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Abstract. In this paper we review the effect of two high-performance
techniques for the solution of matrix equations arising in control theory
applications on CPU-GPU platforms, in particular advanced optimiza-
tion via look-ahead and iterative refinement. Our experimental evalu-
ation on the last GPU-generation from NVIDIA, “Kepler”, shows the
slight advantage of matrix inversion via Gauss-Jordan elimination, when
combined with look-ahead, over the traditional LU-based procedure, as
well as the clear benefits of using mixed precision and iterative refinement
for the solution of Lyapunov equations.
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1 Introduction

Consider a dynamic linear time-invariant (LTT) system represented, in the state-
space model, as

@(t) = Fa(t) + Bu(t), t>0, z(0)=2a°, ,
y(t) = Cx(t) + Du(t), t>0, (1)

where z(t) € R™, u(t) € R™ and y(t) € R™ contain, respectively, the states,
inputs and outputs of the system, while z° € R™ stands for its initial state.
Here, F € R"*"™ B € R"™*™ (C € RP*", D € RP*™, n is referred to as the order
of the system and, usually, the number of inputs and outputs satisfy m,p < n.
Two important control theory applications are model order reduction (MOR) and
linear-quadratic optimal control (LQOC). In the first one, the goal is to find an
alternative dynamic LTI system, of order r < n, which can accurately replace the
original system ([I]) in subsequent operations [2]. On the other hand, the objective
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of LQOC is to determine an “optimal” feedback control law u(t) = —Kz(t), t >
0, with K € R™*" that stabilizes () (i.e., so that all the eigenvalues of F — BK
have negative imaginary part) [I4].

Large-scale dynamic LTI systems (n > 5,000) often arise when modeling
controlled physical processes by means of partial differential equations [1J2/9].
Reliable numerical methods for MOR and LQOC problems require the
solution of certain linear and quadratic matrix equations featuring a high com-
putational cost. For instance, solving the Lyapunov equations for the controlla-
bility /observability Gramians associated with (IJ), via the matrix sign function,
roughly requires 2n? floating-point arithmetic operations (or flops) per iteration,
with the number of iterations required for convergence varying between 3—4 to
a few dozens [I5]. Given the theoretical peak performance of current CPU cores
(4 double-precision flops/cycle), we can thus estimate that, under perfect con-
ditions (i.e., operating at peak performance for the full execution of the solver),
performing one iteration of the matrix sign function on a single CPU core, for an
equation of order n = 10%, can cost slightly more than 4 minutes; if the order of
the equation grows to n = 10°, the execution time of a single iteration is longer
than 69 hours!

In the past [7I8], we have shown how the use of message-passing Lyapunov
solvers based on the matrix sign function (and kernels from the distributed-
memory linear algebra library ScaLAPACK [I0]) provides an appropriate means
to solve MOR and LQOC problems of moderate scale (n = 5,000-10,000) on a
32-node cluster. Following the trend of adopting graphics processors (GPUs) as
hardware accelerators for compute-intensive applications, more recently we have
developed hybrid CPU-GPU codes for the solution of these control applications.
For instance, we have evaluated the performance of a basic building kernel like
the matrix inverse on a platform consisting of a general-purpose multicore from
Intel and a “Fermi” GPU from NVIDIA [5].

In this paper we review two advanced optimization techniques for the solution
of Lyapunov equations via the matrix sign function on CPU-GPU platforms:
1) the use of look-ahead in the framework of computing the matrix inverse;
and 2) the combined use of mixed precision and iterative refinement (MPIR) to
accelerate the solution of Lyapunov matrix equations. While a significant part of
the theoretical aspects underlying this work has already been exposed in previous
work (see, e.g., [5l6]), the principal motivation for revisiting these techniques is
the latest evolution of GPU architectures, specifically, the new “Kepler” GPU
from NVIDIA, featuring an important increase in the number of cores w.r.t. the
previous generation (Fermi), and also a very different ratio of single-to-double
precision arithmetic performance.

The rest of the paper is organized as follows. In Section 2l we briefly review the
use of the matrix sign function to solve the matrix equations arising in MOR and
LQOC problems. In Section Bl we expose how to efficiently combine look-ahead
with several basic optimization techniques for CPU-GPU platforms, in the con-
text of matrix inversion. There, we also illustrate the impact of these techniques
on the performance of our hybrid CPU-GPU algorithms on a platform equipped
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with a Kepler. In Section [l we revisit a MPIR procedure in combination with
the sign function-based solver for the Lyapunov equation, and experimentally
evaluate its performance on the target platform. Finally, we complete the paper
with some remarks in Section [l

