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Abstract. We introduce and define the concept of recontextualization
for cloud applications by extending contextualization, i.e. the dynamic
configuration of virtual machines (VM) upon initialization, with
autonomous updates during runtime. Recontextualization allows VM im-
ages and instances to be dynamically re-configured without restarts or
downtime, and the concept is applicable to all aspects of configuring
a VM from virtual hardware to multi-tier software stacks. Moreover, we
propose a runtime cloud recontextualization mechanism based on virtual
device management that enables recontextualization without the need to
customize the guest VM.We illustrate our concept and validate our mech-
anism via a use case demonstration: the reconfiguration of a cross-cloud
migratable monitoring service in a dynamic cloud environment. We dis-
cuss the details of the interoperable recontextualization mechanism, its
architecture and demonstrate a proof of concept implementation. A per-
formance evaluation illustrates the feasibility of the approach and shows
that the recontextualization mechanism performs adequately with an
overhead of 18% of the total migration time.

1 Introduction

Infrastructure as a Service (IaaS) clouds are commonly based on virtualized
hardware platforms executing and orchestrating self-contained virtual machines
(VMs), which are comprised of multiple virtual devices. A cloud application is
typically subdivided into individual components, each component bundled into a
specific type of VM. Several VM instances can be started using the same type of
VM (using the same master disk image) and each new VM instance is uniquely
configured, contextualized, with instance specific settings at the early stages of
execution. The capacity of the cloud application can be adjusted by changing
the amount of VM instances. For clarity, our definition of contextualization is
as follows:

Definition. Contextualization is the autonomous configuration of individual
components of an application and supporting software stack during deployment
to a specific environment.
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In this work we introduce the concept of recontextualization. Recontextual-
ization can be used to adapt to any system changes, including making newly
migrated VMs operate properly in the (potentially different) system environ-
ment of a new host. We define recontextualization as follows:

Definition. Recontextualization is the autonomous updating of configuration
for individual components of an application and supporting software stack during
runtime for the purpose of adapting to a new environment.

The life-cycle of a cloud application is comprised of three individual phases
as shown in Figure 1. The Construction phase refers to the development of a
cloud application making use of platform services and dividing that application
into a set of VM images. In the Deployment phase a constructed application
is deployed on to suitable infrastructure and finally in the Operation phase the
cloud application is executed. The application can be configured in the Con-
struction phase and contextualized with specifics of a provider’s environment
in the Deployment phase. Recontextualization offers dynamic reconfiguration in
the Operation phase.

Fig. 1. The life-cycle of a cloud application

Recent work on IaaS systems have a lot in common with the vision of au-
tonomic computing, as outlined by Kephart and Chess [9]. One of the major
aspects of autonomic computing that has yet to be realized is self-configuration,
the automated configuration and adjustment of systems and components. Our
earlier work on contextualization [1] presents a mechanism for boot-time self-
configuration of VMs. This work extends state of the art and our earlier efforts
by introducing runtime recontextualization, enabling adaptation of VM behavior
in response to internal changes in the application to which the VM belongs or
to external changes affecting the execution environment of the VM. The concept
can enable applications at the PaaS to adapt to different provider application
middleware services through the dynamic binding of APIs, enabling the execu-
tion of site specific code. This, however, is out of scope in this paper.

The contributions of this paper are: i) The concept and definition of recon-
textualization ii) The development of an architecture and mechanism for the
purpose of recontextualization. iii) A demonstration and evaluation of a recon-
textualization system. The rest of this paper is organized as follows: Section 2
outlines the problem to be solved, a set of requirements for any approach to
recontextualization and an illustrative scenario of recontexualization for applica-
tion monitoring. Section 3 discusses different approaches considered for runtime
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recontextualization. Section 4 presents our proposed solution for recontextual-
ization of VMs including an evaluation of the approach. Finally, a conclusion
and future work are presented in Section 5.

2 Problem Statement and Requirements

A motivational factor behind the need for runtime recontextualization stems
from VM migration in clouds [3,15]. Using migration, a VM can be transferred
from one physical host to another without explicitly shutting down and subse-
quently restarting the VM [4]. The entire state of the VM, including e.g., mem-
ory pages, are transferred to the new host and the VM can resume its execution
from its state prior to migration. As a consequence of this, no contextualization
is triggered again when the VM is resumed, as the level of abstraction provided
by virtualization is insufficient for platform services. In this paper we consider
migration from and to identical hypervisor technology, interoperable migration
is out of scope but is considered in [12]. As presented in [6], there are several
different cloud scenarios:

– Bursting - The partial or full migration of an application to a third party
IaaS provider, this may occur when local resources are near exhaustion.

– Federation - The migration of an applications workload between a group of
IaaS providers, e.g., when a single provider’s resources are insufficient for
maintaining the high availability of an application through redundancy.

