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Abstract. In this paper we present an implementation of the
H.264/AVC Inverse Discrete Cosine Transform (IDCT) optimized for
Graphics Processing Units (GPUs) using OpenCL. By exploiting that
most of the input data of the IDCT for real videos are zero valued coef-
ficients a new compacted data representation is created that allows for
several optimizations. Experimental evaluations conducted on different
GPUs show average speedups from 1.7× to 7.4× compared to an opti-
mized single-threaded SIMD CPU version.
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1 Introduction

Currently H.264/AVC is one of the most widely used video codecs in the world [1].
It achieves significant improvements in coding performance compared to previ-
ous video codecs at the cost of higher computational complexity. Single-threaded
performance, however, is no longer increasing at the same rate and now perfor-
mance scalability is determined by the ability of applications to exploit thread-
level parallelism on parallel architectures.

Among different parallel processors available today Graphics Processing Units
(GPUs) have become popular for general-purpose computing because of its high
computational capabilities and the availability of general purpose GPU program-
ming models such as CUDA [2] and OpenCL [3].

GPUs can accelerate applications to a great extent as long as they feature
massive and regular parallelism. Video decoding applications, however, do not
meet these requirements completely because of different block sizes and multiple
prediction modes.

H.264 decoding consists of 2 main stages, namely: entropy decoding and mac-
roblock reconstruction. The latter, in turn, includes the inverse transform, co-
efficient rescaling, intra- and inter-prediction and the deblocking filter. Among
them, the inverse transform is a good candidate for GPU acceleration because it
has only two block sizes and the blocks in frame can be processed independently.
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The H.264 transform is an integer approximation of the well known Discret
Cosine Transform (DCT) [4]. The main transform is applied to 4×4 blocks and,
the H.264 High Profile, currently the most widely used profile, allows another
transform for 8× 8 blocks [5].

In H.264 High Profile (that uses the 4:2:0 color format) each picture is divided
in macroblocks, each one consisting of one block of 16×16 luma samples and two
blocks of 8×8 chroma samples. For the luma component the encoder is allowed
to select between the 4× 4 and 8× 8 transforms on a macroblock by macroblock
basis. For the chroma components only the 4×4 transform is allowed. The general
form of the Inverse DCT (IDCT), that is applied in the H.264 decoder, is defined
in Equation 1:

X = CTYC (1)

where Y is a matrix of input coefficients, X is a matrix of output residual data
and C is the transform matrix. In H.264, C is defined in such a way that the
transform can be performed only using integer operations without multiplica-
tions. Typically, the IDCT is not implemented using a matrix multiplication
algorithm. Instead, the 2D-IDCT is implemented as two 1D-IDCT using a row-
column decomposition [6]. Figure 1 shows a flow diagram of 4×4 1D-IDCT.
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Fig. 1. 4×4 1D-IDCT

In this paper we present an H.264 IDCT implementation optimized for GPUs
using OpenCL with portability purpose. We exploit the fact that a significant
part of the input data consists of zero data to create an efficient data represen-
tation. This simplifies the computation on the GPU and reduces the amount
of data that has to be transferred between CPU and GPU memories. On the
GPU kernel itself, additional optimizations are applied such as synchronization
removal, workgroup enlargement, data granularity enlargement and coalesced
write back.

Some previous work has parallelized the IDCT on GPUs. Fang et. al. imple-
mented an 8×8 JPEG IDCT using single precision floating point arithmetic on
GPUs using Microsoft DirecX9.0 [7]. The paper shows that their optimal GPU
kernel is faster than a CPU optimized kernel with MMX (64-bit SIMD) but
slower than SSE2 (128-bit SIMD).

As part of the NVIDIA CUDA Software Development Kit there are two im-
plementations of the JPEG 8×8 DCT/IDCT, one using single precision floating
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point and the other one using 16-bit integer arithmetic [8]. However, no perfor-
mance analysis or a comparison with CPU optimized codes is performed. The
algorithm presented in this paper uses a similar thread mapping strategy but
with some enhancements for improving the data access efficiency. Furthermore,
the IDCT in H.264 is more complex as it contains two different transforms: 4×4
and 8×8.

The rest of paper is organized as follows: The parallelization strategy and the
main optimization techniques are presented in Section 2. Experimental setup and
results are presented in Section 3. Finally, in Section 4 conclusions are drawn.

2 Implementation of IDCT on GPU

Our GPU implementation is based on an optimized CPU version of the H.264 de-
coder that, in turn, is based on FFmpeg [9]. In our base code, entropy decoding
and macroblock reconstruction have been decoupled into several frames passes. In
order to offload the IDCT kernel to the GPU, we further decouple the IDCT from
the macroblock reconstruction loop, and create a separated frame pass for it as
well. Decoupling requires intermediate frame buffers for input and output data.