2 Solving Matrix Equations via the Matrix Sign Function

Balanced truncation (BT) is an efficient absolute-error method for MOR of large-
scale LTT systems [2]. The crucial operation when applying BT to (1)) is the
solution of the dual Lyapunov equations

FW.+W.FT + BB =0, FT™W,+W,F+CTC =0, 2)

for the Cholesky (or, alternatively, low-rank) factors of the symmetric positive
semi-definite (s.p.d.) Gramians W,., W, € R"*". On the other hand, given a pair
of weight matrices R € R™*™ and @ € RP*P, with R s.p.d. and @ symmetric,
under certain conditions the optimal control law for the LQOC problem is given
by u(t) = —Kxz(t) = —R71BT Xx(t), with X € R™ " being the s.p.d. solution
of the algebraic Riccati equation (ARE):

FI'X+XF-XBR'B'X +CTQC =0. (3)

Given a matrix A € R9*?  the Newton iteration for the matrix sign function
is defined as

1 _ .
Ag:=A, A ;:Q(Aj+Aj1), j=0,1,.... (4)

Provided A has no eigenvalues on the imaginary axis, lim;_,o, A; = sign(A)
with an asymptotically quadratic convergence rate. Both the solution of the
Lyapunov equations in (2) and the ARE in () can be obtained via specialized
variants of (). In both cases, the key operation from the point of view of the
cost is the computation of the inverse of an n x n (Lyapunov) or 2n x 2n (ARE)
matrix; see [I5] for details. Computing the inverse of a matrix costs 2n3 flops,
if the matrix has no special structure, or just n® flops, in case symmetry can
be exploited. In general, the inverse of a sparse, banded or tridiagonal matrix is
dense and, therefore, these special structures cannot be leveraged to reduce the
cost of computing the matrix inverse during the sign function iteration.

3 Efficient Matrix Inversion on CPU-GPU Platforms

While there exist different approaches for the inversion of (general, symmetric
and s.p.d.) matrices, in past work [5] we have shown the superior performance
of Gauss-Jordan elimination (GJE) over the conventional LU-based matrix in-
version when the target is a heterogeneous platform that combines a traditional
CPU with a GPU. The reason for the advantage of matrix inversion via GJE is
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twofold. First, the procedure performs a constant number of flops per step, facil-
itating a balanced distribution of the computation between the CPU cores and
the GPU. Second, GJE is richer in large matrix-matrix multiplies, an operation
that delivers a high FLOPS (flops/sec.) ratio on both CPUs and GPUs.

Figure [Il shows a blocked procedure for the inversion of a general matrix
via GJE (right) and the unblocked variant upon which it is built (left). For
simplicity, row permutations are not included in our following discussion, though
in practice all our GJE-inversion algorithms employ partial pivoting to ensure
practical stability of the procedure.

Algorithm: A := GJE uNB( A )
Arp ATR)
Apr ABr
where Arp is0x0
while m(ATL) < m(A) do
Repartition

Algorithm: A := GJE BLK( A )
Arr ATR)
Apr ABr
where Arp is0x0
while m(ATL) < m(A) do
Determine block size b

Partition A — ( Partition A — (

Aoo ao1 Aoz Repartition
Arr Arr R Aoo Aor Ao2
ABL ABR ATL ATR N A A A
Aso ao1 Aoo Apr Apr 10 A1 A2
where «1; is a scalar Azo Az1 Az

where A1 isbxb
% Column factorization

ao1 = —ao1/a11 % Panel factorization

a = a1 Aoz Aoz
a1 = 7&21/0&11 A11 := GJE uUNB A11
% Left update Az Az

Aoo := Ao + a01a1To
Ao = Ao + azialy
aiy = ajp/o

% Right update
Aoz = Aoz + ao1al;
Ao = Ao + azialy

% Left update
Aoo := Aoo + Ao1 A0
Ao = A1 Ao

Az := Ao + A21 Ao
% Right update
Aoz := Aoz + Ao1 A2

aly = aly/a Ajo = A11Aro
a1 = 1.0/a Agg := Ags + A1 A2

Continue with

Continue with

Aoo ao1 Aoz Aoo Ao Aoz
Are Arr — | afy 11 aF: Are Arr — | Ao A1 A
Apr ABr 1o St Apr ABRr 10 o e
Az a21 Azz Azo A21 A2z
endwhile endwhile

Fig. 1. Unblocked and blocked algorithms (left and right, respectively) for the inversion
of a general matrix via GJE. Here, m(-) returns the number of rows of its argument.
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3.1 Optimization

Look-ahead is a high performance technique to overcome performance bottle-
necks due to the execution of serial phases during the computation of dense
linear algebra operations [I7]. This strategy is applied in tuned linear algebra
libraries (Intel MKL, AMD ACML, the HPL Linpack benchmark, etc.) to over-
lap the factorization of a block panel in the LU and QR factorizations with the
update of the remaining parts of the matrix. The resulting procedure yields su-
perior performance at the cost of higher programming complexity, especially if
several levels of look-ahead are simultaneously applied. Alternatively, a dynamic
variant of look-ahead can be easily attained by employing a runtime like, e.g.,
SMPSs [16l3] to schedule a dense linear algebra operation decomposed into a
number of tasks with dependencies among them.