– Brokering - The migration of an application’s VMs, e.g., for the purpose of
maintaining an agreed Quality of Service (QoS) in the case of an end-user
utilizing a broker to select a provider given a set of selection criteria.

In all these cloud scenarios VM migration is a necessity, e.g., for the purpose
of consolidating resources and maintaining levels of QoS. We have used these
scenarios to guide us when the defining of requirements for any potential recon-
textualization mechanism. We consider the following requirements as imperative:

i. A triggering mechanism for recontextualization on VM migration.
ii. A secure process to gather and recreate contextualization data after migra-

tion.
iii. A hypervisor agnostic solution that maintains IaaS provider interoperability.
iv. An approach that is none pervasive and minimizes modifications at the IaaS

level.

We make a case for each of these scenarios requiring recontextualization at run-
time. In the Bursting scenario, if an IaaS provider is not obligated to divulge
third party providers used for outsourcing of computational resources, an appli-
cation may end up deployed on to a third party’s infrastructure that requires
use of their local infrastructure services. A dynamic federation of IaaS providers
created during negotiation time that alters during the operation phase requires
infrastructure services to be discovered dynamically. The same is applicable in
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the case of a Broker, knowledge of a providers local infrastructure services is not
available during deployment until after the Broker has selected a provider.

The lack of knowledge on the attributes of an IaaS provider’s local infras-
tructure service available during deployment time further motivates our work.
An example of such a service that exhibits configuration issues after resource
migration is application-level monitoring.

In this example the monitoring service endpoint, to which application Key Per-
formance Indicators (KPI) are reported, can be configured by contextualization
during the deployment phase of an application’s life cycle. However, the end-
point may change during the application lifetime, either as a result of changes
in the local system environment or due to migration of the application to a
new host. This example motivates the need for a mechanism to fetch configura-
tion data during application operation and provide new context to application
dependencies, thus recontextualization. In the following section, we illustrate re-
contextualization with service-level monitoring [7] as an example scenario.

2.1 Example Scenario

A typical cloud application must be continually monitored during runtime, an
example of this is shown in Figure 2. Monitoring data can be used for several
purposes, e.g., for automatic application scaling or to assess the likelihood and
prevent the breaching of a Service Level Agreement (SLA). Application level
metrics, know as KPIs, are sent from inside the VM to an external monitoring
endpoint for processing.

Fig. 2. Monitoring applications in a IaaS provider

Each monitoring probe that gathers KPI data must be configured with the
endpoint or location of the monitoring service. The endpoint can be associated
with a IaaS specific service or a service running at a remote location and depends
on what entity within connected clouds has control over application management.
When deploying to a IaaS provider, the endpoint for the monitoring service is
configured using contextualization in the Deployment phase. However, in a multi-
site scenario the VM maybe migrated to an unknown provider during runtime
and must therefore be dynamically recontextualized with a new endpoint in the
Operation phase.
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3 Recontextualization Approaches

As far as we are aware no previous research has considered an approach for recon-
textualization. Keahey and Freeman [8] present fundamental work on contextu-
alization in virtual clusters and recontextualization is mentioned but deemed out
of scope for their work. In this section several different approaches for contextu-
alization are considered for use in recontextualization. Any recontextualization
approach has two major obstacles that must be dealt with; how is recontextual-
ization triggered and where can the necessary information be found? Below are
some approaches for recontextualization, listed and discussed, from the perspec-
tive of the above two challenges.

Contextualized direct addressing is based on a known endpoint address
that is specified in the initial contextualization phase, as described by Arm-
strong et al. in [1]. A similar approach is used for Puppet [14], a mass-machine
configuration tool for HPC-like environments. During operation, this end-
point address is queried for the updated context information. Furthermore,
this approach is interoperable and requires no host and hypervisor modifi-
cations, but requires that the end point address is constant when a VM is
migrated to other domains. This approach offers no procedure for triggering
a new round of recontextualization, and has to rely on periodically polling
the endpoint for updates.

Hypervisor network proxying also relies on periodically querying an exter-
nal endpoint address for context information, but in this method a standard
virtual network address is used and the hypervisor (and associated virtual
network management) is responsible for routing this call to a host specific
endpoint. This approach, used by Clayman et al. in [5], is transparent to the
VM but requires modifications at the hypervisor level.

Hypervisor interaction by the guest can be used to offer contextualization
data straight from the hypervisor itself, using a customized API both to
react to changes in context information and to transfer new information.
However, this solution requires modifications both to hypervisor and guest
operating system software and would require considerable standardization
to be widely available, with regards to the compatibility of virtual hardware
APIs between hypervisor technologies.

