Implementing a Partitioned 2-Page Book Embedding
Testing Algorithm*

Patrizio Angelini', Marco Di Bartolomeo!-2, and Giuseppe Di Battista®

! Dip. di Informatica e Automazione, Roma Tre University, Italy
2 Ttalian Inter-University Computing Consortium CASPUR, Italy
{angelini,gdb}@dia.uniroma3.it, m.dibartolomeo@caspur.it

Abstract. In a book embedding the vertices of a graph are placed on the “spine”
of a “book” and the edges are assigned to “pages” so that edges on the same
page do not cross. In the PARTITIONED 2-PAGE BOOK EMBEDDING problem
egdes are partitioned into two sets F/1 and FEs, the pages are two, the edges of £
are assigned to page 1, and the edges of E are assigned to page 2. The problem
consists of checking if an ordering of the vertices exists along the spine so that the
edges of each page do not cross. Hong and Nagamochi [13] give an interesting
and complex linear time algorithm for tackling PARTITIONED 2-PAGE BOOK
EMBEDDING based on SPQR-trees. We show an efficient implementation of this
algorithm and show its effectiveness by performing a number of experimental
tests. Because of the relationships [13] between PARTITIONED 2-PAGE BOOK
EMBEDDING and clustered planarity we yield as a side effect an implementation
of a clustered planarity testing where the graph has exactly two clusters.

1 Introduction

In a book embedding [14] of a graph the vertices are placed on the “spine” of a “book”
and the edges are assigned to “pages” so that edges on the same page do not cross.
A rich body of literature witnesses the interest of the scientific community for book
embeddings. See, e.g., [4416].

Several constrained variations of book embeddings have been studied. In [15] the
problem is tackled when in each page the number of edges incident to a vertex is
bounded. In [[11]] the graph is directed upward planar and the order of the vertices on the
spine must be consistent with the orientation of the edges. Hong and Nagamochi [13]]
provide a linear time algorithm for a problem called PARTITIONED 2-PAGE BOOK EM-
BEDDING (P2BE). In the P2BE problem the egdes of an input graph G(V, E1, E5) are
partitioned into two sets £ and E5, the pages are just two, the edges of F/; are assigned
to page 1, and the edges of E» are assigned to page 2. The problem consists of checking
if an ordering of the vertices exists along the spine so that the edges of each page do not
CTOSS.

In [13] the P2BE problem is characterized in terms of the existence of an embedding
of G allowing to build a variation of the dual graph containing a particular Eulerian tour.

* This work was partially supported by the ESF project 10-EuroGIGA-OP-003 GraDR “Graph
Drawings and Representations”, by the MIUR of Italy, under project AlgoDEEP, prot. 2008 TF-
BWL4, and by the italian inter-university computing Consortium CASPUR.

W. Didimo and M. Patrignani (Eds.): GD 2012, LNCS 7704, pp. 79-89] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

80 P. Angelini, M. Di Bartolomeo, and G. Di Battista

The existence of such an embedding is tested exploiting SPQR-trees [9] for biconnected
components and BC-trees for connected ones.

In this paper we discuss an implementation of the algorithm in [[13]. To efficiently
implement the algorithm we faced the following problems: (i) One of the key steps
of the algorithm requires the enumeration and the analysis of all the permutations of
a set of objects. Even if the cardinality of the set is bounded by a constant this may
lead to very long execution times. We restated that step of the algorithm avoiding such
enumerations. (ii) Some steps of the algorithm are described in [13] at a high abstraction
level. We found how to efficiently implement all of them. (iii) The algorithm builds
several embeddings that are tested for the required properties only at the end of the
computation. Our implementation considers only one embedding that is greedily built to
have the properties. We performed experiments over a large set of suitably randomized
graphs. The experiments show quite reasonable linear execution times.

