen in the case of an
incomplete specification of the class hierarchy and invariants. The simplest way
to handle this is to include in the interface a 7,,() for each declared field in the
corresponding A classes and also for each variable that occurs without explicit
declaration in the the predicate p4. However, we can leverage the inheritance of



172 J. Lasseter and J. Cipriano

interfaces to eliminate redundant declarations (though not implementations, as
discussed below).

To make the construction precise, we denote the free variables of the predicate
pa by FV(pa), i.e. those variables that occur in ps without being explicitly
declared in p4. Conversely, the bound variables in a class A, BV (A), are the
instance fields declared in A. The following definition captures the notion of
variables that are “free” in A through inheritance:

Definition 3.2. Let P be a specification of a collection of classes and their
associated invariants. For a class A, the set of fields exposed through inheritance
in A, Z(A), is defined by

T(4) = 0 Jif A has mo superclass specified in P
| Z(C)UBV(C)UFV(pc) ,if A<:C and C is specified in P

We use this to define the necessary method signatures in each exposure interface.

Definition 3.3. Given class A and invariant pa, the body of IAp consists of
the the signatures

TAp = {707, (); | ai € BV(A)UFV(pa) \Z(A)}
where each T4, is the declared type of a;.

Definition 3.4. For a field, 1,, a;, either declared in or inherited by a class A,
we say that a; is successfully exposed for A if either

— there is an interface IAg and subclass
class Ap extends A implements IAp
such that I Ag includes a method interface
T Ya; ();
and for every Ag object o, 0.7,,()== 0.a;
— A is a subclass of C, and a; is successfully exposed for C.

Given A and p4, the construction for I Ag in Definition and the accompany-
ing implementation Ag combine to give us the representation exposure we need
for p4. In particular,

Proposition 3.5. If x € FV (pa), then x is successfully exposed for A. O

Space Requirements. The primary difference between the exposure pattern
construction and the inheritance-based effort of Section Bl lies in the construc-
tion of the exposure interfaces, whose inheritance structure is congruent to that
of the original collection of classes. Like the earlier attempt, however, the collec-
tion of exposed classes does not share this same relation, and as a consequence,
both approaches are subject to some unfortunate redundancy consequences. In
particular, we cannot reuse code between distinct exposed classes, even when
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the classes they expose are related by inheritance. For example, if a class A con-
tains fields a; and as and public method f() then the exposed class Ap must
override f(), and it must include exposure methods ~,, and 7,,, according to
the interface [Ag. If B <: A contains fields b1, by, and method g(), then it must
override not only g() but also f(), with the body of the overridden f() identical
to that in Ag. Likewise, it must implement not only the 7, and v, methods
from the I B interface, but also v,, and 7,,.

Happily, all of this is easily automated, and it is reasonable to suppose the
space overhead manageable. Note first that, with the exception of classes at the
top of a specified hierarchy, the size of the interface generated for a class is
proportional to the number of fields in that class. Recalling Definitions and
B3] we can see that this is so because

Proposition 3.6. Let C be a class included in a specification P. For every class
A<:C, FV(pa)\Z(A) = BV(A).

In other words, only for classes specified at the top of an inheritance hierarchy
will we ever need to generate additional v declarations in the corresponding in-
terfaces. In all other cases, the accessor interfaces for inherited fields are inherited
from the corresponding parent interfaces. Hence, the space required to extend a
collection of classes depends only on the size of each class and the depth of the
inheritance relationship in the collection. Specifically, if we assume a bound of
n new field and method definitions on each class and an inheritance depth of h,
then the overall space growth is given by

Eh: iln —(f:z)n—(h(h;l))neom?n)

i=1 \j= i=1

It is difficult to give a general characterization of either n or &, but there is reason
to suspect that both are manageable values in practice. McConnell recommends
a limit of 7 new method definitions in a class [24]. Shatnawi’s study [25] finds
no significant threshold value for h. Classes in the JDK’s java.* and javaz.*
libraries implement anywhere from less than 10 to over 100 new methods, while
the largest depth of any inheritance tree is 8.

3.3 Adding the Invariant Checks

As in Gibbs/Malloy/Power [20], we implement the runtime invariant checks
themselves through an application of the wisitor pattern [21], in which the meth-
ods implementing the invariant checks are aggregated into a single class (the “vis-
itor”), with the appropriate method called from within the class being checked
(the “acceptor”). Unlike their approach, however, our exposure pattern allows
us to do this without modification of any part of the original source files, not
even at the top of the inheritance hierarchy.

Suppose we have a class A<T4>, with invariant p4. From these, we generate
the exposed class Agp<T 4> and the exposure interface I Agp<T 4>, as in Section



174 J. Lasseter and J. Cipriano

The specification of p4 and the access methods defined for IAg are used to
generate an invariant checking “visitor” class:

public class InvV {
public <Ta,;> void va(IAg<Sa;> obj) {
71 a1 = obj.y10;
Tn Gn = 0bj.7n(O;

{{ compute pa and return the result ))
}

where T4, and S4, are equivalent to T4 and its parameters S4, as above.

Runtime checking of py4 is invoked in the Agp methods through calls to that
class’s inv method, which serves as the “accept” method, handling dispatch of
the appropriate invariant check:

public class Ap<S,/> extends A<S,,> implements IAg<S, /> {
private int § = 0;
private void ¢1 (0 { ...}
private void ¢2() { ...} // (as defined in Section 3]

private boolean inv(InvV v) {
v.v 4 (this);
return v.valid();

}

}

Note that each v4() method in InvV takes an argument of type IAp and not
Ag. This is necessary, because of the need to compose an invariant check with
that of the object’s superclass in each invariant method. For example, if we have
B <: A, we define vp() as
public <T'> void vp(IBg<Sp> obj) {
va( (IAg<SpB>) obj);

{{ compute pp, as above ))

}

Since Ag and Bpg are not related by inheritance, it would not be possible to
directly cast obj to its superclass’s exposed version. Fortunately, the interface is
all we need.

