
Proving More Observational Equivalences

with ProVerif

Vincent Cheval1 and Bruno Blanchet2

1 LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France, France
2 INRIA Paris-Rocquencourt, France

Abstract. This paper presents an extension of the automatic protocol
verifier ProVerif in order to prove more observational equivalences.
ProVerif can prove observational equivalence between processes that
have the same structure but differ by the messages they contain. In
order to extend the class of equivalences that ProVerif handles, we
extend the language of terms by defining more functions (destructors)
by rewrite rules. In particular, we allow rewrite rules with inequalities as
side-conditions, so that we can express tests “if then else” inside terms.
Finally, we provide an automatic procedure that translates a process
into an equivalent process that performs as many actions as possible in-
side terms, to allow ProVerif to prove the desired equivalence. These
extensions have been implemented in ProVerif and allow us to au-
tomatically prove anonymity in the private authentication protocol by
Abadi and Fournet.

1 Introduction

Today, many applications that manipulate private data incorporate a crypto-
graphic protocol, in order to ensure that such private information is never dis-
closed to anyone but the entitled entities. However, it has been shown that some
currently used cryptographic protocols are flawed, e.g., the e-passport proto-
cols [5]. It is therefore essential to obtain as much confidence as possible in the
correctness of security protocols. To this effect, several tools have been developed
to automatically verify security protocols. Until recently, most tools focused on
reachability properties (or trace properties), such as authentication and secrecy,
which specify that the protocols cannot reach a bad state. However, privacy-type
properties cannot be naturally formalised as reachability properties and require
the notion of behavioural equivalence, in order to specify the indistinguishabil-
ity between several instances of the protocols. In the literature, the notion of
may-testing equivalence was first introduced in [16] and has been studied for
several calculi, e.g., the spi-calculus [3,13]. Typically, two processes P and Q
are may-testing equivalent if for any process O, the processes P | O and Q | O
can both emit on the same channels. However, the high difficulty of deciding
this equivalence led to the introduction of stronger equivalences such as obser-
vational equivalence that additionally checks the bisimilarity of the process P
and Q. This notion was the focus of several works, e.g., [7,12]. In this paper, we
focus on the automation of the proofs of observational equivalence.

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 226–246, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Proving More Observational Equivalences with ProVerif 227

Related Work. The first algorithms to verify equivalence properties for security
protocols dealt with a bounded number of sessions, a fixed set of basic primitives,
and no else branches [14,13], but their complexity was too large for practical im-
plementations. [6] showed that diff-equivalence, a strong equivalence between
processes that have the same structure but differ by the terms they contain, is
also decidable for bounded processes without else-branches; this result applies
in particular to the detection of off-line guessing attacks against password-based
protocols and to the proof of strong secrecy. However, the procedure does not
seem to be well-suited for an implementation. Recently, a more practical algo-
rithm was designed for bounded processes with else branches, non-determinism,
and a fixed set of primitives [9] but there is no available implementation. These
techniques rely on a symbolic semantics [8,12,15]: in such a semantics, the mes-
sages that come from the adversary are represented by variables, to avoid an
unbounded case distinction on these messages.

To our knowledge, only three works resulted in automatic tools that ver-
ify equivalence properties for security protocols: ProVerif [7], SPEC [17],
and AKiSs [10]. The tool SPEC provides a decision procedure for observational
equivalence for processes in the spi-calculus. The tool AKiSs decides a weaker
equivalence close to the may-testing equivalence for a wide variety of primitives.
The scope of these two tools is limited to bounded determinate processes with-
out non-trivial else branches, that is, processes whose executions are entirely
determined by the adversary inputs. At last, the tool ProVerif was first a
protocol analyser for trace properties but, since [7], it can also check the diff-
equivalence between processes written in the applied pi calculus [1]. Although the
diff-equivalence is stronger than observational equivalence, it still allows one to
express many interesting properties such as anonymity and unlinkability, and it
is much easier to prove than observational equivalence. Furthermore, ProVerif
is the only tool that accepts unbounded processes with else branches and any
cryptographic primitives that can be represented by an equational theory and/or
rewrite rules. Even if it does not always terminate, it was shown very efficient for
many case studies (e.g., proving the absence of guessing attacks in EKE, proving
the core security of JFK [7] or proving anonymity and unlinkability of the Active
Authentication protocol of the electronic passport [4]). Hence the present paper
focuses on the tool ProVerif.

Motivation. Since the notion of equivalence proved by ProVerif is stronger
than observational equivalence, it may yield false attacks. Indeed, ProVerif
proves equivalences P ≈ Q in which P andQ are two variants of the same process
obtained by selecting different terms for P and Q. Moreover, ProVerif requires
that all tests yield the same result in both processes, in particular the tests of
conditional branchings. Thus, for a protocol that does not satisfy this condition,
ProVerif will fail to prove equivalence. Unfortunately, many indistinguishable
processes do not satisfy this condition. Consider for example the processes:

P
def
= c(x).if x = pk(skA) then c〈{s}pk(skA)〉 else c〈{Np}pk(skA)〉

Q
def
= c(x).if x = pk(skB) then c〈{s}pk(skB)〉 else c〈{Nq}pk(skB)〉

228 V. Cheval and B. Blanchet

where all names but c are private and the public keys pk(skA) and pk(skB)
are public. The protocol P is simply waiting for the public key of the agent A
(pk(skA)) on a channel c. If P receives it, then he sends some secret s encrypted
with A’s public key; otherwise, he sends a fresh nonce Np encrypted with A’s
public key on channel c. On the other hand, the protocol Q does similar actions
but is waiting for the public key of the agent B (pk(skB)) instead of A. Assuming
that the attacker does not have access to the private keys of A and B, then the
two protocols are equivalent since the attacker cannot differentiate {s}pk(skA),
{Np}pk(skA), {s}pk(skB), and {Nq}pk(skB).

However, if the intruder sends the public key of the agentA (pk(skA)), then the
test of the conditional branching in P will succeed (pk(skA) = pk(skA)) whereas
the test of the same conditional branching in Q will fail (pk(skA) �= pk(skB)).
Since this test does not yield the same result in both processes, ProVerif will
fail to prove the equivalence between P and Q. This false attack also occurs in
more realistic case studies, e.g., the private authentication protocol [2] and the
Basic Access Control protocol of the e-passport [5].

Our Contribution. Our main contribution consists in addressing the issue of false
attacks due to conditional branchings. In particular, we allow function symbols
defined by rewrite rules with inequalities as side-conditions, so that we can ex-
press tests of conditional branchings directly inside terms (Section 2). There-
fore, we still consider equivalences between processes that differ by the terms
they contain, but our term algebra is now richer as it can express tests. Hence,
we can now prove equivalences between processes that take different branches
in internal tests, provided that what they do after these tests can be merged
into a single process. We show how the original Horn clauses based algorithm
of ProVerif can be adapted to our new calculus (Sections 3 and 4). Moreover,
we provide an automatic procedure that transforms a process into an equivalent
process that contains as few conditional branchings as possible, which allows
ProVerif to prove equivalence on a larger class of processes. In particular, the
implementation of our extension in ProVerif allowed us to automatically prove
anonymity of the private authentication protocol for an unbounded number of
sessions (Section 5). Anonymity was already proven by hand in [2] for the private
authentication protocol; we automate this proof for a slightly simplified model.
We eliminated some false attacks for the Basic Access Control protocol of the e-
passport; however, other false attacks remain so we are still unable to conclude
for this protocol. Our implementation is available as ProVerif 1.87beta, at
http://proverif.inria.fr. A long version with additional details and proofs
is available at http://www.lsv.ens-cachan.fr/~cheval/(BC)POST13.pdf.