Consider the specific case of matrix inversion via the blocked GJE-based ma-
trix inversion procedure in Figure [ (right), and the partitioning

Ao Aor Aoz
A A
(ATL ATR) = | Ao An An | = (40 Ay 4F AT ),
BL 2BR Az Agy Agy

set at the beginning of the first iteration of the loop, where Arr, Agg are both
0 x 0, correspondingly A( contains no columns, and A; has b columns. Assume
that A% also contains b columns. The idea of look-ahead is, during this first
iteration, to factorize the panel A; and, immediately after, perform the corre-
sponding update of A%; next, the updates of Ay and AL are overlapped with the
factorization of AL during this initial iteration. One can then apply the same
idea, during subsequent iterations &k = 2,3,..., to overlap the factorization of
the (k4 1)-th block panel with the updates corresponding to the k-th iteration.

The appealing property of the GJE-based matrix inversion is that the amount
of flops per iteration remains constant, easily accommodating look-ahead and en-
hancing its performance advantage compared with factorizations that operate on
a decreasing number of data (e.g., LU, QR or Cholesky). This property can be
also leveraged to obtain a balanced distribution of the computations between the
CPU and the GPU in a heterogeneous platform. In particular, due to the com-
plexity of the panel factorization (especially when partial pivoting is applied), it
is more convenient to perform this operation on the CPU. On the other hand,
the (left and right) updates can be off-loaded to the GPU except, possibly, for
a small panel that can be computed on the CPU.

Consider now the data transfers required in this hybrid CPU-GPU matrix
inversion procedure. We can initially transfer the full matrix A from the CPU
(memory), via the PCl-¢, to the GPU (memory). Given that this requires n x n
memory operations (memops) for 2n? flops, the communication cost is negligible
for large n.

Consider next the data transfers that occur during the inversion procedure. At
each iteration of the algorithm, a panel of b columns of A has to be transferred
from GPU to CPU, factorized there, and the result has to be sent back to
the GPU for the application of the corresponding updates. Thus, this requires
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2(n x b) memops per iteration, which can be amortized with the 2n(n — b)b flops
corresponding to the update provided b is chosen to be large enough (in practice,
for optimal performance, b ~ 700 or larger).

Two basic optimization techniques can be applied to further enhance the
performance of the hybrid CPU-GPU implementation. First, given that the block
size b is moderately large, higher efficiency can be attained from the execution
of the panel factorization on a multicore CPU if this is performed by using the
blocked algorithmic procedure, with a block size b<b (and, usually, with values
of 16 or 32 for I;) Second, the matrix-matrix products to be performed in the
GPU as part of the update can be combined into operations of larger granularity,
improving the FLOPS ratio in these architectures. In particular, consider for
example the (left) update of the three blocks that compose Ag. These operations
can then be combined into (two matrix manipulation operations and) a single
matrix-matrix product as follows:

A = Alo, A10 =0

Ao() AOO AOI R
A | =[Aw0 |+ | A | A
A20 Ago A21

3.2 Experimental Evaluation

The routines for matrix inversion have been evaluated on a platform equipped
with an Intel Xeon E5640 at 2.67GHz and a NVIDIA GeForce GTX 680
“Kepler”. Intel MKL (version 10.3.4), MAGMA (version 1.2.1) and NVIDIA
CUBLAS (version 4.2.9) provided high-performance implementations of the nec-
essary linear algebra kernels. We evaluate the performance of these routines in
terms of GFLOPS (10° flops/sec.).

Figure 2l reports the performance obtained for the computation of the matrix
inverse via three different routines and single-precision (SP) arithmetic. The
black dashed line corresponds to the execution of LAPACK routines sgetrf
+ sgetri on the multicore processor. The red line shows the results obtained
by the best GPU-based variant that computes the inverse using the LU fac-
torization. This variant, named LU+GPU, employs a routine from the library
MAGMA [13] to compute the LU factorization, an optimized routine developed
by AICES-RWTH to obtain the inverse of the triangular matrix, and our ad-hoc
implementation to solve the triangular system. (Previous results have demon-
strated this as being the combination that delivers highest performance for an
LU-based matrix inversion on GPUs [5].) The blue line shows the performance
of the GJE-based routine on the GPU. The experimental results demonstrate
the superior scalability of this last implementation. Although the LU-based im-
plementation delivers a higher GFLOPS rate than the GJE-based counterpart
for the inversion of matrices of dimension up to 5,000, for larger matrices, the
GJE implementation offers the best results.