Dynamic virtual device mounting is based on dynamically mounting vir-
tual media containing newly generated content in a running VM via the
reuse of existing hypervisor interfaces and procedures [1]. Interoperability is
achieved by reusing existing drivers for removable media such as USB disks
or CD-ROM drives. Recontextualization can be detected by the guest OS by
reacting to events triggered when new USB or CD-ROM media is available.

We propose that the dynamic virtual device mounting approach is the most
promising solution to recontextualization due to inherent interoperability and
support in all major operating systems. The ability to manage virtual devices is
also offered by the Libvirt API [11], inferring that there is fundamental support
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for these operations in most major hypervisors. The following section describes
our recontextualization solution in more detail.

4 A Recontextualization Solution

In this section, an implementation of a system for runtime recontextualization
is described, followed by an evaluation to validate the suggested approach. The
previously discussed virtual device mounting technique is used in response to mi-
gration events and thus enables automatic self-configuration of newly migrated
VMs. The following subsections discuss the mechanism, architecture, and evalu-
ation in more detail.

4.1 Mechanism

Figure 3 illustrates the recontextualization approach used in the implementation.
Each VM is assigned a virtual CD-ROM device for contextualization on which
the host-specific and thus provider contextualization data can be found. When
a VM is migrated from one host to another events describing this action are
triggered by the hypervisor, which can be registered to via the Libvirt API. In
response to these events, the recontextualizer software triggers a detachment of
the virtual device mounted with contextualization information, and once the
migration is completed a new virtual device with context information relevant
for the new host is automatically attached to the VM as it resumes operation
after migration.

Fig. 3. Recontextualization approach overview

Event support including migrations is present in several hypervisors, includ-
ing Xen [2] and KVM [10]. The Libvirt API enables a unified approach to VM
management available and includes event support. An initial version of the re-
contextualization system was implemented using KVM with QEMU [13] specific
event and control APIs and the second version was implemented using Libvirt
to make the solution hypervisor independent. Libvirt provides a number of event
types that can be monitored via a callback: i) Started, ii) Suspended, iii) Re-
sumed, iv) Stopped, and v) Shutdown. Upon receiving an event callback details
are returned on the specific cause of the event, for example the shutting down
of a VM on a host machine triggered by migration terminating successfully.
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4.2 Architecture

The architecture of the implemented system is shown in Figure 4. Up-to-date
context data is dynamically bundled as ISO images on the host. The recontex-
tualizer, implemented in Python, manages the attachment and detachment of
virtual CD-ROM devices inside a VM that contain the data held within the ISO
image media in response to events from the hypervisor. The Python Libvirt API
bindings were used to access the Libvirtd daemon for the purpose of abstracting
the specifics of the underlying hypervisor and to improve interoperability.

Fig. 4. Architecture overview

4.3 Evaluation

A series of tests to evaluate the feasibility of the approach have been performed.
For all tests, Libvirt version 0.9.9 was used to monitor and manage the VMs.
QEMU-KVM version 1.0.50 and Xen version 4.0.0 were used as hypervisors,
both running on the same hardware using CentOS 5.5 (final) with kernel version
2.6.32.24. The hosts used in these tests are on the same subnet, have shared
storage and are comprised of a quad core Intel Xeon X3430 CPU @ 2.40GHz,
4GB DDR3 @ 1333MHz, 1GBit NIC and a 250GB 7200RPM WD RE3 HDD.

The results of the evaluation are shown in Figure 5. The first set of bars
illustrate the time to migrate a VM from one host to another with recontex-
tualization running and context data attached, and the second set of columns
illustrate the same migrations with recontextualization turned off and no virtual
devices mounted. The third column illustrates the time spent within the recon-
textualizer software during the tests from the first column, measured from when
the event for migration was received in the recontextualizer until the device had
been removed and reattached. The values shown are the averages from ten runs,
and all columns have error bars with the (marginal) standard deviations which
are all in the 0.03 to 0.07s range.

Based on the evaluation we conclude that the recontextualization process
adds about an 18% overhead using either hypervisor compared to doing normal
migrations. For KVM, most of the extra time required for recontextualization
is spent outside the bounds of our component, likely associated with processing
events and extra overhead imposed by preparing migration with virtual devices
attached. In the case of Xen the device management functionality in Libvirt
proved unreliable and we therefore had to bypass the Libvirt API and rely on
sub-process calls from the recontextualizer to Xen using the xm utility. This
workaround increased the time needed for recontextualization in the Xen case.
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There are four major phases associated with the recontextualization process.
First, information about the VM corresponding to the event is resolved using
Libvirt when the migration event is received. In the second phase, any current
virtual contextualization device is identified and detached. Third, new contex-
tualization information is prepared and bundled into a virtual device (ISO9660)
image. Finally, the new virtual device is attached to the VM. A detailed break-
down of the time spent in different phases of recontextualization is presented in
Figure 6. The above mentioned workaround for Xen interactions affects the sec-
ond and fourth phase (detaching and attaching of devices), most likely increasing
the time required for processing. In the first and third phases Xen requires signif-
icantly longer time than KVM despite the VMs being managed using the same
calls in the Libvirt API, indicating performance flaws either in the link between
Libvirt and Xen or in the core of Xen itself.