2 Model

This section introduces our process calculus, by giving its syntax and semantics.
As mentioned above, our work extends the behaviour of destructor symbols, so
our syntax and semantics of terms change in comparison to the original calculus
of ProVerif [7]. However, we did not modify the syntax of processes thus the

http://proverif.inria.fr
http://www.lsv.ens-cachan.fr/~cheval/(BC)POST13.pdf

Proving More Observational Equivalences with ProVerif 229

M ::= message
x, y, z variables
a, b, c names
f(M1, . . . ,Mn) constructor application

U ::= may-fail message
M message
fail failure
u may-fail variable

D ::= term evaluation
U may-fail message
eval h(D1, . . . , Dn) function evaluation

P,Q,R ::= processes
0 nil
M(x).P input

M〈N〉.P output
P | Q parallel composition
!P replication
(νa)P restriction
let x = D in P else Q term evaluation

Fig. 1. Syntax of terms and processes

semantics of processes differs only due to changes coming from the modifications
in the semantics of terms.

2.1 Syntax

The syntax of our calculus is summarised in Fig. 1. The messages sent on the
network are modelled using an abstract term algebra. We assume an infinite set
of names N and an infinite set of variables X . We also consider a signature Σ
consisting of a finite set of function symbols with their arity. We distinguish two
categories of function symbols: constructors f and destructors g. Constructors
build terms; destructors, defined by rewrite rules, manipulate terms, as detailed
below. We denote by h a constructor or a destructor. Messages M are terms
built from variables, names, and constructors applied to terms.

We define an equational theory by a finite set of equations M = N , where
M,N are terms without names. The equational theory is then obtained from
these equations by reflexive, symmetric, and transitive closure, closure under
application of function symbols, and closure under substitution of terms for
variables. By identifying an equational theory with its signature Σ, we denote
M =Σ N an equality modulo the equational theory, and M �=Σ N an inequality
modulo the equational theory. We write M = N and M �= N for syntactic
equality and inequality, respectively. In this paper, we only consider consistent
equational theories, i.e., there exist terms M and N such that M �=Σ N .

230 V. Cheval and B. Blanchet

Destructors. In [7], the rewrite rules describing the behaviour of destructors
follow the usual definition of a rewrite rule. However, as previously mentioned,
we want to introduce tests directly into terms and more specifically into the
definition of destructors. Hence, we introduce formulas on messages in order to
express these tests. We consider formulas φ of the form

∧n
i=1 ∀x̃i.Mi �=Σ Ni,

where x̃ stands for a sequence of variables x1, . . . , xk. We denote by � and ⊥
the true and false formulas, respectively corresponding to an empty conjunction
(n = 0) and to x �=Σ x, for instance. Formulas will be used as side conditions
for destructors. We denote by fv (φ) the free variables of φ, i.e., the variables
that are not universally quantified. Let σ be a substitution mapping variables to
ground terms. We define σ � φ as follows: σ �

∧n
i=1 ∀x̃i.Mi �=Σ Ni if and only if

for i = 1, . . . n, for all σi of domain x̃i, σσiMi �=Σ σσiNi.
In [7], destructors are partial functions defined by rewrite rules; when no

rewrite rule can be applied, we say that the destructor fails. However, this for-
malism does not allow destructors to succeed when one of their arguments fails.
We shall need this feature in order to include as many tests as possible in terms.
Therefore, we extend the definition of destructors by defining may-fail messages,
denoted by U , which can be messages M , the special value fail, or a variable u.
We separate fail from ordinary messages M so that the equational theory does
not apply to fail. May-fail messages represent the possible arguments and result
of a destructor. We differentiate variables for may-fail messages, denoted u, v, w
from variables for messages, denoted x, y, z. A may-fail variable u can be instan-
tiated by a may-fail term while a message variable x can be instantiated only by
a message, and so cannot be instantiated by fail.

For two groundmay-fail messages U1 and U2, we say that U1 =Σ U2 if and only
if U1 = U2 = fail or U1, U2 are both messages, denoted M1,M2, and M1 =Σ M2.
Given a signature Σ, a destructor g of arity n is defined by a finite set of rewrite
rules g(U1, . . . , Un) → U || φ where U1, . . . , Un, U are may-fail messages that do
not contain any name, φ is a formula as defined above that does not contain
any name, and the variables of U and fv (φ) are bound in U1, . . . , Un. Note that
all variables in fv (φ) are necessarily message variables. Variables are subject to
renaming. We omit the formula φ when it is �. We denote by defΣ(g) the set of
rewrite rules describing g in the signature Σ.

Example 1. Consider a symmetric encryption scheme where the decryption func-
tion either properly decrypts a ciphertext using the correct private key, or fails.
To model this encryption scheme, we consider, in a signature Σ, the constructor
senc for encryption and the destructor sdec for decryption, with the following
rewrite rules:

– sdec(senc(x, y), y) → x (decryption succeeds)
– sdec(x, y) → fail || ∀z.x �=Σ senc(z, y) (decryption fails, because x is not a

ciphertext under the correct key)
– sdec(fail, u) → fail, sdec(u, fail) → fail (the arguments failed, the decryption

also fails)

Let U1, . . . , Un be may-fail messages and g be a destructor of arity n. We say
that g rewrites U1, . . . , Un into U , denoted g(U1, . . . , Un) → U , if there exist

Proving More Observational Equivalences with ProVerif 231

g(U ′
1, . . . , U

′
n) → U ′ || φ in defΣ(g), and a substitution σ such that σU ′

i =Σ Ui

for all i = 1 . . . n, σU ′ = U and σ � φ. At last, we ask that, given a signature Σ,
for all destructors g of arity n, defΣ(g) satisfies the following properties:

P1. For all ground may-fail messages U1, . . . , Un, there exists a may-fail message
U such that g(U1, . . . , Un) → U .

P2. For all ground may-fail messages U1, . . . , Un, V1, V2, if g(U1, . . . , Un) → V1

and g(U1, . . . , Un) → V2 then V1 =Σ V2.

Property P1 expresses that all destructors are total while Property P2 expresses
that they are deterministic (modulo the equational theory). By Property P2, a
destructor cannot reduce to fail and to a message at the same time.

In Example 1, the destructor sdec follows the classical definition of the sym-
metric decryption. However, thanks to the formulas and the fact that the argu-
ments of a destructor can fail, we can describe the behaviour of new primitives.