The algorithm in [13] is interesting in itself, as book embedding problems are ubig-
uitous in Graph Drawing. However, it is even more appealing since it yields [13] almost
immediately a linear time algorithm for the following special case of clustered planarity
(c-planarity) testing. A planar graph G(V1, Vs, E') whose vertices are partitioned into
two sets (clusters) V7 and V5 is given. Is it possible to find a planar drawing of G such
that: (i) each of V; and V5 is drawn inside a simple region, (ii) the two regions are dis-
joint, and (iii) each edge of E crosses the boundary of a region at most once? In the
terminology of Clustered Planarity, this is a c-planarity testing for a flat clustered graph
with exactly two clusters. References on c-planarity can be found, e.g., in [[10/6]. Hence,
as a side effect, we have an implementation of this problem. An alternative algorithm
for the same c-planarity problem has been proposed in [312]].

The paper is organized as follows. In SectionRlwe give preliminaries. In Section[3lwe
outline the algorithm. Sectiond]discusses how to search an embedding with the desired
features and Section [3] gives further implementation details on the search. In Section
we describe our experiments. Section[7l gives concluding remarks. An extended version
of the paper appears in [[1].

2 Preliminaries

A planar drawing of a graph is a mapping of each vertex to a distinct point of the
plane and of each edge to a simple Jordan curve connecting its endpoints such that
the curves representing the edges do not cross but, possibly, at common endpoints. A
graph is planar if it admits a planar drawing. Two drawings of a graph are equivalent
if they determine the same circular ordering around each vertex. An embedding is an
equivalence class of drawings. A planar drawing partitions the plane into topologically
connected regions, called faces. The unbounded face is the outer face.

A graph is connected if every two vertices are joined by a path. A graph G is bicon-
nected (triconnected) if removing any vertex (any two vertices) leaves G connected. To
handle the decomposition of a biconnected graph into its triconnected components, we
use SPOR-trees (see [8l9/12]). Here we give some notation. Given a biconnected graph
G and its SPQR-tree T, the skeleton skel() of anode p € T is a graph representing the
arrangement of the triconnected components of . Edges of skel(u) are virtual edges.

Implementing a Partitioned 2-Page Book Embedding Testing Algorithm 81

(d)

(a) (b)

Fig. 1. (a) A disjunctive and splitter-free embedding of a graph. (b) The corresponding green
graph. (c) An r-rimmed embedding of a graph G. (d) An embedding of G that is not r-rimmed.

For each virtual edge e; of skel(u) corresponding to a child p;, recursively replace e;
with skel(y;). The resulting subgraph of G is the pertinent graph pert(u) of u. Graph
skel(y) contains a parent virtual edge between the poles representing the rest of the
graph.

Let G be a directed planar embedded graph. A directed cycle of G is a Eulerian tour
if it traverses each edge exactly once. Consider a vertex v of G and let (v1,v), (v, v2),
(v, vs3), and (v4,v) be four edges incident to v appearing in this order around v in the
given embedding. If a Eulerian tour contains egdes (v, v), (v, v3), (v4,v), and (v, v2)
in this order then it is self-intersecting.

3 A Partitioned 2-Page Book-Embedding Testing Algorithm

In this section we describe an algorithm that, given an instance of P2BE, decides
whether it is positive and, in case it is, constructs a book embedding of the input graph
such that each edge is drawn on the page it is assigned to. The algorithm is the one
proposed in [13]]. However, substantial modifications have been applied to implement
it. Part of them aim at simplifying the algorithm, while others at decreasing the value
of some constant factors spoiling the efficiency. Further, some steps that are described
at high level in [[13] are here detailed. The main differences with [13] are highlighted
throughout the paper.

Let G(V, Ey, E3) be an instance of problem P2BE. We say that the edges of E; (of
E5) are red (blue) edges. As pointed out in [[13], G admits a P2BE if and only if all
the biconnected components of G admit a solution. Hence, we limit the description to
the case in which G is biconnected. Moreover, we assume that both £, and E are not
empty, since a graph with only red (blue) edges is a positive instance if and only if it is
outerplanar, which is testable in linear time.