The general concept for offloading the IDCT to the GPU is as follows. First
the CPU performs entropy decoding on the whole frame and produces the input
buffer for the IDCT. This buffer is transferred from the CPU to the GPU, termed
as host and device in OpenCL, respectively. Then, the GPU performs the IDCT
for the whole frame. When finished, the results are transferred back to the host
memory. Finally, the CPU performs the remaining macroblock reconstruction
stages.

2.1 Compaction and Separation

A baseline computation of GPU IDCT includes detecting the type of IDCT 4×4
and 8×8, as well as detecting and skipping blocks with zero coefficients. However,
skipping zero blocks has no benefit when it results in branch divergence.

We investigate the input of IDCT kernel. Figure 2 shows the average non-
zero blocks ratio for sequences in different resolutions (1080p and 2160p) and 3
different encoding modes (labeled as CRF37, CRF22, and Intra). The details of
the video sequences and encoding modes are presented in Section 3. According
to the Figure 2, a considerable portion of the input are zero blocks.

To avoid the computation and memory transfer for the non-zero blocks, we
propose two preprocessing steps done by CPU based on the high ratio of zero
blocks within input, referred as compaction and separation. With compaction,
all zero blocks are squeezed out before they are transferred to GPU, relieving
memory transfer overhead to a great extent. With separation, input data are
separated into two different buffers according to their IDCT type.

In order to reduce the overhead of these preprocessing steps, the entropy
decoding stage has been adapted for producing dense buffers, separated for 4×4
and 8×8 blocks. Introducing these steps has no noticeable effect in the execution
time.
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Fig. 2. Non-zero blocks ratio for different encoding modes

2.2 GPU Kernel Implementation

The computation of the IDCT is performed in an OpenCL kernel, a function
executed on the GPU. OpenCL uses a hierarchical data-parallel programming
model with two-levels. At the higher level, the global thread index space, termed
as NDRange, is divided into workgroups. At the lower level each workgroup is fur-
ther divided into workitems. Each workitem is an instance of a kernel execution,
i.e a thread [3].

For the IDCT, three main options are possible for assigning data elements
to threads: sample, line and block. Sample to thread mapping, in which each
output sample computation is assigned to a thread, leads to divergence as calcu-
lation for each sample is different. Line to thread mapping is chosen over block
to thread mapping for our implementation because it supplies a larger amount
of parallelism. Block to thread mapping, in which each 4×4 or 8×8 block com-
putation is assigned to a thread, leads to insufficient parallelism. Then, line to
thread mapping, in which each thread processes one line (row and then column)
of coefficients, represents a good solution and it is chosen for our implementation.

In the baseline kernel, the size of workgroup is chosen as 96 threads to match
the size of macroblock. For better comparison, the compacted and separated
kernel has the same size of workgroup, with a configuration of 32 and 3 in
dimension of x and y, respectively. We will investigate the size of workgroup in
the future.

The main operations of both 4×4 and 8×8 kernels are shown in Listing 1.
First, the index of threads and workgroups are calculated to locate appropriate
portion of the input. Second, input coefficients are loaded in rows per thread from
the global memory into the private memory and row transform (1D-IDCT) is
performed. However, when proceeding to the column transform, the coefficients
in the same column are spread across different threads. Therefore, a store to
local memory is required first for sharing the data. We transpose the coefficients
by storing them in column order. Then, a synchronization is applied to ensure
transposed data is written to the local memory. Next, the transposed input is
loaded into private memory and column transform is performed by each thread.
Finally, each thread stores its results back to global memory in their original
positions.

Figure 3 exemplifies the data flow across different memory layers for the 4×4
IDCT in the GPU. Coefficients in the same rows are labeled with the same
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color. Numbers within each box indicates their original positions in global mem-
ory. Arrows between different memory layers represent the threads within the x
dimension of the workgroup. The 8×8 IDCT works in a similar fashion, but has
a different implementation of the transform (1D-IDCT) and has a size of N=8
instead of 4. We will refer to this version of kernels as “compacted”.

__kernel void Idct_NxN(__global short *InOut){
//workgroup dimension: 3*32 (Dimy*Dimx)
__local short Shared[3*32*N];
short Private[N];
int Tx = get_local_id(0), Ty = get_local_id(1);
int Dimx = get_local_size(0);
int Dimy = get_local_size(1);
int TyOffset = Ty*Dimx*N;
int TxOffset = Tx*N;
int WGx = get_group_id(0), WGy = get_group_id(1);
int WGsInWidth = get_num_groups(0);
int WGIdx = WGy*WGsInWidth+WGx;
int WGOffset = WGIdx*Dimy*Dimx*N;