Example 2. We define a destructor that tests equality and returns a boolean by:

eq(x, x) → true eq(x, y) → false || x �=Σ y

eq(fail, u) → fail eq(u, fail) → fail

This destructor fails when one of its arguments fails. This destructor could not be
defined in ProVerif without our extension, because one could not test x �=Σ y.

From Usual Destructors to our Extension. From a destructor defined, as in [7],
by rewrite rules g(M1, . . . ,Mn) → M without side conditions and such that
the destructor is considered to fail when no rewrite rule applies, we can build a
destructor in our formalism. The algorithm is given in Lemma 1 below.

Lemma 1. Consider a signature Σ. Let g be a destructor of arity n described
by the set of rewrite rules S = {g(M i

1, . . . ,M
i
n) → M i | i = 1, . . . ,m}. Assume

that g is deterministic, i.e., S satisfies Property P2. The following set defΣ(g)
satisfies Properties P1 and P2:

defΣ(g) = S ∪ {g(x1, . . . , xn) → fail || φ}
∪{g(u1, . . . , uk−1, fail, uk+1, . . . , un) → fail | k = 1, . . . , n}

where φ =
∧m

i=1 ∀ỹi.(x1, . . . , xn) �=Σ (M i
1, . . . ,M

i
n) and ỹi are the variables of

(M i
1, . . . ,M

i
n), and x1, . . . , xn are message variables.

The users can therefore continue defining destructors as before in ProVerif; the
tool checks that the destructors are deterministic and automatically completes
the definition following Lemma 1.

Generation of Deterministic and Total Destructors. With our extension, we
want the users to be able to define destructors with side conditions. However,
these destructors must satisfy Properties P1 and P2. Instead of having to verify
these properties a posteriori, we use a method that allows the user to provide

232 V. Cheval and B. Blanchet

precisely the destructors that satisfy P1 and P2: the user inputs a sequence of
rewrite rules g(U1

1 , . . . , U
1
n) → V 1 otherwise . . . otherwise g(Um

n , . . . , Um
n) → V m

where U i
k, V

i are may-fail messages, for all i, k. Intuitively, this sequence indicates
that when reducing terms by the destructor g, we try to apply the rewrite rules
in the order of the sequence, and if no rule is applicable then the destructor
fails. To model the case where no rule is applicable, we add the rewrite rule
g(u1, . . . , un) → fail where u1, . . . , un are distinct may-fail variables, at the end
of the previous sequence of rules. Then, the obtained sequence is translated into
a set S of rewrite rules with side conditions as follows

S def
=

{
g(U i

1, . . . , U
i
n) → V i || ∧j<i ∀ũj .(U i

1, . . . , U
i
n) �=Σ (U j

1 , . . . , U
j
n)
}

i=1..m+1

where ũj are the variables of U j
1 , . . . , U

j
n. We use side-conditions to make sure

that rule i is not applied if rule j for j < i can be applied. Notice that, in the
set S defined above, the formulas may contain may-fail variables or the constant
fail. In order to match our formalism, we instantiate these variables by either a
message variable or fail, and then we simplify the formulas.

Term Evaluation. A term evaluation represents the evaluation of a series of
constructors and destructors. The term evaluation eval h(D1, . . . , Dn) indicates
that the function symbol h will be evaluated. While all destructors must be
preceded by eval, some constructors might also be preceded by eval in a term
evaluation. In fact, the reader may ignore the prefix eval since eval h and h
have the same semantics with the initial definition of constructors with equa-
tions. However, eval becomes useful when we convert equations into rewrite
rules (see Section 4.1). The prefix eval is used to indicate whether a term has
been evaluated or not. Even though we allow may-fail messages in term evalu-
ations, since no construct binds may-fail variables in processes, only messages
M and fail may in fact occur. In order to avoid distinguishing constructors and
destructors in the definition of term evaluation, for f a constructor of arity n,
we let defΣ(f) = {f(x1, . . . , xn) → f(x1, . . . , xn)} ∪ {f(u1, . . . , ui−1, fail, ui+1, . . . ,
un) → fail | i = 1, . . . , n}. The second part of the union corresponds to the
failure cases: the constructor fails if, and only if, one of its arguments fails.

Processes. At last, the syntax of processes corresponds exactly to [7]. A trailing
0 can be omitted after an input or an output. An else branch can be omitted
when it is else 0.

Even if the condition if M = N then P else Q is not included in our calcu-
lus, it can be defined as let x = equals(M,N) in P else Q, where x is a fresh
variable and equals is a binary destructor with the rewrite rules {equals(x, x) →
x, equals(x, y) → fail || x �=Σ y, equals(fail, u) → fail, equals(u, fail) → fail}. The
destructor equals succeeds if and only if its two arguments are equal messages
modulo the equational theory and different from fail. We always include this
destructor in the signature Σ. An evaluation context C is a closed context built
from [], C | P , P | C, and (νa)C.

Proving More Observational Equivalences with ProVerif 233

Example 3. We consider a slightly simplified version of the private authentica-
tion protocol given in [2]. In this protocol, a participant A is willing to engage
in communication and reveal its identity to a participant B, without revealing
it to other participants. The cryptographic primitives used in this protocol are
the asymmetric encryption and pairing. Expressed in ProVerif syntax, the
participants A and B proceed as follows:

A(ska, sk b)
def
= (νna)c〈aenc(〈na, pk(ska)〉, pk(sk b))〉.c(x).0

B(sk b, ska)
def
= (νnb)c(y).let x = adec(y, sk b) in

let xna = proj1(x) in
let z = equals(proj2(x), pk(ska)) in
c〈aenc(〈xna, 〈nb, pk(sk b)〉〉, pk(ska)))〉.0

else c〈aenc(nb, pk(sk b)))〉.0
else c〈aenc(nb, pk(sk b)))〉.0

else c〈senc(nb, pk(sk b)))〉.0
System(ska, sk b)

def
= A(ska, sk b) | B(sk b, ska)

where ska and sk b are the respective private keys of A and B, proj1 and proj2
are the two projections of a pairing denoted by 〈 , 〉, aenc and adec are the
asymmetric encryption and decryption, and pk(sk) is the public key associated
to the private key sk .

In other words, A first sends to B a nonce na and its own public key pk(ska)
encrypted with the public key of B, pk(sk b). After receiving this message, B
checks that the message is of the correct form and that it contains the public
key of A. If so, B sends back to A the “correct” message composed of the nonce
na he received, nb a freshly generated nonce, and his own public key (pk(sk b)),
all this encrypted with the public key of A. Otherwise, B sends back a “dummy”
message, aenc(nb, pk(sk b)). From the point of view of the attacker, this dummy
message is indistinguishable from the “correct” one since the private keys ska

and sk b are unknown to the attacker, so the attacker should not be able to tell
whether A or another participant is talking to B. This is what we are going to
prove formally.

2.2 Semantics

The semantics of processes and term evaluations is summarised in Fig. 2. The
formula D ⇓Σ U means that D evaluates to U . When the term evaluation corre-
sponds to a function h preceded by eval, the evaluation proceeds recursively by
evaluating the arguments of the function and then by applying the rewrite rules
of h in defΣ(h) to compute U , taking into account the side-conditions in φ.