The algorithm is based on a characterization proved in [13] stating that an instance
admits a solution if and only if G admits a disjunctive and splitter-free planar embed-
ding (see Fig.[I(a)). An embedding is disjunctive if for each vertex v € V all the red
(blue) edges incident to v appear consecutively around v. A splitter is a cycle C' com-
posed of red (blue) edges such that both the open regions of the plane determined by C'
contain either a vertex or a blue (red) edge. An embedding is splitter-free if it has no
splitter. The first part of the algorithm, that is based on the SPQR-tree decomposition
of G and whose details are in Sections 4] and[3] concerns the construction of an embed-
ding of G satisfying these requirements, if it exists. Otherwise, G does not admit any
solution.

82 P. Angelini, M. Di Bartolomeo, and G. Di Battista

Once a disjunctive and splitter-free embedding I” of G has been computed, an aux-
iliary graph G*, called green graph, is constructed starting from I". Then, as proved
in [13]], a non-self-intersecting Eulerian tour on G* gives the ordering in which placing
the vertices of V' on the spine of a P2BE of G.

Graph G* is a directed graph whose vertices are the vertices of V' plus a vertex for
each face of I'. See Fig.[Ib). For each vertex v of G incident to at least one red edge
and one blue edge, consider each face f incident to v such that v is between a red edge
e1 and a blue edge es on f. If e; immediately precedes es in the clockwise ordering of
the edges around v, then add to G* an oriented edge (v, f), otherwise add an oriented
edge (f,v). For each vertex w of G* incident only to red (blue) edges, consider a face
/' incident to w that contains at least one blue (red) edge. Since I is splitter-free, such
face exists. Then, add directed edges (w, f') and (f’, w). Note that, by construction, G*
is a bipartite plane digraph, every vertex v of V has degree 2 in G*, namely v is incident
to exactly one entering and one exiting edge, and each vertex f corresponding to a face
of I' has even degree, namely the number of edges entering f equals the number of
edges exiting f, and such edges alternate around f. From this and from the fact that the
underlying graph of G* is connected, as pointed out in [13]], it follows that G* contains a
Eulerian tour. The alternation of entering and exiting edges around each vertex ensures
the existence of a non-self-intersecting Eulerian tour. The algorithm we implemented
to find such a tour is based on this fact.

From the above discussion it follows the claimed statement that the described algo-
rithm computes a P2BE of (V| E4, E»), if any such a P2BE exists.

4 Computing a Disjunctive and Splitter-Free Embedding

Let G(V, E1, E5) be a biconnected planar graph. We describe an algorithm to compute
a disjunctive and splitter-free embedding of G, if any such an embedding exists, consist-
ing of two preprocessing traversals of the SPQR-tree 7 of G and of a final bottom-up
traversal to compute the required embedding.

Let p be a node of 7. According to [[13], a virtual edge e of skel(u) is an r-edge (a
b-edge) if there exists a path in pert(u) between the poles of ;1 composed of red edges
(of blue edges). If e is both an r-edge and a b-edge, it is a br-edge.

Consideracycle C = ey, ..., e, in skel(;) composed of edges of the same color, say
r-edges. If C' is a splitter in every embedding of skel(u), then a splitter is unavoidable.
However, even if there exists an embedding of skel(y) such that C'is not a splitter, then a
cycle in pert(u) passing through the pertinent graphs of ey, . . . , ¢, could still be a splitter
(since eq, . . ., e4 are r-edges, there exists at least one red cycle C” in pert(u)). Consider
any node v corresponding to a virtual edge e; and the path p, (C’) between the poles of
v that is part of C". Intuitively, in order for C’ not to be a splitter, we should construct an
embedding of pert(v) in which p, (C") is on the outer face. Actually, not all the vertices
of p,(C”) have to be on the outer face, since red chords might exist in p, (C’) (that
is, red edges connecting vertices not consecutive in p, (C”)), separating some vertex of
p,(C") from the outer face, as in this case such chords would be internal to C”, and this
does not make it a splitter. In analogy with [[13]], where the same concept was described
with a slightly different definition, we say that an embedding of pert(v) in which each

Implementing a Partitioned 2-Page Book Embedding Testing Algorithm 83

{Tv -

EER EEEE @ @ ; \@

EEN nEmm
(a) (b) (d) ())