__global short *TSrc = &InOut[WGOffset+TyOffset+TxOffset];
Private[0:1:N] = TSrc[0:1:N];
1D_IDCT(Private);
//write in column order
__local short *TShared = &Shared[TyOffset+Tx];
TShared[0:Dimx:N*Dimx] = Private[0:1:N];
barrier(CLK_LOCAL_MEM_FENCE); //synchronization

TShared = &Shared[TyOffset+Tx*N];
Private[0:1:N] = TShared[0:1:N];
1D_IDCT(Private);

int DstBlock = Tx%(N*N);
int DstCol = Tx/(Dimx/N);
int Dst = DstBlock*N*N+DstCol;
__global short *TDst = &InOut[WGOffset+TyOffset+Dst];
TDst[0:N:N*N] = Private[0:1:N];

}

Listing 1. Pseudo-code of IDCT kernel

2.3 Further Optimizations for Compacted Kernel

Several optimizations are applied on top of the compacted kernel. In Nvidia
GPU, instructions are scheduled in groups of 32 threads, termed as warps [2].
Therefore, the synchronization can be removed, as the warp size is greater than
4 or 8. Second, we increase the size of workgroup to 192. This leads to more
warps feeding the compute units, improving the utilization of GPU. Third, we
increase the data granularity processed per thread by 4 and 2 times for 4x4 and
8x8 kernel, respectively. By doing this, the index calculation overhead is reduced,
leading to less instructions executed overall. However, the granularity can not
be increased too much, as the size of input transferred to GPU is rounded up to
multiples of unit data mapped to one workgroup. Increased data granularity will
introduce more unnecessary computation. Finally, in the compacted kernel, the
results are not written back coalescingly to the global memory [2], each thread
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Fig. 3. Data flow for 4×4 IDCT in GPU

accesses addresses with a stride of 16 elements, as shown in Figure 3. To solve
this problem, we rearrange the result first in local memory, with a padded stride
to avoid the bank conflict in local memory, and then write them back to global
memory in a coalesced way. This reduces the number of write requests to global
memory.

3 Experimental Results and Discussion

We carry out our experiments on several hardware platforms consisting of differ-
ent NVIDIA GPUs based on the Fermi Architecture [10]. Performance compar-
ison is made against a highly optimized single-threaded CPU version executed
on a Intel Sandybridge processor with SSE SIMD instructions, evaluated by the
average time of five executions. Table 1 lists our hardware and software config-
uration. All results are obtained from GT430 except subsection 3.3.



An Optimized Parallel IDCT on Graphics Processing Units 161

Table 1. Experimental setup

System GPU

CPU i5-2500K GPU Architecture Fermi
Frequency 3.3GHz Compute capability 2.1
ISA X86-64 GT430 Bandwidth:25.6GB/s
Operating system Ubuntu 11.10 Shader cores:96 Frequency:1.4GHz
Linux kernel 3.0.0-13-generic GTS450 Bandwidth:28.8GB/s
H.264 encoder x264 0.115.1937 Shader cores:192 Frequency:1.56GHz
Compiler GCC-4.4.6 GTX560Ti Bandwidth:131.33GB/s
Optimization -O2 Shader cores:384 Frequency:1.64GHz
Nvidia driver 280.13 OpenCL verison 1.1
CUDA toolkit 4.0 OpenCL build options -cl-mad-enable

In order to cover videos with different characteristics we selected four
(1920×)1080p videos (blue_sky, park_joy, pedestrian_area and riverbed) and
two (3840×)2160p videos(crowd_run and park_joy).

The performance of the optimized IDCT depends heavily on the non-zero
block ratio, and this, in turn depends on the encoding options. To cover different
application scenarios we encoded all videos using three different encoding modes.
The first two modes use a constant quality encoding mode (referred to as CRF)
with different quality settings, CRF22 and CRF37. CRF22 generates higher
quality videos at the cost of higher bitrate, and it is representative of high
quality video applications. CRF37 increases the compression level at the cost
of quality losses, and is representative of low to medium quality Internet video.
The third mode is based on constant bitrate encoding with Intra-only prediction
in which no samples from other frames will be used. The encoding options are
listed in Table 2.

Table 2. Encoding parameters

Option Value Brief Description

Rate control CRF-22, CRF-37 Constant quality encoding
Intra-100 Constant bitrate at 100mbps for 1080p
Intra-400 Constant bitrate at 400mbps for 2160p

Reference pictures 16 Number of reference pictures
Motion estimation UMH Uneven multi-hexagon
Motion search range 24 Max range of the motion search in pixels
Macroblock Partition all All macroblock partitions allowed

3.1 Effect of Compaction and Separation

Table 3 shows the effect of the compaction and separation optimization for 1080p
and 2160p sequences with different encoding modes. Both the baseline and the
compacted solutions are divided into three parts: kernel execution (Kernel), Host
to Device (H2D) transfer, and Device to Host (D2H) transfer.
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The kernel execution time is greatly reduced, proportional to the zero block
ratio of different encoding modes. Along with the reduction of the kernel time,
transfer time between CPU and GPU are reduced as well. In fact, they contribute
more to overall speedup.

