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Abstract. With shortest-path distances as input, classical multidimen-
sional scaling can be regarded as a spectral graph drawing algorithm,
and recent approximation techniques make it scale to very large graphs.
In comparison with other methods, however, it is considered inflexible
and prone to degenerate layouts for some classes of graphs.

We want to challenge this belief by demonstrating that the method
can be flexibly adapted to provide focus+context layouts. Moreover, we
propose an alternative instantiation that appears to be more suitable for
graph drawing and prevents certain degeneracies.

1 Introduction

Multidimensional scaling (MDS) denotes a family of dimensionality reduction
techniques that aim at representing given dissimilarities as distances in low-
dimensional space. In graph drawing, MDS techniques are usually applied to
position vertices according to their graph-theoretic distances, and distance scal-
ing [14] is the recommended choice [5,4].

Classical MDS (CMDS) has only occasionally been recognized as an alterna-
tive [26,20,7,4], despite its essentially deterministic results and the availability
of simple and highly efficient approximation algorithms [3,29,8]. This may be
for the same reasons that spectral methods in general are of limited popularity
in graph drawing, namely because of their limited adaptability to application-
specific layout requirements, and a tendency to result in excessive occlusion for
certain classes of sparse graphs. In fact, the recommended use of CMDS is as a
fast and reliable initialization method for distance scaling [4].

By proposing two novel uses of CMDS for graph drawing, we attempt to
initiate re-consideration of this conceptually elegant and highly efficient method.

The first one is an adaptation for focus+context, a distortion technique that
magnifies a region of interest while maintaining its environment. By adapting
the input rather than the drawing, more detail is preserved in the periphery.

The second proposal changes the way in which CMDS itself is used. By in-
creasing the number of output dimensions, we determine coordinates that rep-
resent distances more accurately, and then use weighted principal component
analysis to project them into two- or three-dimensional space such that local de-
tails are favored. While this reduces representation accuracy, it increases graph
readability.
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We start with some background on CMDS for graph drawing in Sect. 2. The
adaptation for focus+context is presented in Sect. 3 and a modified graph draw-
ing usage scenario in Sect. 4. We conclude with a brief discussion. All graphs
used for illustration are available in the University of Florida Sparse Matrix
Collection.1

2 Classical Multidimensional Scaling

Multidimensional scaling (MDS) refers to a family of dimensionality reduction
techniques. Given a set of objects and a matrix of pairwise dissimilarities between
them (often assumed to originate from distances in a high-dimensional space),
they yield coordinates in some low-dimensional space such that distances in
that space represent the input dissimilarities well. See [9,2] for comprehensive
treatments and [10] for a recent review.

Classical MDS (CMDS) [31,15] is the oldest such technique, but still one of
the most widely used. In this section we briefly recall the main principles of
CMDS and how it is applied to draw graphs. We then detail a degree of freedom
that is often overlooked, but will prove pivotal in the remainder of this paper.

2.1 CMDS Principles

Given a set of n objects {1, . . . , n} and a matrix Δ = (δij) of pairwise dissimilar-
ities, positions P ∈ R

n×d in d-dimensional Euclidean space, d � n, are sought.

Note that by convention we use row vectors for positions pi = (p
(1)
i , . . . , p

(d)
i ),

i = 1, . . . , n.
Classical MDS was proposed independently in [31,15]. It is best understood as

a reconstruction approach: assume that the given dissimilarities actually are Eu-
clidean distances arising from object positionsX ∈ R

n×d′
in some d′-dimensional

space. Distances are related to inner products of position vectors via

‖xi − xj‖2 = (xi − xj)(xi − xj)
T = xix

T
i − 2xix

T
j + xjx

T
j ,

so that all distances can be computed from entries of the matrix XXT of inner
products. CMDS can be seen as an attempt to reverse this derivation. Given
Δ, first construct a matrix of inner products. Unlike distances, however, inner
products are not invariant under translation. The standard method to remove
this degree of freedom is to translate the configuration such that its centroid is
at the origin. We will reconsider this choice in Section 2.3. It can be shown that
B = (bij)i,j=1,...,n with

bij = −1

2

(
δ2ij −

1

n

n∑
r=1

δ2rj −
1

n

n∑
s=1

δ2is +
1

n2

n∑
r=1

n∑
s=1

δ2rs

)

is the matrix of inner products for the translated configuration. The transforma-
tion setting row and column means to zero is called double centering. Positions