The semantics of processes in ProVerif is defined by a structural equiva-
lence, denoted ≡, and some internal reductions. The structural equivalence ≡
is the smallest equivalence relation on extended processes that is closed under
α-conversion of names and variables, by application of evaluation contexts, and

234 V. Cheval and B. Blanchet

U ⇓Σ U
eval h(D1, . . . , Dn)⇓Σ σU

if h(U1, . . . , Un) → U || φ is in defΣ(h) and σ is such
that for all i, Di ⇓Σ Vi, Vi =Σ σUi and σ � φ

N〈M〉.Q | N ′(x).P →Σ Q | P{M/x} if N =Σ N ′ (Red I/O)

let x = D in P else Q →Σ P{M/x} if D ⇓Σ M (Red Fun 1)
let x = D in P else Q →Σ Q if D ⇓Σ fail (Red Fun 2)

!P →Σ P | !P (Red Repl)
P →Σ Q ⇒ P | R →Σ Q | R (Red Par)
P →Σ Q ⇒ (νa)P →Σ (νa)Q (Red Res)
P ′ ≡ P, P →Σ Q, Q ≡ Q′ ⇒ P ′ →Σ Q′ (Red ≡)

Fig. 2. Semantics of terms and processes

satisfying some further basic structural rules such as P | 0 ≡ P , associativity
and commutativity of |, and scope extrusion. However, this structural equiva-
lence does not substitute terms equal modulo the equational theory and does not
model the replication. Both properties are in fact modelled as internal reduction
rules for processes. This semantics differs from [7] by the rule (Red Fun 2) which
previously corresponded to the case where the term evaluation D could not be
reduced whereas D is reduced to fail in our semantics.

Both relations ≡ and →Σ are defined only on closed processes. We denote by
→∗

Σ the reflexive and transitive closure of →Σ , and by →∗
Σ≡ its composition

with ≡. When Σ is clear from the context, we abbreviate →Σ to → and ⇓Σ

to ⇓.

3 Using Biprocesses to Prove Observational Equivalence

In this section, we recall the notions of observational equivalence and biprocesses
introduced in [7].

Definition 1. We say that the process P emits on M (P ↓M) if and only if
P →∗

Σ≡ C[M ′〈N〉.R] for some evaluation context C that does not bind fn(M)
and M =Σ M ′.

Observational equivalence, denoted ≈, is the largest symmetric relation R
between closed processes such that P R Q implies:

1. if P ↓M , then Q ↓M ;
2. if P →∗

Σ P ′, then Q →∗
Σ Q′ and P ′ R Q′ for some Q′;

3. C[P] R C[Q] for all closed evaluation contexts C.

Intuitively, an evaluation context may represent an adversary, and two processes
are observationally equivalent when no adversary can distinguish them. One
of the most difficult parts of deciding the observational equivalence between
two processes directly comes from the second item of Definition 1. Indeed, this

Proving More Observational Equivalences with ProVerif 235

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if fst(N) =Σ fst(N ′) and snd(N) =Σ snd(N ′)

let x = D in P else Q → P{diff[M1,M2]/x} (Red Fun 1)
if fst(D)⇓Σ M1 and snd(D)⇓Σ M2

let x = D in P else Q → Q (Red Fun 2)
if fst(D)⇓Σ fail and snd(D)⇓Σ fail

Fig. 3. Generalized rules for biprocesses

condition indicates that each reduction of a process has to be matched in the
second process. However, we consider a process algebra with replication, hence
there are usually infinitely many candidates for this mapping.

To solve this problem, [7] introduces a calculus that represents pairs of pro-
cesses, called biprocesses, that have the same structure and differ only by the
terms and term evaluations that they contain. The grammar of the calculus
is a simple extension of the grammar of Fig. 1 with additional cases so that
diff[M,M ′] is a term and diff[D,D′] is a term evaluation.

Given a biprocess P , we define two processes fst(P) and snd(P), as fol-
lows: fst(P) is obtained by replacing all occurrences of diff[M,M ′] with M and
diff[D,D′] withD in P , and similarly, snd(P) is obtained by replacing diff[M,M ′]
with M ′ and diff[D,D′] with D′ in P . We define fst(D), fst(M), snd(D), and
snd(M) similarly. A process or context is said to be plain when it does not
contain diff.

Definition 2. Let P be a closed biprocess. We say that P satisfies observational
equivalence when fst(P) ≈ snd(P).

The semantics of biprocesses is defined as in Fig. 2 with generalized rules (Red
I/O), (Red Fun 1), and (Red Fun 2) given in Fig. 3.

The semantics of biprocesses is such that a biprocess reduces if and only if
both sides of the biprocess reduce in the same way: a communication succeeds on
both sides; a term evaluation succeeds on both sides or fails on both sides. When
the two sides of the biprocess reduce in different ways, the biprocess blocks. The
following lemma shows that, when both sides of a biprocess always reduce in the
same way, then that biprocess satisfies observational equivalence.

Lemma 2. Let P0 be a closed biprocess. Suppose that, for all plain evaluation
contexts C, all evaluation contexts C′, and all reductions C[P0] →∗ P ,

1. if P ≡ C′[N〈M〉.Q | N ′(x).R] then fst(N) =Σ fst(N ′) if and only if snd(N)
=Σ snd(N ′);

2. if P ≡ C′[let x = D in Q else R] then fst(D)⇓Σfail if and only if snd(D)⇓Σfail.

Then P0 satisfies observational equivalence.

Intuitively, the semantics for biprocesses forces that each reduction of a process
has to be matched by the same reduction in the second process. Hence, verifying
the second item of Definition 1 becomes less problematic since we reduce to one
the number of possible candidates Q′.

236 V. Cheval and B. Blanchet

Example 4. Coming back to the private authentication protocol detailed in Ex-
ample 3, we want to verify the anonymity of the participant A. Intuitively, this
protocol preserves anonymity if an attacker cannot distinguish whether B is talk-
ing to A or to another participant A′, assuming that A, A′, and B are honest
participants and furthermore assuming that the intruder knows the public keys
of A, A′, and B. Hence, the anonymity property is modelled by an observational
equivalence between two instances of the protocol: one where B is talking to A
and the other where B is talking to A′, which is modelled as follows:

(νska)(νsk
′
a)(νsk b)c〈pk(ska)〉.c〈pk(sk ′

a)〉.c〈pk(sk b)〉.System(ska, sk b)

≈ (νska)(νsk
′
a)(νsk b)c〈pk(ska)〉.c〈pk(sk ′

a)〉.c〈pk(sk b)〉.System(sk ′
a, sk b)

Since the “dummy” message and the “correct” one are indistinguishable from the
point of view of the attacker, this equivalence holds. To prove this equivalence
using ProVerif, we first have to transform this equivalence into a biprocess.
This is easily done since only the private keys ska and ska′ change between the
two processes. Hence, we define the biprocess P0 as follows:

(νska)(νsk
′
a)(νsk b)c〈pk(ska)〉.c〈pk(sk ′

a)〉.c〈pk(sk b)〉.System(diff[ska, sk
′
a], sk b)

Note that fst(P0) and snd(P0) correspond to the two protocols of the equivalence.
For simplicity, we only consider two sessions in this example but our results also
apply to an unbounded number of sessions (for the definition of anonymity of [5]).