Fig. 2. Parallel virtual edges are sketched with rectangles colored according to their poles. (a) An
r-rimmed embedding forces an RB R color-pattern on a pole. (b) A color-pattern BR or RB ona
pole forces either an RBR or a BRB on the other pole. (¢c) An R-node. Virtual edges representing
Q-nodes are thin. (d) The corresponding auxiliary graph O;. (e) A splitter that is not a rigid-
splitter. (f) Disjunctiveness constraints on nodes e; and ez determine a splitter (e1, e2, €3, €4).

path between the poles composed of red edges (of blue edges) has only red edges (blue
edges) on one of its sides is r-rimmed (is b-rimmed). Figs. [I{c) and (d) show an 1-
rimmed and a non-r-rimmed embedding, respectively. Note that an embedding could
be at the same time both r- and b-rimmed, with the red and the blue paths on different
sides of the outer face.

The existence of an r-rimmed (b-rimmed) embedding is necessary only for each node
1 such that there exists a cycle C' of red (blue) edges traversing both x and its parent.
However, the existence of C' is not known when processing p during a bottom-up visit
of 7. Thus, we perform a preprocessing phase to decide for each node p whether any
such cycle C exists. In this case, y is r-joined (b-joined). Hence, when processing (i, we
know whether it is r-joined (b-joined) and, in case, we inductively compute an r-rimmed
(b-rimmed) embedding.

Concerning disjunctiveness, for each vertex w of skel(;s) we have to check whether
the ordering of the edges around w determined by the embedded pertinent graphs of the
child nodes incident to w makes it disjunctive. In order to classify the possible orderings
of edges around the poles of a node we define, in analogy with [13], the color-pattern
of anode i on a vertex v as the sequence of colors of the edges of pert(y:) incident to v.
Namely, the color-pattern of i on v is one of R, B, RB, BR, RBR, BRB. Note that,
if the color-pattern is either R or B, then it is the same in any embedding. Otherwise,
it depends on the chosen embedding. Hence, it might be influenced by the fact that the
embedding needs to be r- or b-rimmed (see Fig R(a)) and by the need of a particular
color-pattern on the other pole (see Fig 2(b)). Thus, a color-pattern either RBR or
BRB could be forced on a pole u of i although an RB or a BR pattern would be
possible as well. Another factor influencing the color-pattern on w is the presence of
red or blue edges incident to u in the pertinent of the parent v of u. In fact, if u has
color-pattern RBR (BRB) and there is a blue (red) edge in pert(r) incident to u, then
u is not disjunctive. Thus, in the preprocessing phase we also determine two flags for
each pole w of p, stating whether v contains at least one red (blue) edge incident to .
Hence, when processing i, we know whether it is admissible to have an RBR (a BRB)
color-pattern on its poles.

The two information obtained in the preprocessing can be properly combined when
processing a node to decide whether an embedding satisfying all the constraints exists,
as described is Section[3] If it is not the case, we state that the instance is negative, while
in the case that at least one of such embeddings exists, we can arbitrarily choose one

84 P. Angelini, M. Di Bartolomeo, and G. Di Battista

of them, without the need of carrying on a multiplicity of embeddings. This is one of
the most crucial differences between our implementation and [13]]. In fact, even if they
perform a preprocessing to determine whether a node is r-joined (b-joined), they do not
exploit it for disjunctiveness, and have to consider at each step all the possible embed-
dings determining different color-patterns on the two poles. Of course, as the number
of color-patterns is bounded by a constant, this does not affect the asymptotic complex-
ity, but our solution noticeably improves on the execution times. Also, they deal with
constraints given by the r-joinedness (b-joinedness) and by the disjunctiveness in two
different steps. In our case, instead, instances that are negative due to disjunctiveness
are recognized much earlier. The preprocessing consists of a bottom-up and a top-down
traversal of 7.

5 SPQR-Tree Algorithm

When considering a node p of 7 with children 1, . . . , vy, exploiting the information re-
sulting from the preprocessing and the information inductively computed for v4, . . . , v,
we check whether ;1 admits a splitter-free and disjunctive embedding and compute the
following: (i) if u is r-joined (b-joined), an r-rimmed (a b-rimmed) embedding; and (ii)
the color-patterns of the poles of .