1 http://www.cise.ufl.edu/research/sparse/matrices/

http://www.cise.ufl.edu/research/sparse/matrices/
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reproducing these inner products are obtained from (partial) spectral decompo-
sition,

B = UΛ[d]UT = UΛ[d]1/2︸ ︷︷ ︸
P

· Λ[d]1/2UT︸ ︷︷ ︸
PT

where Λ[d] is the diagonal matrix of the d largest eigenvalues of B and U ∈ R
n×d

is a matrix of corresponding orthonormal eigenvectors. The inner products PPT

are the best d-dimensional reconstruction of B according to the Frobenius norm.
In other words, the positions obtained from CMDS minimize

strain(B,P ) = ‖XXT − PPT ‖2F =

n∑
i=1

n∑
j=1

(bij − pip
T
j )

2 . (1)

Note that squared errors imply a bias toward the fit of large inner products.
CMDS thus generalizes principal component analysis (PCA) [33] which indeed
requires that X is given.

2.2 CMDS in Graph Drawing

In graph drawing, CMDS is typically applied to shortest-path distances δij =
dG(i, j), i, j ∈ V , of undirected graphs G = (V,E). This yields straight-line
drawings in d-dimensional space in which, in general, structurally close vertices
are near each other and structurally distant vertices are far apart.

Although determining the distance matrix Δ and decomposing the inner
product matrix B is costly in general, very fast approximation algorithms ex-
ist [29,3,8,32]. We use PivotMDS [3], which determines distances only from k se-
lected pivot vertices, and therefore runs in time O(k(m + kn)). Since usually
n � 100 ≥ k � d, approximate CMDS can be used to draw very large graphs.

Although shortest-paths CMDS is generally good at displaying symmetries,
the preferred MDS variant for graph drawing is based on weighted fitting of
distances directly (rather than via inner products) by minimizing a stress func-
tion [14], the main reason being better representation of local details [5,4]. Stress
minimization, on the other hand, is computationally more involved and sensitive
to local minima [4]. It was therefore argued that its bias toward large distances
makes CMDS an ideal initialization for stress minimization [5,4]. Due to the neg-
ligible running time of approximate CMDS, this is a fast and simple alternative
to multilevel approaches.

2.3 Choosing an Origin

We have already pointed out that the location of the origin is a degree of freedom
in CMDS and most often resolved by double-centering. Unless we are actually
reconstructing positions in d-dimensional space from their Euclidean distances,
however, this choice has an effect on the resulting layouts. While alternatives
have been discussed in various contexts [1,2,16,17], we are not aware of any
utilization for graph drawing.
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To understand how the origin can be determined before even knowing any
positions, assume first that we want the origin to coincide with the position of
an object o ∈ {1, . . . , n}. We refer to this object as the central object. After
positions pi are obtained from CMDS on dissimilarities δij , denote the resulting
distances by dij = ‖pi − pj‖. From the cosine law it follows that

d2ij = d2io + d2jo − 2diodjo · cos(α)
where α is the angle formed by −−→popi,

−−→popj . The inner products can therefore be
written as

pip
T
j = diodjo · cos(α) = −1

2
(d2ij − d2io − d2jo) ,

in terms of distances only. We therefore set up the inner product matrix B by
letting bij := − 1

2 (δ
2
ij − δ2io − δ2jo).

This suggests that we can generalize the approach to arbitrary linear combi-
nations of object positions for the origin. In the definition of bij , we only have to
replace the δ2·o by corresponding combinations. Note that double-centering thus
becomes the special case in which every object is weighted by 1

n .
Applying CMDS to the distance matrix Δ = (δij) of an undirected graph

yields distances D = (dij) for which dij ≈ δij in low-dimensional space. Hence,
choosing an origin as a linear combination of vertex positions not only results
in a translation, but also affects relative positions. In particular, if the origin
is defined by a single vertex, the desired angle α between positions of vertices
that are both distant from the central vertex is pronounced. This effect will be
formalized in Sect. 4.3.