4 Clause Generation

In [7], observational equivalence is verified by translating the considered bipro-
cess into a set of Horn clauses, and using a resolution algorithm on these clauses.
We adapt this translation to our new destructors.

4.1 From Equational Theories to Rewrite Rules

Equational theories are a very powerful tool for modeling cryptographic primi-
tives. However, for a practical algorithm, it is easier to work with rewrite rules
rather than with equational theories. Hence in [7], a signature Σ with an equa-
tional theory is transformed into a signature Σ′ with rewrite rules that models
Σ, when Σ has the finite variant property [11]. These rewrite rules may rewrite a
term M into several irreducible forms (the variants), which are all equal modulo
Σ, and such that, when M and M ′ are equal modulo Σ, M and M ′ rewrite
to at least one common irreducible form. We reuse the algorithm from [7] for
generating Σ′, adapting it to our formalism by just completing the rewrite rules
of constructors with rewrite rules that reduce to fail when an argument is fail.

4.2 Patterns and Facts

In the clauses, the messages are represented by patterns, with the following
grammar:

Proving More Observational Equivalences with ProVerif 237

p ::= pattern
x, y, z, i variables
f(p1, . . . , pn) constructor application
a[p1, . . . , pn] name

mp ::= may-fail pattern
p pattern
u, v may-fail variables
fail failure

The patterns p are the same as in [7]. The variable i represents a session identi-
fier for each replication of a process. A pattern a[p1, . . . , pn] is assigned to each
name of a process P . The arguments p1, . . . , pn allow one to model that a fresh
name a is created at execution of (νa). For example, in the process ! c′(x).(νa)P ,
each name created by (νa) is represented by a[i, x] where i is the session iden-
tifier for the replication and x is the message received as input in c′(x). Hence,
the name a is represented as a function of i and x. In two different sessions,
(i, x) takes two different values, so the two created instances of a (a[i, x]) are
different.

Since we introduced may-fail messages to represent the possible failure of a
destructor, we also define may-fail patterns to represent the failure in clauses.
As in messages and may-fail messages, a may-fail variable u can be instantiated
by a pattern or fail, whereas a variable x cannot be instantiated by fail.

Clauses are built from the following predicates:

F ::= facts
att′(mp,mp′) attacker knowledge
msg′(p1, p2, p′1, p

′
2) output message p2 on p1 (resp. p′2 on p′1)

input′(p, p′) input on p (resp. p′)
formula(

∧
i ∀z̃i.pi �=Σ p′i) formula

bad bad

Intuitively, att′(mp,mp′) means that the attacker may obtain mp in fst(P)
and mp′ in snd(P) by the same operations; the fact msg′(p1, p2, p′1, p′2) means
that message p2 may be output on channel p1 by the process fst(P) while p′2
may be output on channel p′1 by the process snd(P) after the same reductions;
input′(p, p′) means that an input is possible on channel p in fst(P) and on chan-
nel p′ in snd(P). Note that both facts msg′ and input′ contain only patterns and
not may-fail patterns. Hence channels and sent terms are necessarily messages
and so cannot be fail. The fact formula(φ) means that φ has to be satisfied. At
last, bad serves in detecting violations of observational equivalence: when bad is
not derivable, we have observational equivalence.

4.3 Clauses for the Attacker

The capabilities of the attacker are represented by clauses adapted from the ones
in [7] to fit our new formalism. We give below the clauses that differ from [7].

att′(fail, fail) (Rfail)

238 V. Cheval and B. Blanchet

For each function h, for each pair of rewrite rules

h(U1, . . . , Un) → U || φ and h(U ′
1, . . . , U

′
n) → U ′ || φ′

in defΣ′(h) (after renaming of variables),

att′(U1, U
′
1) ∧ . . . ∧ att′(Un, U

′
n) ∧ formula(φ ∧ φ′) → att′(U,U ′)

(Rf)

input′(x, x′) ∧msg′(x, z, y′, z′) ∧ formula(x′ �=Σ y′) → bad (Rcom)

att′(x, fail) → bad (Rfailure)

plus the symmetric clauses (Rcom′) and (Rfailure′) obtained from (Rcom) and
(Rfailure) by swapping the first and second arguments of att′ and input′, and
the first and third arguments of msg′.

Clauses (Rf) apply a constructor or a destructor on the attacker’s knowledge,
given the rewrite rules in defΣ′(h). Since our destructors may return fail, by
combining (Rf) with (Rfailure) or (Rfailure′), we can detect when a destructor
succeeds in one variant of the biprocess and not in the other. We stress that, in
clauses (Rfailure) and (Rcom), x, x′, y, y′ are message variables and so they can-
not be instantiated by fail. (The messages sent on the network and the channels
are never fail.)

4.4 Clauses for the Protocol

To translate the protocol into clauses, we first need to define evaluation on open
terms, as a relation D ⇓′ (U, σ, φ), where σ collects instantiations of D obtained
by unification and φ collects the side conditions of destructor applications. More
formally, the relation D ⇓′ (U, σ, φ) specifies how instances of D evaluate: if D ⇓′

(U, σ, φ), then for any substitution σ′ such that σ′ � φ, we have σ′σD ⇓Σ′ σ′U .
There may be several (U, σ, φ) such that D ⇓′ (U, σ, φ) in case several instances
of D reduce in a different way. This relation is defined as follows:

U ⇓′ (U, ∅,�)

eval h(D1, . . . , Dn) ⇓′ (σuV, σuσ
′, σuφ

′ ∧ σuφ)
if (D1, . . . , Dn) ⇓′ ((U1, . . . , Un), σ

′, φ′),
h(V1, . . . , Vn) → V || φ ∈ defΣ′(h) and
σu is a most general unifier of (U1, V1), . . . , (Un, Vn)

(D1, . . . , Dn) ⇓′ ((σnU1, . . . , σnUn−1, Un), σnσ, σnφ ∧ φn)
if (D1, . . . , Dn−1) ⇓′ ((U1, . . . , Un−1), σ, φ) and σDn ⇓′ (Un, σn, φn)

The most general unifier of may-fail messages is computed similarly to the most
general unifier of messages, even though specific cases hold due to may-fail vari-
ables and message variables: there is no unifier of M and fail, for any message
M (including variables x, because these variables can be instantiated only by
messages); the most general unifier of u and U is {U/u}; the most general unifier
of fail and fail is the identity; finally, the most general unifier of M and M ′ is
computed as usual.