Table 3. Execution time (in ms) for baseline and compacted kernels

Res Mode Baseline Compacted Speedup
Kernel H2D D2H Kernel H2D D2H Kernel H2D D2H

1080p
CRF37 1.84 2.05 1.91 0.14 0.12 0.12 12.82 16.99 15.75
CRF22 2.15 2.05 1.91 0.42 0.38 0.37 5.17 5.38 5.13
Intra 2.59 2.07 1.91 0.84 0.79 0.78 3.08 2.63 2.46

2160p
CRF37 7.22 8.14 7.60 0.28 0.25 0.24 25.53 32.69 31.07
CRF22 7.99 8.18 7.57 1.21 1.19 1.11 6.62 6.88 6.83
Intra 10.85 8.23 7.58 3.84 3.94 3.57 2.82 2.09 2.12

3.2 Effect of Further Optimizations

Table 4 shows the effect of each of the optimization in section 2.3, in speedups
over the previous one starting from the compacted kernel. Accumulated speedups
of 1.51× and 1.08× are gained for 4×4 and 8×8 kernels, respectively. For
synchronization removal, 1.05× speedup is gained for 4×4 and 1.01× for 8×8
kernel. The difference in the speedups are caused by the different computation
granularities of the two kernels. For workgroup enlargement, 1.14× is gained
for 4×4, compared to 1.01× for 8×8 kernel. More instructions in 8×8 kernel
can be executed in parallel, making it running efficiently on compute units even
with less number of active warps. By enlarging the data granularity, relatively
less instructions are reduced for the 8×8 kernel, compared to 4×4 kernel. Thus
less speedup is gained. Finally, coalescing optimization contributes speedups of
1.02× for 8×8 kernel and 1.07× for 4×4.

3.3 Performance of Optimized IDCT Kernel

The GPU IDCT kernels with all the optimizations enabled are compared against
two CPU implementations: scalar and SIMD. For the SIMD implementation
MMX and SSE are used to accelerate the 4×4 and 8×8 IDCT respectively. The
performance of the SIMD and GPU kernel are presented in speedups over the
scalar code. For scalability analysis purposes, the IDCT kernels are executed on
three GPUs with numbers of shader cores 96, 192, and 384, respectively. Figure 4
shows the performance of 4×4 and 8×8 kernels as expected according to their
computational capability. Maximum speedups over 25× are observed for both
kernels in GTX560Ti in Intra mode, because of its high bandwidth and large
number of shader cores. The 4×4 kernel running on the GTS450 achieves a lim-
ited speedup compared to the speedup gained on the GT430. The low increase in
memory bandwidth of the GTS450 over the GT430 limits the scalability for 4×4
kernel because of its high ratio of global memory access. GPU implementation
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is faster than SIMD in all cases except the 8×8 kernel for CRF37 mode in the
GT430. This results from the small data of the input, which also explains the
low speedups gained in this mode. By contrast, maximum speedup is achieved
in Intra mode, as kernel launch overhead is relatively small when computing a
large amount of input data.

Table 4. Speedups of further optimizations

Kernel Sync Workgroup Granularity Coalescing Total

4x4 1.05 1.14 1.19 1.07 1.51
8x8 1.01 1.01 1.04 1.02 1.08
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3.4 Performance of Complete IDCT

The complete IDCT execution time, consisting of kernel execution time as well
as memory transfer times between CPU and GPU, is presented in Table 3. Since
modern GPUs are capable of concurrent memory copy and computation, data
transfers can be overlapped with kernel computation. We perform overlapped
execution between the 4×4 and 8×8 kernels. Speedups gained over scalar code
for sequences encoded in different modes for 1080p and 2160p are presented
in Figure 5. Overlapped execution gains speedups ranging from 1.2× to 1.3×
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over non-overlapped execution. However, compared to SIMD code, the complete
IDCT performance is slower because memory transfers still are the bottleneck
for the overall performance.

4 Conclusions

In this paper we have exploited the fact that the input of the IDCT in H.264
contains a large number of zero coefficients and propose input compaction and
separation to improve the GPU computation. Furthermore, additional optimiza-
tions are applied such as enlargement of data granularity and coalesced write
back. The optimized GPU kernel shows a significant speedup compared to SIMD
execution on the CPU, but the performance of complete IDCT is slower than
the CPU SIMD version because of CPU-GPU memory transfer overheads. Our
results do suggest, however, that kernels like H.264 IDCT could benefit from
architectures with integrated CPUs and GPUs in which the cost of memory
transfers is low.
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