(a) double centered (b) centered on v125 (c) graph centered

Fig. 1. Choosing an origin for lshp265 (n = 265, m = 1009)

We illustrate the effect in Figs. 1 and 2, where CMDS with double centering
is compared to CMDS with other centers. If the origin is defined by the average
of all vertices i with minimum eccentricity maxj∈V dG(i, j), we say that CMDS
is graph centered.

3 Focus+Context

Focus+context is an essential interaction technique in information visualiza-
tion [6]. It facilitates the detailed inspection of a region of interest while main-
taining the context of the surrounding.
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(a) double centered (b) centered on v79 (c) graph centered

Fig. 2. Choosing an origin for 1138bus (n = 1138, m = 2596)

In addition to focus-dependent relevance filtering, the main principle used in
focus+context techniques is distortion. Applications in graph drawing typically
distort a given layout (e.g., using a fisheye lense [11]) or the graph itself (e.g.,
by expanding nodes in a clustered graph [30]) which then requires computation
of a new layout.

(a) CMDS layout (b) approach from [22] (c) our approach

Fig. 3. Result of visual emphasis for lshp265 (n = 265, m = 1009), o = v85. The
color-scale follows short → long edge lengths

Any given drawing can be distorted using appropriate lenses [28,27]. An ex-
ample is given in Fig. 3(b), where the layout of Fig. 3(a) is distorted using the
method of [22]. We show in this section, however, that CMDS can also be adapted
by modifying the input, yielding results as shown in Fig. 3(c). Since drawings
are already distorted representations of the input, the more direct control over
additional distortions helps in preserving context features.

The idea is to center CMDS on the focal vertex, or vertices, and distort the
desired inner products of other vertex positions according to their distance from
the focus. It can be shown that distortion of inner products can also be expressed
as a distortion of distances, though in less convenient form.

Let sgn(a) : R → {−1, 0, 1} be the signum function. With bij(r, q) denoting
new inner products, a non-linear modification on bij follows, i, j ∈ V ,

bij(r, q) := sgn(bij) · (δioδjo)r · |cos(α)|q , (2)
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with {r, q} ∈ (0, 1), hence defining a concave power function (cpf). With the
setting r = q, the update simplifies to bij(r, q) := sgn(bij) · |bij |r.

The function sgn(a) preserves the orientation of points around the focus. The
use of a cpf with distances induces gradually diminishing difference in primarily
equidistant BFS distances. Given that δ2jo = bjj , new distances δ′jo to the origin
follow δ′jo = δrjo, thereby imposing the focal emphasis. The use of cpf with angles,
0 ≤ |cos(α)|q ≤ 1 (also with q ≥ 1), affects distances δij , i 
= j ∈ V .

Figure 4 demonstrates the method results with different foci and parame-
ter choices. Our focus+context approach retains characteristics of the CMDS

(a) po = p84, r = q = 0.6 (b) po = p84, r = q = 0.45 (c) po = p184, r = q = 0.6

Fig. 4. Focus+context for lshp265 with focus position po

solution centered on a chosen focus. As already shown (see Fig. 2), each origin
choice with graphs having intrinsic dimensionality d > 2 implies a potentially
more dramatic change. Such a change is inherited by the modified layouts, as
shown in Fig. 5. The intrinsic dimensionality is studied in Sect. 4.

(a) po = p241 (b) po = p568 (c) po = p723

Fig. 5. Focus+context for 1138bus with focus position po; r = 0.65, q = 1

Multifocal Views. A usual adjustment of focus+context techniques is for mul-
tiple foci [22,23,13]. Our input space manipulation can also be adopted for such a
task by interpolating the inner product matrices sharing a common origin. This
translation is necessary because the inner products are translation variant.
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Let ei ∈ R
n be the ith column of the identity matrix In ∈ R

n×n, and let
1n = [1, . . . , 1]T ∈ R

n. Define a projector Si = (In − 1ne
T
i ) ∈ R

n×n, satisfying
SiSi = Si. It can be shown that a matrix of inner products Bk1 centered at pk1

can be translated and centered at pk2 by Bk2 = Sk2 · Bk1 · ST
k2
.