In the base case, i is a Q-node. Suppose that skel(y) is an r-edge, the other case
being analogous. If y is r-joined, every embedding of skel(y) is r-rimmed. Further, the
color-pattern on the poles is R in any embedding of skel(y).

Suppose that 1 is an R-node. Since skel() is triconnected, it has one planar embed-
ding, up to a flip. Hence, if there is a splitter in skel(u), then it is unavoidable. Hong and
Nagamochi call such splitters rigid-splitters. In order to test the existence of such split-
ters, for each set E;, i = 1,2, we construct an auxiliary graph O; starting from skel(u).
See Figs.2ic) and (d). We describe the construction for 7y, the other case being anal-
ogous. Initialize O; =skel(x). Subdivide each virtual edge of skel(x) (including the
one representing the parent) with a dummy vertex, except for the r-edges correspond-
ing to Q-nodes. Then, for each dummy vertex subdividing a virtual edge that is not
an r-edge, remove one of its incident edges without modifying the embedding. Finally,
check whether the obtained embedding of O; is an outerplane embedding, that is, all
the vertices of O; are on the same face. In [13] this step is performed by constructing
a variant of the green graph and checking whether it is connected. We find that our ap-
proach is easier to implement and slightly more efficient, since O; does not need to be
constructed, but can be obtained by flagging the edges of skel(u).

Note that, for each cycle composed of r-edges (b-edges) in skel(x) that is not a rigid-
splitter, all the nodes composing it inductively admit an r-rimmed (b-rimmed) embed-
ding. Hence, it suffices to flip them in such a way that their red (blue) border is turned
towards the red (the blue) outerplanar face. However, if each of them has an embedding
that is both r-rimmed and b-rimmed, the red and the blue outerplanar faces coincide
and it is not possible to flip the nodes properly, which implies that a splitter exists in the
embedding. See Fig. 2(e). This type of splitter seems to have gone unnoticed in [13]],
where flips imposed by cycles of r- and b-edges are considered independently.

We deal with disjunctiveness constraints. We observe some straightforward prop-
erties of the color-patterns of the nodes incident to the same vertex w of skel(u).

Implementing a Partitioned 2-Page Book Embedding Testing Algorithm 85

(i) At most two nodes have color-pattern different from R and B. (ii) If one node has
color-pattern RBR (BRB), then all the other nodes have color-pattern 2 (B). Hence,
since each vertex has degree at least 3 in skel(u), at least one node v incident to w ex-
ists with color-pattern either R or B. Thus, starting from v, we consider all the nodes
incident to w in clockwise order and greedily decide a flip based on the current color. If
more than two changes of color are performed, then G does not admit any disjunctive
embedding. If exactly one node v has color-pattern different from R or B and all the
other nodes have color-pattern R (B), then the flip of v is not decided at this step. Also,
the flip is not decided for the nodes having color-pattern R or 5.

Disjunctiveness and splitter-free constraints might be in contrast. See Fig. 2If). We
can efficiently determine such contrasts by flagging the nodes that need to be flipped
and, in case such contrasts exist, state that the instance is negative. This check is not
described in [13]], where possible contrasts between disjunctive and splitter-free con-
straints are noticed for P-nodes but not for R-nodes.

The color-patterns of the poles and, if needed, an r-rimmed (a b-rimmed) embed-
ding of pert(u) are computed by considering the information on the parent node, the
color-patterns of the virtual edges incident to the poles, and the r-rimmed (b-rimmed)
embedding of the children.

Suppose that i is an S-node. Since skel(u) is a cycle containing all the virtual edges,
even if such a cycle is composed of edges of the same color, then it is not a splitter.
Namely, even if there exist both a red and a blue cycle passing through all the children
of 1, such nodes can be flipped so that the red and the blue borders are turned towards
the two faces of skel(u).

Concerning disjunctiveness constraints, if two children both incide on a vertex u of
skel(x) with color-pattern either BR or RB, then they have to be flipped in such a
way that the red edges (and hence the blue edges) are consecutive around w. In all the
other cases, the relative flip of the two children incident to u is not fixed by their color-
patterns. If there exists at least a vertex u with this property, we say that p admits two
different semi-flips. Intuitively, this means that the color-pattern of a pole is independent
of the one on the other pole, since they depend on flips performed on two different
subsets of children of .