Finally, although we structure our solution here according to the traditional
visitor pattern conventions, we do not really need the full generality of that
pattern. In particular, it is unnecessary to support full double dispatch, as we
only need one instance of InvV, and no v;() method will ever invoke a call
back to the inv() method of an object (not even indirectly, since the ¢; and
¢2 methods in a class prevent a call to inv() if one is already running). Our
implementation of this approach as an Eclipse plugin instead drops the InvV
parameter from every inv method, relying instead on a single, static instance of
the invariant visitor:
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private boolean inv() {
InvVov = InvV .getInstance();

4 Example: Unit Testing

Method contracts and class invariants are particularly useful in testing. In com-
bination with test oracles, the use of runtime invariant and pre/post-conditions
checks improves the exposure of faults as well as the diagnosability of faults when
they are detected [26J27]. Our implementation as an Eclipse plug has proven use-
ful in diagnosing invariant-related faults.

For example, a simple List interface provides an abstraction for the list data
type. A standard way to implement this is with an underlying doubly-linked list,
in which we keep a pair of “sentinel” head and tail nodes, with the “real” nodes
in the list linked in between:

public abstract class AbstractList<T> implements List<T> {
protected int size;

}

public class DLinkedList<T> extends AbstractList<T> implements List<T> {
// inherited from AbstractList: int size
protected DNode<T> head, tail;

Among other predicates, the invariant for DLinkedList requires that Vn # tail,
n.next.prev = n.

This was given as part of a project for the first author’s data structures
course, and among the student submissions received was this implementation of
remove(), in which the cur.prev pointer is not correctly updated:

public boolean remove(T v) {
DNode<T> cur = head.next;
while (cur !'= tail) {
if (cur.data.equals(v)) {
DNode<T> prev = cur.prev; cur = cur.next; prev.next = cur;
size--;
return true;
} else
cur = cur.next;
}

return false;

A JUnit test suite failed to uncover this fault, passing this and the tests for
12 other methods:

public void testRemove() {
1s.add("a"); ls.add("b"); 1ls.add("c"); ls.add("d"); ls.add("a"); ls.add("d");
int sz = ls.size();

assertTrue(ls.remove("a")); assertTrue(ls.size() == sz - 1);
sz = ls.size();
assertTrue(!ls.remove("**")); assertTrue(ls.size() == sz);
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From the original source code and a specification of invariants our tool gen-
erates the classes and interfaces

public interface IExposedAbstractList<T> {
int _getSize();

}

public interface IExposedDLinkedList<T> extends IExposedAbstractList<T> {
DNode<T> _getHead();
DNode<T> _getTail();

}

public abstract class ExposedAbstractList<T>
extends AbstractList<T> implements IExposedAbstractList<T> { ... }

public class ExposedDLinkedList<T>
extends DLinkedList<T> implements IExposedDLinkedList<T> { ... }

public class RepOKVisitor {

public <T> void visit(IExposedAbstractList<T> _inst) { ... }
public <T> void visit(IExposedDLinkedList<T> _inst) { ... }

}

Objects in a JUnit test suite are constructed in the setUp() method, and a simple
modification was all that was needed to cause testRemove() to fail appropriately:

protected void setUp() {
// 1s = new DLinkedList<String>();

1s = new ExposedDLinkedList<String>();
¥

5 Conclusion and Future Work

The design pattern given here provides a fairly seamless approach for adding
correct runtime invariant checking to a class hierarchy, through the construction
of drop-in replacements that can be removed as easily as inserted. In addition
to the core material presented here, there are a number of extensions possible.

For example, the presentation in this paper relies on the assumption above
that all fields in a class are accessible through inheritance. Happily, this is an
easy if tedious limitation to overcome. If instead the field is declared with only
intra-object or intra-class access (e.g. Java’s “private”), we can use the intro-
spective capabilities of the language to manufacture a locally-visible get method.
To access a private field z, for example, our implementation generates a -y, that
handles the unwieldy details of Java introspection:

private 7 getX () {

Class klass = this.getClass(); Field field = null;

while (field == null) {
try {
field = klass.getDeclaredField("z"); field.setAccessible(true);
} catch (NoSuchFieldException e) {
klass = klass.getSuperclass();
}
}
T x = null;
try {
z = (1) field.get(this);
} catch (IllegalAccessException e) { e.printStackTrace(); throw new Error(); }
return x;
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Other extensions, such as the inclusion of anonymous inner classes, concur-
rency, or final classes/methods, remain as open challenges.

Finally, the work described here incorporates only the invariant checks, rather
than full contracts, and it would clearly be useful to extend our design pattern
to support this. While we conjecture that our technique is easily extendable to
this purpose, the invariant checks present the most interesting problems, owing
to their need for attribute access and hierarchical definition. Philosophically,
ordinary unit testing already performs at least the behavioral components of
contract checking, i.e. the checks of pre and post-conditions. What unit testing
cannot do is determine whether the invariant continues to hold, as it is often
impossible to access an object’s fields. The difference lies in the fact that both
pre and post conditions are inherently extensional specifications. They impose
requirements on method arguments and return values, but on the object itself,
all constraints are made upon the abstraction of the object, not the concrete
implementation. That implementation— whose consistency with the abstraction
is the core assertion of a class invariant—is by definition opaque to an object’s
user.
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