Given inner-product matricesB(k1)(r1, q1), ..., (rt, qt), B
(k2)(r1, q1), ..., (rt, qt),

. . . , B(kt)(r1, q1), ..., (rt, qt) corresponding to t different foci, the interpolation is
obtained by

B(K) = Sk

(
t∑

i=1

γi · B(ki)

)
ST
k , (3)

for some k ∈ V , and with γi affecting the influence of a particular B(ki). Note
that the setting S = (In − 1

n1n1
T
n ) leads to the centroid as the common origin.

Fig. 6 illustrates the results. The choice of the common origin affects the result,
for the reason discussed previously.

(a) Focus 1 (b) Focus 2 (c) Foci 1, 2 ; γ1 = γ2 = 1

Fig. 6. Multifocal view of lshp265. r = 0.45, q = 1; S44 used

4 A Better Perspective on a Better Drawing

By design, CMDS is a greedy method: each additional output dimension reduces
the representation error by the maximum possible. A layout with maximum
representation accuracy in terms of strain (1), however, is not necessarily optimal
in terms of graph readability because of the greedy matching of large distances.
Subsequent dimensions may be responsible for the decisive displacements that
make local structures visible. An very graphical example is shown in Fig 7(a).

The main reason why distance scaling is generally preferred for graph drawing
is that the stress function it attempts to optimize assigns higher weights to
small distances. In CMDS, the influence of small distances comes to bear only
in dimensions beyond d.

For the closely related PCA (see Sect. 2), weighted approaches have been
developed to impose constraints on the projection (e.g., [24,25]). PCA, however,
requires that positions are known. To draw a graph G = (V,E) in d dimensions,
we therefore propose a two-step approach that determines positions P ∈ R

n×d

from graph-theoretic distances δij = dG(i, j), i, j ∈ V , as follows:
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(a) 2D CMDS (b) 3D CMDS + WPCA

Fig. 7. Illustrating WPCA from 3D CMDS for dwt1007 (n = 1007, m = 4791)

1. Construct an h-dimensional intermediate layout X using CMDS, where d ≤
h � n is chosen such that dissimilarities are represented sufficiently well.

2. Determine the final d-dimensional layout P = X · V using weighted PCA,
where V ∈ R

h×d is chosen such that total squared edge length is maximized.

Our approach thus exploits the best of both methods: CMDS constructs positions
one coordinate at a time until the representation error is small, even if this
requires more than d dimensions. PCA then determines a projection with the
least degenerate edges.

In the subsequent sections we provide the details for both steps. Although
there are several related methods, we believe that the approach advocated here
is novel. There are at least three methods, though, that follow the same pat-
tern of high-dimensional embedding with subsequent projection: HDE [19] uses
graph-theoretic distances from selected vertices as high-dimensional coordinates
and then applies (unweighted) PCA, so that dimensions are de-correlated but
occlusion is not addressed. Similarly, GRIP [12] uses random linear projection of
a higher-dimensional force-directed layout. In [20,21], user-controlled projection
of high-dimensional CMDS drawings is proposed as an interaction technique.

4.1 High-Dimensional Layout

Since lower dimensions capture mostly the spread of a graph into different di-
rections, more dimensions are needed to represent local details. But how many?
Every output dimension added to CMDS is scaled by the square-root of the
corresponding eigenvalue of B, so a dimension with a small eigenvalue does not
change much anymore. There is, however, no proven criterion as to when to stop.

A common choice is to look for an eigengap, since data with an intrinsic
dimensionality such as points from an h-dimensional manifold also yield a noti-
cable gap between the hth and (h+1)th positive eigenvalue. For graphs, however,
it has also been suggested to use the entire positive part of the spectrum [20]
of B.

We suggest an alternative based on marginal contribution. Let λ1 ≥ λ2, . . . , λr

be the largest positive eigenvalues of B, where r is an upper limit on the number
of dimensions and chosen according to three criteria: the number of positive



Graph Drawing by Classical Multidimensional Scaling 63

eigenvalues, the number of pivots in approximate CMDS, and running time.
Then we choose d ≤ h ≤ r as the minimum index for which

λh+1∑h
i=1 λi

< ε (4)

for some minimum relative contribution of ε. Here, we let ε = 0.05.
Using PivotMDS [3] for approximate CMDS on a connected graph with n ver-

tices and hence m ∈ Ω(n) edges, an h-dimensional embedding requires O(k(m+
kn) + hk3) time, where k is the number of pivots. Since k = 150 is usually more
than enough, additional output dimensions therefore do not affect running time
by much.