Note that in an S-node no contrast between splitter-free and disjunctiveness con-
straints are possible, since flipping the r-rimmed embeddings towards the same face
implies placing the red edges consecutive around u. Hence, no negative answer can be
given during the processing of an S-node.

The color-pattern on each pole is the color-pattern of the unique node incident to it,
while an r-rimmed (b-rimmed) embedding is obtained by concatenating the r-rimmed
(b-rimmed) embeddings of the children.

Suppose that i is a P-node. In order for a splitter-free embedding to exist, the fol-
lowing must hold: (i) There exist at most 3 r-edges (b-edges); if they are 3 then one is
a Q-node. (ii) There exist at most 2 virtual edges that are both r-edges and b-edges; if
they are 2 then there exists only another virtual edge and it is a Q-node.

On the other hand, in order for a disjunctive embedding to exist, the following must
hold: (i) if there exists a virtual edge with RBR (B RDB) color-pattern on a pole, then

86 P. Angelini, M. Di Bartolomeo, and G. Di Battista

p1

p1
I
——
p2
p1 p1

nmEmnm
HEm
p2 p2 p2
(@ (b)
Fig.3. (a) All possible alignments of a pair of RB color-patterns. (b) Correspondence between
an alignment of a pair of color-patterns and a sequence of virtual edges of a P-node.

all the other edges have color-pattern R (B) on that pole; (ii) there exist at most two
virtual edges with color-pattern B or BR on a pole.

Consider a child node 1 having color-pattern either R or B on both poles, say R
on pole u and B on pole v, and consider another child node v, having color-pattern
R on u and B on v. Nodes v; and v, can be considered as a single node v* with
color-patterns R and B on the two poles. When the permutation of the P-node has been
computed, v* is replaced by 11 and v,. This operation reduces the number of virtual
edges to at most 8, namely at most 4 groups of nodes having either R or B on both
poles plus at most 2 nodes with color-pattern different from R and B on a pole and at
most 2 nodes with color-pattern different from R and B on the other pole. Note that
the parent cannot be grouped, since its color-patterns are unknown at this stage. In [[13]]
this fact is exploited to search an embedding with the desired properties by exhaustively
checking all permutations, i.e., with a brute-force approach. However, even if the time
complexity is aympthotically linear, this yields a huge number of cases, namely 8! * 28
combinations, i.e., all permutations of 8 edges multiplied by all flip choices.

Hence, our implementation uses a different approach in order to search into a much
smaller space. Namely, consider any color-pattern, say RB R, and map it to a linear seg-
ment of fixed length, partitioned into three parts R, B, R, by two points that represent
the two changes of color R — B and B — R. Such points are identified by a unidimen-
sional coordinate p along the segment. Given two color-patterns, their segments, and a
separating point for each of them, with coordinates p; and po, respectively, any of the
following conditions can hold: (i) p1 < pe; (ii) p1 = po; (iii) p1 > pa2. See Figure 3(a).
We call alignment of two color-patterns each combinatorial possibility obtained by ex-
haustively making conditions (i)-(iii) hold for all pairs of separating points of their seg-
ments. An alignment of two color-patterns P;, P» uniquely corresponds to a sequence of
virtual edges whose color-patterns compose P, and P, on the two poles. Such sequence
makes both poles disjunctive by construction. See Fig.[Blb). Our approach exploits this
fact by exhaustively enumerating all alignments of all pairs of color-patterns. The re-
sult is the set L containing all and only the disjunctive edge permutations of a generic
P-node. L contains exactly 180 elements.

Since the virtual edges of a P-node have a disjunctive permutation if and only if they
can be disposed in the same sequence as an element in L, a disjunctive embedding can
be found, if it exists, by a brute force search across the 180 elements of L, an impressive
improvement with respect to the algorithm in [[13].