Fig. 5. Time measurements of recontextualization.

Fig. 6. Breakdown of time spent during recontextualization.

4.4 Practical Experiences

When creating the system a vast number of bugs and shortcomings both with
Libvirt and the underlying hypervisors were experienced. It turned out that
migrating VMs using KVM with USB devices attached periodically caused the
migration to fail without any indicative error of the root cause. It was discovered
after looking through the source code of qemu-kvm (necessary due to a lack of
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documentation) that support for migration with USB devices is still to be fully
implemented. To overcome this issue the use of a virtual CD-ROM device as
a replacement was explored. Unfortunately this approach has the drawback of
needing the guest OS to be configured to automatically re-mount the ISO image.
We used autofs within our Debian guest VM for the purpose of testing. For
other operating systems such as Windows that natively support the automatic
mounting of CD-ROMs this would not be a problem. Using this device type in
our system worked with KVM but Xen would not reliably release media mounted
within a VM, causing the recontextualizer to fail in its attempt to provide new
context data. To combat this issue we forced the removal of the entire CD-ROM
device, reattaching another with a different ISO image.

Considering Libvirt’s support of Xen events and the detaching of devices we
initially tried to use a Hardware-assisted Virtualization (HVM) guest but found
that Libvirt would not propagate any VM events from the hypervisor through its
API. After discovering this issue we tried using a Paravirtualised (PV) Xen guest
but found that only start and stop events were available. This has had the negative
effect of altering the logic of the recontextualizer,where bydetaching andattaching
devices incurred an additional unnecessary overheadwhen a virtualmachine starts,
while for KVM this overhead only occurs after migration.

5 Conclusion and Future Work

We have described and defined recontextualization: the autonomous updating of
configuration during runtime. Moreover, we have shown that recontextualization
is a key enabler to using multiple cloud sites concurrently. We have evaluated
different alternatives for recontextualization based on a set of requirements. Our
approach, based on automatic mounting of dynamically generated images as
virtual devices, is highly interoperable supporting a variety of hypervisors and
virtually all operating systems. Apart from CD-ROM mounting routines, which
are standard in most operating systems, no custom software is required inside
the guest VM to make the contextualization data available.

Future work includes creating a unified mechanism for contextualization and
recontextualization and integrating the solution with major software projects. In
addition, recontextualization mechanisms for the dynamic binding of PaaS APIs
will be explored. Finally, further studies and improvements on the implemented
approachwill be evaluated to reduce the overhead imposed by recontextualization.
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7. Katsaros, G., Gallizo, G., Kübert, R., Wang, T., Oriol Fito, J., Henriksson, D.:
A Multi-level Architecture for Collecting and Managing Monitoring Information
in Cloud Environments. In: CLOSER 2011: International Conference on Cloud
Computing and Services Science (CLOSER), Noordwijkerhout, The Netherlands
(May 2011)

8. Keahey, K., Freeman, T.: Contextualization: Providing One-Click Virtual Clusters.
In: Proceedings of the 4th IEEE International Conference on eScience (ESCIENCE
2008), pp. 301–308. IEEE, Washington, DC (2008)

9. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

10. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux virtual
machine monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225–230
(2007)

11. Libvirt development team. Libvirt: The virtualization API (February 2012),
http://libvirt.org/

12. Liu, P., Yang, Z., Song, X., Zhou, Y., Chen, H., Zang, B.: Heterogeneous live migra-
tion of virtual machines. In: International Workshop on Virtualization Technology,
IWVT 2008 (2008)

13. QEMU development team. QEMU - An open source machine emulator and virtu-
alizer (February 2012), http://www.qemu.org

14. Turnbull, J.: Pulling strings with puppet: configuration management made easy.
Springer (2008)

15. Wood, T., Ramakrishnan, K.K., Shenoy, P., van der Merwe, J.: CloudNet: dynamic
pooling of cloud resources by live WAN migration of virtual machines. In: Pro-
ceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pp. 121–132. ACM (2011)

http://libvirt.org/
http://www.qemu.org

	Runtime Virtual Machine Recontextualization for Clouds
	Introduction
	Problem Statement and Requirements
	Example Scenario

	Recontextualization Approaches
	A Recontextualization Solution
	Mechanism
	Architecture
	Evaluation
	Practical Experiences

	Conclusion and Future Work
	References