Figure[3 evaluates the same three routines using double-precision (DP) arith-
metic in this case, showing that the GJE variant is consistently the best option
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Fig. 2. Performance obtained for the inversion of matrices using SP arithmetic

regardless of the matrix dimension. The results in these experiments also illus-
trate the performance drop incurred by the introduction of DP, a factor between
2x and 5x, motivating the next section.

4 MPIR for the Lyapunov Equation

Iterative refinement is a well-known technique to improve an approximate solu-
tion to a linear system of equations [II]. This technique has received renewed
interest due to the performance gap between SP and DP in recent hardware
accelerators, in particular, GPUs [4].

4.1 Refinement Procedure

Consider we have computed an initial, SP low-rank factor for the controllability
Gramian of the Lyapunov FW, + W,.FT + BBT = 0 via, e.g., the matrix sign
function method. Hereafter, we will refer to this low-rank factor as L§ (so that
Y9 := L§(L5)T is a SP approximation to the controllability Gramian W..); and
denote the corresponding computation/procedure as L§ := ApproxLyap(F, B).
(Note that, in principle, this initial factor could have been computed using some
other numerical method different from the matrix sign function.) In [6], the
following iterative procedure is introduced to refine this SP factor to the desired
precision:

R(Ly) == FLyL{ + Ly L{ F" + BB”, (5)
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Fig. 3. Performance obtained for the inversion of matrices using DP arithmetic

Decompose R(Lx) — B1B] — B_BT, (6)
L, := ApproxLyap(F, B;), (7)

L_ := ApproxLyap(F, B_), (8)

Yipr = Ly LY + Ly LY — LT, 9)

Decompose Y1 — LerleJrl —L_ L7, (10)

with k = 0,1, .... In practice, (B and (@) are never explicitly constructed. Also,
([@) and (8) are computed using SP arithmetic; if the solution procedure is based
on the matrix sign function, its computational cost becomes negligible in case
the inverses that appear during the iteration are calculated once (e.g., during
the initial solution L§ := ApproxLyap(F, B)), and saved for reuse during the
refinement steps. Finally, (@) and (I0) require DP arithmetic but are cheap to
compute. For further details, see [6].

4.2 Experimental Evaluation

In this section we evaluate the MPIR approach in the platform described in
section For the experiments we employ the benchmark STEEL from the
Oberwolfach Model Reduction Benchmark Collection [12]. This LTI system arises
in a manufacturing method for steel profiles, where the objective is to design a
control to assure the quality of the steel profile obtaining moderate temperature
gradients while the rail is cooled down. In particular, the instance of the STEEL
problem employed in this work has n = 5,177 state variables, m = 7 inputs and
p = 6 outputs.
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Table 1. Results obtained for the STEEL case using the MPIR technique

#lIter. Sign #Iter. ref.  Residual Time (s)

4 1 2.1e-10 6.7
4 2 6.5e-12 7.7
4 3 1.3e-13 8.9
4 4 2.9e-15 10.7

Table [ presents the results obtained to solve the STEEL problem using the
MPIR technique. The first and second columns show, respectively, the number
of iterations of the sign function (in SP) and refinement iterations. Column 3
reports the residual ‘|R(LE+}C)||F/HLE+I€L%+}€”F, where L ;, denotes the factor
computed when k steps of iterative refinement are applied to the initial ap-
proximate factor computed after k steps of the Newton iteration for the sign
function; and column 4 corresponds to the execution time of the complete solver
(sign function+MPIR) in seconds. The results demonstrate the moderate execu-
tion time added by MPIR. An accurate solution is obtained with 4 sign function
iterations followed by 4 refinement steps, yielding an execution time of 10.7 sec-
onds. A solution of similar accuracy using a DP implementation of the Newton
iteration for the matrix sign function requires over 20 seconds.

5 Concluding Remarks

We have evaluated the use of two optimization techniques for control theory
problems, namely, look-ahead and MPIR, on the new Kepler architecture. Look-
ahead facilitates the concurrent execution of operations, allowing the concurrent
use of many computational units, e.g., during matrix inversion via GJE on CPU-
GPU platforms. The MPIR technique delivers DP accuracy while performing
most of the computations in SP arithmetic. This approach is specially appealing
on current GPUs, where SP performance is between 4 and 5x faster than DP.
Experimental results show convenience of both techniques, demonstrating clear
performance gains for the solution of control theory problems on heterogeneous
platforms equipped with a GPU.
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