As the parent node could not be grouped with other nodes, it could impose some
additional constraints on the permutation to find that forbid permutations having color-
patterns RBR or BRB and that require any r-rimmed (b-rimmed) node to be either the
first or the last, if the P-node is r-joined (b-joined).

Implementing a Partitioned 2-Page Book Embedding Testing Algorithm 87

The whole P-node algorithm must be repeated for every possible choice of semi-flip
for the virtual edges admitting it. However, at most two such virtual edges can exist,
since they have color-patterns RB or B R on both poles. Hence, the algorithm must be
repeated up to 4 times.

6 Experimental Results

In this section we describe the experimental tests performed to check correctness and
efficiency of our implementation. When performing experiments a crucial aspect is to
have at disposal a representative set of negative and positive instances. Negative in-
stances have the main role of checking correctness, while positive instances are both
used to check correctness and to test the performance in a complete execution, without
being influenced by early recognition of negative instances. We constructed the former
set using ad-hoc examples, conceived to stress each step of the algorithm. On the other
hand, to obtain a suitable set of positive instances, we used random generation. To the
best of our knowledge, no tool is available to uniformly create graphs with a P2BE.
Hence, we devised and implemented a graph generator, whose inputs are a number n of
vertices and a number m < 3n—6 of edges. The output instance is selected uniformly
at random among the positive instances of P2BE with n vertices and m edges.

We generated three test suites, Suite 1, 2, and 3, with m = 2n, m = 2.5n, and m =
3n — 6, respectively. For each Suite, we constructed ten buckets of instances, ranging
from n = 10,000 to n = 100, 000 with an increment of 10,000 from one bucket to
the other. For each bucket we constructed five instances with the same parameters n
and m. The choice of diversifying the edge density is motivated by the wish of testing
the performance of the algorithm on a wide variety of SPQR-trees, with Suite 3 being a
limit case.

The algorithm was implemented in C++ with GDToolkit [7]. The OGDF library [3]
was used to construct the SPQR-trees. We used GDToolkit because of its versatile and
easy-to-use data structures and OGDF to construct SPQR-trees in linear time. Among
the technical issues, the P-node case required the analysis of a set of cases that is so
large to create correctness problems to any, even skilled, programmer. Hence, we de-
vised a code generator that, starting from a formal specification of the constraints, wrote
automatically the required C++ code. For performing our experiments, we used an envi-
ronment with the following features: (i) CPU Intel Dual Xeon X5355 Quad Core (since
the algorithm is sequential we used just one Core) 2.66GHz 2x4MB 1333MHz FSB.
(i) RAM 16GB 667MHez. (iii) Gentoo GNU/Linux (2.6.23). (iv) g++ 4.4.5.

Fig.[dla)—(c) show the total execution times for the three suites. These measurements
include the time necessary to decompose the graphs in their connected, biconnected,
and triconnected components. The algorithm clearly shows linear running times, with
very little differences among the three suites. Figs.[3(a)—(c) show the execution times of
the main algorithmic steps for the three suites, namely (i) the total time spent to process
biconnected components, (ii) the time spent to deal with the SPQR-trees (excluding
the time to create them), and (iii) the time spent to create the green graphs and to find
the Eulerian tours. Beside remarking the linear running time, these charts show how the
time spent on biconnected components is distributed among the two main algorithmic
steps.

88

Fig. 4. Total execution time of the algorithm on the three test suites. The y-axis represents the

P. Angelini, M. Di Bartolomeo, and G. Di Battista

Total execution time
edge density=2

Total execution time
edge density=2.5

Total execution time
edge density=3

T T T T T T
L total time —=— i

T T T T T T
total time —=—

45 T

T T T T T T
total time —=—

0
10 20 30 40 50 60 70 80 90100

vertices (thousands)

(a)

0
10 20 30 40 50 60 70 80 90100

vertices (thousands)

(b)

0
10 20 30 40 50 60 70 80 90100

vertices (thousands)