4.2 Final Projection

The first step resulted in X ∈ R
n×h. By linear projection with an orthonormal

matrix V ∈ R
h×d determined below we will obtain P ∈ R

n×d,

P = X · V .

With v(i) we denote the ith column of V ∈ R
h×d. A CMDS/PCA solution would

correspond to V having first d columns of Ih ∈ R
h×h. Since we would also like to

show some of the local structure otherwise hidden in the last h− d dimensions,
however, we use the following weighted variant of PCA.

Given a symmetric, non-negative weight matrix W = (wij) ∈ R
n×n
≥0 , the

(weighted) Laplacian matrix LW = (
ij) ∈ R
n×n is defined by


ij =

{∑
k �=i wik if i = j

−wij otherwise .

A layout P of orthonormal eigenvectors associated with the smallest (largest)
eigenvalues of LW minimize (maximize) the quadratic form

PTLWP =
∑
i,j

wij‖pi − pj‖2 (5)

subject to ‖p(i)‖ = 1 for i = 1, . . . , d, and p(i) ⊥ p(j) for 1 ≤ i < j ≤ d. This is
the basis of Laplacian spectral layout [18].

In our situation, positions are constrained to P = XV for given X , so that
PTLWP = V TXTLWXV , and an optimal V is obtained by spectral decom-
position of XTLWX , and thus weighted PCA (WPCA). In maximizing (5) by
WPCA, we require ‖v(i)‖ = 1 for i = 1, . . . , d, and v(i) ⊥ v(j) for 1 ≤ i < j ≤ d,
i.e., orthonormality of the direction vectors rather than the final positions.

Weights can be chosen for different purposes [25], but since we want the
final P ∈ R

n×d to display local graph structure, we set W = A(G) to the
adjacency matrix of the graph. According to (5), this maximizes the sum of
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(a) 2D CMDS (b) 6D CMDS + WPCA, κ = 750

Fig. 8. WPCA drawing of graph feOcean (n = 143437, m = 409593)

squared edge lengths. Fig. 7(b) depicts WPCA result from a CMDS solution with
h determined by (4). In certain cases, however, it is beneficial to symmetrically
extend W = A(G) by κ � m edges chosen uniformly at random, in order to
avoid close placement of some non-adjacent nodes, see Fig. 8.

In summary, we need to determine d eigenvectors associated with the largest
eigenvalues of XTLWX , which is an h× h matrix constructed in O(h(m+ hn)),
and then project P = XV in O(nhd).

4.3 Relation to Choice of Origin

We conclude this section by showing that a d-dimensional CMDS solution from
h-dimensional input centered on some vertex actually corresponds to a WPCA
projection. We also provide an optimality criterion related to the choice of origin.

Lemma 1. Given some input configuration X ∈ R
n×h, a CMDS solution P̃ ∈

R
n×d, d ≤ h, centered at some k ∈ V , corresponds to a WPCA solution P ∈

R
n×d that maximizes ∑

i∈{1,...,n}, i�=k

‖pi − pk‖2 , (6)

up to the position of the origin.

Proof. A d-dimensional CMDS projection from Sk ·X ∈ R
n×h is obtained by P̃ =

SkX · Q, with Q ∈ R
h×d comprising orthonormal eigenvectors of XT (ST

k Sk)X
that correspond to its d largest eigenvalues. Note that (ST

k Sk) = LW , with LW

denoting a Laplacian that gives rise to (6) in the context of WPCA.
Since (W)PCA assumes a centered input X and yields a centered output P ,

the left multiplication by Sk in P̃ = SkX ·Q implies that P̃ and P differ only in
the position of the origin. �


5 Discussion

We have adapted classical multidimensional scaling (CMDS) for graph drawing
in two ways: by transforming the input to produce focus+context layouts, and
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by dividing it into a high-dimensional embedding with subsequent projection to
avoid certain forms of degeneracies.