The translation [[P]]ρsH of a biprocess P is a set of clauses, where ρ is an
environment that associates a pair of patterns with each name and variable, s

Proving More Observational Equivalences with ProVerif 239

is a sequence of patterns, and H is a sequence of facts. The empty sequence is
written ∅; the concatenation of a pattern p to the sequence s is written s, p; the
concatenation of a fact F to the sequence H is written H ∧ F . Intuitively, H
represents the hypothesis of the clauses, ρ represents the names and variables
that are already associated with a pattern, and s represents the current values
of session identifiers and inputs. When ρ associates a pair of patterns with each
name and variable, and f is a constructor, we extend ρ as a substitution by
ρ(f(M1, . . . ,Mn)) = (f(p1, . . . , pn), f(p

′
1, . . . , p

′
n)) where ρ(Mi) = (pi, p

′
i) for all

i ∈ {1, . . . , n}. We denote by ρ(M)1 and ρ(M)2 the components of the pair
ρ(M). We let ρ(diff[M,M ′]) = (ρ(M)1, ρ(M

′)2).
The definition of [[P]]ρsH is directly inspired from [7]. We only present below

the case [[let x = D in P else Q]]ρsH .

[[let x = D in P else Q]]ρsH =
⋃

{[[P]]((σρ)[x �→ (p, p′)])(σs, p, p′)(σH ∧ formula(φ))

| (ρ(D)1, ρ(D)2) ⇓′ ((p, p′), σ, φ)}
∪
⋃

{[[Q]](σρ)(σs)(σH ∧ formula(φ)) | (ρ(D)1, ρ(D)2) ⇓′ ((fail, fail), σ, φ)}
∪ {σH ∧ formula(φ) → bad | (ρ(D)1, ρ(D)2) ⇓′ ((p, fail), σ, φ)}
∪ {σH ∧ formula(φ) → bad | (ρ(D)1, ρ(D)2) ⇓′ ((fail, p′), σ, φ)}

This formula is fairly similar to the one in [7]: when both ρ(D)1 and ρ(D)2
succeed, the process P is translated, instantiating terms with the substitution
σ and taking into account the side-condition φ, to make sure that ρ(D)1 and
ρ(D)2 succeed; when both fail, the process Q is translated; and at last when one
of ρ(D)1, ρ(D)2 succeeds and the other fails, clauses deriving bad are generated.
Since may-fail variables do not occur in D, we can show by induction on the
computation of ⇓′ that, when (ρ(D)1, ρ(D)2) ⇓′ ((mp1,mp2), σ, φ), mp1 and mp2
are either fail or a pattern, but cannot be a may-fail variable, so our definition
of [[let x = D in P else Q]]ρsH handles all cases.

4.5 Proving Equivalences

Let ρ0 = {a �→ (a[], a[]) | a ∈ fn(P0)}. We define the set of clauses that cor-
responds to biprocess P0 as RP0 = [[P0]]ρ0∅∅ ∪ {(Rfail), . . . , (Rfailure′)}. The
following theorem enables us to prove equivalences from these clauses.

Theorem 1. If bad is not a logical consequence of RP0 , then P0 satisfies ob-
servational equivalence.

This theorem shows the soundness of the translation. The proof of this theorem
is adapted from the proof of Theorem 3 of [7]. Furthermore, since we use almost
the same patterns and facts as in [7], we also use the algorithm proposed in [7] to
automatically check if bad is a logical consequence of RP0 , with the only change
that we use the unification algorithm for may-fail patterns.

240 V. Cheval and B. Blanchet

5 Automatic Modification of the Protocol

In this section, we first present the kind of false attack that we want to avoid
and then propose an algorithm to automatically generate, from a biprocess P ,
equivalent biprocesses on which ProVerif will avoid this kind of false attack.

5.1 Targeted False Attacks

We present a false attack on the anonymity of the private authentication protocol
due to structural conditional branching.

Example 5. Coming back to the private authentication protocol (see Example 4),
we obtained a biprocess P0 on which we would ask ProVerif to check the
equivalence. Unfortunately, ProVerif is unable to prove the equivalence of P0

and yields a false attack. Indeed, consider the evaluation context C defined as
follows:

C
def
= | (νni)c(xska

).c(xska′).c(xskb
).c〈aenc(〈ni, xska

〉, xskb
)〉

The biprocess C[P0] can be reduced as follows:

C[P0]→∗
Σ (νni)(νska)(νska′)(νsk b)(

c〈aenc(〈ni, pk(ska)〉, pk(sk b))〉 | System(diff[ska, ska′], sk b)
)

→∗
Σ (νni)(νska)(νska′)(νsk b)(A(diff [ska, ska′], sk b) |

let z = equals(proj2(〈ni, pk(ska)〉)), pk(diff[ska, ska′])) in
c〈aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′]))〉

else c〈aenc(nb, pk(sk b))〉)
However from this point, the biprocess gets stuck, i.e., no internal reduction
rule is applicable. More specifically, neither the internal rule (Red Fun 1) nor
(Red Fun 2) is applicable. Indeed, if we denote D = equals(proj2(〈ni, ska〉)),
pk(diff[ska, ska′])), we have that snd(D)⇓Σ fail and fst(D)⇓Σ pk(ska), which con-
tradicts Item 2 of Lemma 2. So ProVerif cannot prove the equivalence. But,
although a different branch of the let is taken, the process outputs the message
aenc(〈nb, 〈na, pk(sk b)〉〉, pk(ska)) in the first variant (in branch of the let) and
the message aenc(nb, pk(sk b)) in the second variant (else branch of the let). In-
tuitively, these two messages are indistinguishable, so in fact the attacker will
not be able to determine which branch of the let is taken, and observational
equivalence still holds.

In order to avoid the false attacks similar to Example 5, we transform term eval-
uations let x = D in c〈M1〉 else c〈M2〉 into a computation that always succeeds
let x = D′ in let m = D′′ in c〈m〉. The term evaluation D′ will correspond to the
value of the evaluation of D when the latter succeeds and a new constant cfail
when D fails. Thus we ensure that D′ never fails. Moreover, the term evaluation
D′′ computes either M1 or M2 depending on the value of D′, i.e., depending
on whether D succeeds or not. The omitted else 0 branches are never taken.

Proving More Observational Equivalences with ProVerif 241

Since the same branch is always taken, the false attack disappears. To do that,
we introduce three new destructors catchfail, letin, notfail and a constant cfail,
which rely on the side conditions that we have added to destructors. These new
destructors are defined as follows:

defΣ(catchfail) = defΣ(letin) = defΣ(notfail) =
catchfail(x) → x letin(x, u, v) → u || x �=Σ cfail notfail(x) → fail
catchfail(fail) → cfail letin(cfail, u, v) → v notfail(fail) → cfail

letin(fail, u, v) → fail

One can easily check that defΣ(catchfail), defΣ(letin), and defΣ(notfail) satisfy
Properties P1 and P2. Intuitively, the destructor catchfail evaluates its argu-
ment and returns either the result of this evaluation when it did not fail or
else returns the new constant cfail instead of the failure constant fail. The de-
structor letin will get the result of catchfail as first argument and return its
third argument if catchfail returned cfail, and its second argument otherwise.
Importantly, catchfail never fails: it returns cfail instead of fail. Hence, let x =
D in c〈M1〉 else c〈M2〉 can be transformed into let x = eval catchfail(D) in letm =
eval letin(x,M1,M2) in c〈m〉: if D succeeds, x has the same value as before, and
x �= cfail, so letin(x,M1,M2) returns M1; if D fails, x = cfail and letin(x,M1,M2)
returns M2. The destructor notfail inverts the status of a term evaluation: it fails
if and only if its argument does not fail. This destructor will be used in the next
section.