(©)

average execution time of the algorithm on the instances in the bucket

25 LI T T T T T T 25 T T T T T T T T 25 LI T T T T T T
biconnected —=— biconnected —=— biconnected —=—
20 SPQR-tree —e— | 2o SPQR-tree —o— 20 SPQR-tree —o—
> green graph —*— @ green graph —x— & green graph —*—
915 4 w15 915
© © ©
c c c
310 310 810
Q Q Q
12} 12 12}
5F B 5 5
0 | | | | | | 0 | | | | | | 0 | | | | | |

Main algorithmic steps
edge density=2

Main algorithmic steps
edge density=2.5

Main algorithmic steps
edge density=3

10 20 30 40 50 60 70 80 90100

vertices (thousands)

(a)

10 20 30 40 50 60 70 80 90100

vertices (thousands)

(b)

10 20 30 40 50 60 70 80 90100
vertices (thousands)

(©)

Fig. 5. Execution times of the algorithm for the biconnected components of the three test suites

7 Conclusions

We described an implementation of a constrained version of the 2-page book embed-
ding problem in which the edges are assigned to the two pages and the goal is to find an
ordering of the vertices on the spine that generates no crossing on each page. The im-
plemented linear time algorithm is the one given in [13], with several variations aimed
at simplifying it and at improving its performance.

We performed a large set of experimental tests on randomly generated instances.
From these experiments we conclude that the original algorithm, together with our vari-
ations, correctly solves the given problem, and that its performance are pretty good on
graphs of medium-large size.

References

1. Angelini, P, Di Bartolomeo, M., Di Battista, G.: Implementing a partitioned 2-page book
embedding testing algorithm. CoRR, arXiv:1209.0598v1 (2012)

2. Biedl, T.: Drawing planar partitions III: Two Constrained Embedding Problems. Tech. Report
RRR 13-98, Rutcor Research Report (1998)

15.
16.

Implementing a Partitioned 2-Page Book Embedding Testing Algorithm 89

. Biedl, T.C., Kaufmann, M., Mutzel, P.: Drawing Planar Partitions II: HH-Drawings. In:

Hromkovi¢, J., Sykora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 124-136. Springer,
Heidelberg (1998)

. Buss, J.F.,, Shor, PW.: On the pagenumber of planar graphs. In: STOC 1984, pp. 98-100.

ACM (1984)

. Chimani, M., Gutwenger, C., Jiinger, M., Klau, G., Klein, K., Mutzel, P.: Handbook of Graph

Drawing and Visualization: The Open Graph Drawing Framework. CRC-Press (2012)

. Cortese, P.F.,, Di Battista, G.: Clustered planarity. In: SoCG 2005, pp. 32-34 (2005)
. Di Battista, G., Didimo, W.: Handbook of Graph Drawing and Visualization: GDToolKkit.

CRC-Press (2012)

. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-

trees. Algorithmica 15(4), 302-318 (1996)

. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25, 956-997 (1996)
. Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for Clustered Graphs. In: Spirakis, P.G. (ed.)

ESA 1995. LNCS, vol. 979, pp. 213-226. Springer, Heidelberg (1995)

. Frati, F, Fulek, R., Ruiz-Vargas, A.J.: On the Page Number of Upward Planar Directed

Acyclic Graphs. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034,
pp- 391-402. Springer, Heidelberg (2012)

. Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR-Trees. In: Marks, J. (ed.)

GD 2000. LNCS, vol. 1984, pp. 77-90. Springer, Heidelberg (2001)

. Hong, S., Nagamochi, H.: Two-page book embedding and clustered graph planarity. TR

[2009-004], Dept. of Applied Mathematics and Physics, University of Kyoto, Japan (2009)

. Ollmann, L.T.: On the book thicknesses of various graphs. Cong. Num, vol. VIII, p. 459

(1973)
Wood, D.R.: Degree constrained book embeddings. J. of Algorithms 45(2), 144—154 (2002)
Yannakakis, M.: Embedding planar graphs in four pages. JCSS 38(1), 36-67 (1989)

	Implementing a Partitioned 2-Page Book Embedding Testing Algorithm

	Introduction
	Preliminaries
	A Partitioned 2-Page Book-Embedding Testing Algorithm
	Computing a Disjunctive and Splitter-Free Embedding
	SPQR-Tree Algorithm
	Experimental Results
	Conclusions
	References