Example 6. Coming back to Example 5, the false attack occurs due to the fol-
lowing term evaluation:

let z = equals(proj2(x), pk(diff[ska, ska
′])) in

c〈aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′]))〉
else c〈aenc(nb, pk(sk b))〉

We transform this term evaluation as explained above:

let z = letin(catchfail(equals(proj2(x), pk(diff[ska, ska
′]))),M,M ′) in c〈z〉

where M = aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′])), M ′ = aenc(nb, pk(sk b)).
Note that with x = 〈ni, pk(ska)〉 (see Example 5), if D is the term evaluation
D = letin(catchfail(equals(proj2(x), pk(diff[ska, ska

′]))),M,M ′), we obtain that:

– fst(D)⇓ aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(ska))

– snd(D)⇓ aenc(nb, pk(sk b))

which corresponds to what fst(P0) and snd(P0) respectively output. Thanks to
this, if we denote by P ′

0 our new biprocess, we obtain that fst(P0) ≈ fst(P ′
0)

and snd(P0) ≈ snd(P ′
0). Furthermore, ProVerif will be able to prove that

the biprocess P ′
0 satisfies equivalence, i.e., fst(P ′

0) ≈ snd(P ′
0) and so fst(P0)

≈ snd(P0).

242 V. Cheval and B. Blanchet

The transformation proposed in the previous example can be generalised to
term evaluations that perform actions other than just a single output. However, it
is possible only if the success branch and the failure branch of the term evaluation
both input and output the same number of terms. For example, the biprocess
let x = D in c〈M〉.c〈M ′〉 else c〈N〉 cannot be modified into a biprocess without
else branch even with our new destructors. On the other hand, the success or
failure of D can really be observed by the adversary, by tracking the number of
outputs on the channel c, so the failure of the proof of equivalence corresponds
to a real attack in this case.

5.2 Merging and Simplifying Biprocesses

To automatically detect and apply this transformation, we define two functions,
merge and simpl . The function merge, defined in Fig. 4, is partial. It takes two
biprocesses as arguments and detects if those two biprocesses can be merged
into one biprocess. If the merging is possible, it returns the merged biprocess.
This merged biprocess is expressed using a new operator branch, similar to diff:
branch[D,D′] is a term evaluation and we introduce functions fst′ and snd′ such
that fst′(P) (resp. snd′(P)) replaces each branch[D,D′] with D (resp. D′) in P .

Case (Mout) detects that both biprocesses output a message while case (Min)
detects that both biprocesses input a message. We introduce a let for the chan-
nels and messages so that they can later be replaced by a term evaluation.
Case (Mpar) uses the commutativity and associativity of parallel composition
to increase the chances of success of merge. Cases (Mres) and (Mres′) use
Q ≈ (νa)Q when a /∈ fn(Q) to allow merging processes even when a restric-
tion occurs only on one side. Case (Mrepl2) is the basic merging of replicated
processes, while Case (Mrepl1) allows merging ! !P with !P ′ (case n = 0) be-
cause !P ≈ ! !P , and furthermore allows restrictions between the two replica-
tions, using Q ≈ (νa)Q. Case (Mlet1) merges two processes that both contain
term evaluations, by merging their success branches together and their failure
branches together. On the other hand, Cases (Mlet2), (Mlet2′) also merge two
processes that contain term evaluations, by merging the success branch of one
process with the failure branch of the other process. Cases (Mlet3), (Mlet3′),
(Mlet4), (Mlet4′) allow merging a term evaluation with another process P ′, by
merging P ′ with either the success branch or the failure branch of the term
evaluation. This merging is useful when ProVerif can prove that the resulting
process satisfies equivalence, hence when both sides of the obtained let succeed
simultaneously. Therefore, rule (Mlet3) is helpful when D always succeeds, and
rule (Mlet4) when D always fails. When no such case applies, merging fails.

The function simpl is total. It takes one biprocess as argument and simplifies
it by replacing all subprocesses of the form let x = D in P else P ′, where
merge(P, P ′) succeeds, with

let x = eval catchfail(D) in Q{eval letin(x,D1,D2)/branch[D1,D2]} else 0

for some Q = merge(P, P ′). This replacement is performed bottom up, so that
P and P ′ have already been simplified when we transform let x = D in P else P ′.

Proving More Observational Equivalences with ProVerif 243

merge(0, 0)
def
= 0 (Mnil)

merge(M〈N〉.P,M ′〈N ′〉.P ′)
def
=

let x = branch[M,M ′] in let x′ = branch[N,N ′] in x〈x′〉.merge(P, P ′)

where x and x′ are fresh variables

(Mout)

merge(M(x).P,M ′(x′).P ′)
def
=

let y = branch[M,M ′] in y(y′).merge(P{y′
/x}, P ′{y′

/x′})
where y and y′ are fresh variables

(Min)

merge(P1 | . . . | Pn, P
′
1, | . . . | P ′

n)
def
= Q1 | . . . | Q′

n

if (i1, . . . , in) is a permutation of (1, . . . , n)

and for all k ∈ {1, . . . , n}, Qk = merge(Pk, P
′
ik
)

(Mpar)

merge((νa)P,Q)
def
= (νa)merge(P,Q)

after renaming a such that a 	∈ fn(Q)
(Mres)

merge(! (νa1) . . . (νan)!P, !P
′)

def
= ! (νa1) . . . (νan)merge(!P, !P ′)

after renaming a1, . . . , an such that a1, . . . , an 	∈ fn(P ′)
(Mrepl1)

merge(!P, !P ′)
def
= !merge(P, P ′)

if there is no P1, a1, . . . , an such that P = (νa1) . . . (νan)!P1

and no P ′
1, a

′
1, . . . , a

′
m such that P ′ = (νa′

1) . . . (νa
′
m)!P ′

1

(Mrepl2)

merge(let x = D in P1 else P2, let x
′ = D′ in P ′

1 else P ′
2)

def
=

let y = branch[D,D′] in Q1 else Q2 if y is a fresh variable,

Q1 = merge(P1{y/x}, P ′
1{y/x′}), and Q2 = merge(P2, P

′
2)

(Mlet1)

merge(let x = D in P1 else P2, let x
′ = D′ in P ′

1 else P ′
2)

def
=

let y = branch[D, notfail(D′)] in Q1 else Q2 if y is a fresh variable,

x′ 	∈ fv(P ′
1), Q1 = merge(P1{y/x}, P ′

2), and Q2 = merge(P2, P
′
1)

(Mlet2)

merge(let x = D in P1 else P2, P
′)

def
= let y = branch[D, cfail] in Q else P2

if y is a fresh variable and Q = merge(P1{y/x}, P ′)
(Mlet3)

merge(let x = D in P1 else P2, P
′)

def
= let y = branch[D, fail] in P1{y/x} else Q

if y is a fresh variable and Q = merge(P2, P
′)

(Mlet4)

plus symmetric cases (Mres′), (Mrepl1′), (Mlet2′), (Mlet3′), and (Mlet4′) obtained
from (Mres), (Mrepl1), (Mlet2), (Mlet3), and (Mlet4) by swapping the first and second
arguments of merge and branch.

Fig. 4. Definition of the function merge

244 V. Cheval and B. Blanchet

The notation Q{eval letin(x,D1,D2)/branch[D1,D2]} means that we replace in Q ev-
ery instance of branch[D1, D2], for some D1, D2, with eval letin(x,D1, D2). The
function simpl performs the transformation of term evaluations outlined in Sec-
tion 5.1, when we can merge the success and failure branches.

Both functions are non-deterministic; the implementation may try all possi-
bilities. In the current implementation of ProVerif, we apply the rules (Mlet3)
and (Mlet4) only if the rules (Mlet1) and (Mlet2) are not applicable. Moreover,
we never merge 0 with a process different from 0. This last restriction is crucial
to reduce the number of biprocesses returned by merge and simpl . Typically, we
avoid that 0 and let x = M in P else 0 are merged by the rule (Mlet4).

5.3 Results

Lemma 3 below shows that observational equivalence is preserved by the func-
tions merge and simpl . In this lemma, we consider biprocesses P and P ′ that
are not necessarily closed. We say that a context C is closing for P when C[P]
is closed. Moreover, given two biprocesses P and Q, we say that P ≈ Q if, and
only if, fst(P) ≈ fst(Q) and snd(P) ≈ snd(Q).

Lemma 3. Let P and P ′ be two biprocesses. If merge(P, P ′) = Q then, for all
contexts C closing for P , C[P] ≈ C[fst′(Q)] and, for all contexts C closing for
P ′, C[P ′] ≈ C[snd′(Q)]. For all contexts C closing for P , C[P] ≈ C[simpl (P)].

From the previous lemma, we can derive the two main results of this section.

Theorem 2. Let P be a closed biprocess. If simpl(P) satisfies observational
equivalence, then fst(P) ≈ snd(P).

From Theorem 2, we can extract our algorithm. Given a biprocess P as input,
we compute simpl(P). Since simpl is total but non-deterministic, we may have
several biprocesses as result for simpl(P). If ProVerif proves equivalence on
at least one of them, then we conclude that fst(P) ≈ snd(P).

Theorem 3. Let P and P ′ be two closed processes that do not contain diff.
Let Q = merge(simpl (P), simpl (P ′)). If the biprocess Q{diff[D,D′]/branch[D,D′]}
satisfies observational equivalence, then P ≈ P ′.

The previous version of ProVerif could only take a biprocess as input. How-
ever, transforming two processes into a biprocess is usually not as easy as in the
private authentication example. Theorem 3 automates this transformation.

6 Conclusion

In this paper, we have extended ProVerif with destructors defined by rewrite
rules with inequalities as side-conditions. We have proposed a procedure relying
on these new rewrite rules to automatically transform a biprocess into equiva-
lent biprocesses on which ProVerif avoids the false attacks due to conditional

Proving More Observational Equivalences with ProVerif 245

branchings. Our extension is implemented in ProVerif, which is available
at http://proverif.inria.fr. Experimentation showed that the automatic
transformation of a biprocess is efficient and returns few biprocesses. In par-
ticular, our extension automatically proves anonymity as defined in [5] for the
private authentication protocol for an unbounded number of sessions.

However, ProVerif is still unable to prove the unlinkability of the UK e-
passport protocol [5] even though we managed to avoid some previously existing
false attacks. This is a consequence of the matching by ProVerif of traces with
the same scheduling in the two variants of the biprocesses. Thus we would like
to relax the matching of traces, e.g., by modifying the replication identifiers on
the left and right parts of biprocesses. This would allow us to prove even more
equivalences with ProVerif and in particular the e-passport protocol.

Another direction for future research would be to define equations with in-
equalities as side-conditions. It may be possible to convert such equations into
rewrite rules with side-conditions, like we convert equations into rewrite rules.

Acknowledgments. This work has been partially supported by the ANR
projects PROSE (decision ANR 2010-VERS-004) and JCJC VIP no 11 JS02
006 01, as well as the grant DIGITEO API from Région Île-de-France. It was
partly done while the authors were at Ecole Normale Supérieure, Paris.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL 2001, pp. 104–115. ACM, New York (2001)

2. Abadi, M., Fournet, C.: Private authentication. Theoretical Computer Sci-
ence 322(3), 427–476 (2004)

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148(1), 1–70 (1999)

4. Arapinis, M., Cheval, V., Delaune, S.: Verifying privacy-type properties in a mod-
ular way. In: CSF 2012, pp. 95–109. IEEE, Los Alamitos (2012)

5. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: CSF 2010, pp. 107–121. IEEE, Los
Alamitos (2010)

6. Baudet, M.: Sécurité des protocoles cryptographiques: aspects logiques et calcula-
toires. Ph.D. thesis, LSV, ENS Cachan (2007)

7. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1),
3–51 (2008)

8. Borgström, J., Briais, S., Nestmann, U.: Symbolic Bisimulation in the Spi Calculus.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 161–176.
Springer, Heidelberg (2004)

9. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: Negative
tests and non-determinism. In: CCS 2011, pp. 321–330. ACM, New York (2011)

10. Ciobâcă, Ş.: Automated Verification of Security Protocols with Applications to
Electronic Voting. Ph.D. thesis, LSV, ENS Cachan, France (2011)

http://proverif.inria.fr

246 V. Cheval and B. Blanchet

11. Comon-Lundh, H., Delaune, S.: The Finite Variant Property: How to Get Rid of
Some Algebraic Properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp.
294–307. Springer, Heidelberg (2005)

12. Delaune, S., Kremer, S., Ryan, M.D.: Symbolic Bisimulation for the Applied Pi
Calculus. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp.
133–145. Springer, Heidelberg (2007)

13. Durante, L., Sisto, R., Valenzano, A.: Automatic testing equivalence verification
of spi calculus specifications. ACM TOSEM 12(2), 222–284 (2003)

14. Hüttel, H.: Deciding framed bisimilarity. In: INFINITY 2002, pp. 1–20 (2002)
15. Liu, J., Lin, H.: A Complete Symbolic Bisimulation for Full Applied Pi Calculus. In:

van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM
2010. LNCS, vol. 5901, pp. 552–563. Springer, Heidelberg (2010)

16. Nicola, R.D., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34, 83–133 (1984)

17. Tiu, A., Dawson, J.E.: Automating open bisimulation checking for the spi calculus.
In: CSF 2010, pp. 307–321. IEEE, Los Alamitos (2010)

	Proving More Observational Equivalences with ProVerif
	Introduction
	Model
	Syntax
	Semantics

	Using Biprocesses to Prove Observational Equivalence
	Clause Generation
	From Equational Theories to Rewrite Rules
	Patterns and Facts
	Clauses for the Attacker
	Clauses for the Protocol
	Proving Equivalences

	Automatic Modification of the Protocol
	Targeted False Attacks
	Merging and Simplifying Biprocesses
	Results

	Conclusion
	References