Combined with fast approximate CMDS, the first adaptation can be used
interactively, and the second to produce improved layouts of very large graphs.

While CMDS has many advantages, several limitations remain. Despite its
tendency to show symmetries very well, it fails in case of maximal symmetry. If
large eigenvalues have higher multiplicity, it is not clear how to choose a unique
and appropriate orthonormal basis in the associated invariant subspace. Other
topics for future research include a reliable criterion to determine the interme-
diate layout dimensionality h, and the investigation of alternative projection
weights that emphasize other features of a graph.

Acknowledgments. Wegratefully acknowledge financial support fromDeutsche
Forschungsgemeinschaft (DFG) under grant GRK 1042.
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8. Çivril, A., Magdon-Ismail, M., Bocek-Rivele, E.: SSDE: Fast Graph Drawing Using
Sampled Spectral Distance Embedding. In: Kaufmann, M., Wagner, D. (eds.) GD
2006. LNCS, vol. 4372, pp. 30–41. Springer, Heidelberg (2007)

9. Cox, T., Cox, M.: Multidimensional Scaling. CRC/Chapman and Hall (2001)
10. France, S.L., Carroll, J.D.: Two-way multidimensional scaling: A review. IEEE

Trans. Sys., Man, and Cyber., Part C: Apps. and Reviews 41(5), 644–661 (2011)
11. Furnas, G.W.: Generalized fisheye views. In: Proc. ACM SIGCHI Conf. Human

Factors in Comp. Sys., pp. 16–23. ACM Press (1986)
12. Gajer, P., Goodrich, M.T., Kobourov, S.G.: A Multi-dimensional Approach to

Force-Directed Layouts of Large Graphs. In: Marks, J. (ed.) GD 2000. LNCS,
vol. 1984, pp. 211–221. Springer, Heidelberg (2001)

13. Gansner, E., Koren, Y., North, S.: Topological fisheye views for visualizing large
graphs. IEEE Trans. Vis. and Comp. Graph. 11(4), 457–468 (2005)



66 M. Klimenta and U. Brandes

14. Gansner, E.R., Koren, Y., North, S.: Graph Drawing by Stress Majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)

15. Gower, J.C.: Some distance properties of latent root and vector methods used in
multivariate analysis. Biometrika 53, 325–338 (1966)

16. Gower, J.C.: Euclidean distance geometry. Math. Scientist. 7, 1–14 (1982)
17. Gower, J.C.: Properties of Euclidean and non-Euclidean distance matrices. Linear

Algebra and Its Applications 67, 81–97 (1985)
18. Hall, K.M.: An r-dimensional quadratic placement algorithm. Management Sci-

ence 17, 219–229 (1970)
19. Harel, D., Koren, Y.: Graph Drawing by High-Dimensional Embedding. In:

Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 207–219.
Springer, Heidelberg (2002)

20. Hosobe, H.: A high-dimensional approach to interactive graph visualization. In:
Proc. of ACM Symp. on Applied Comp., pp. 1253–1257. ACM (2004)

21. Hosobe, H.: An extended high-dimensional method for interactive graph drawing.
In: Proc. of the Asia-Pac. Info. Vis., pp. 15–20. Austral. Comp. Soc. (2005)

22. Kaugars, K., Reinfelds, J., Brazma, A.: A Simple Algorithm for Drawing Large
Graphs on Small Screens. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS,
vol. 894, pp. 278–281. Springer, Heidelberg (1995)

23. Keahey, T.A., Robertson, E.L.: Techniques for non-linear magnification transfor-
mations. In: Proc. IEEE Symp. Info. Vis., pp. 38–46. IEEE Comp. Soc. (1996)

24. Koren, Y., Carmel, L.: Visualization of labeled data using linear transformations.
In: Proc. IEEE Symp. Info. Vis., pp. 121–128. IEEE Comp. Soc. (2003)

25. Koren, Y., Carmel, L.: Robust linear dimensionality reduction. IEEE Trans. Vis.
and Compr. Graph. 10(4), 459–470 (2004)

26. Kruskal, J.B., Seery, J.B.: Designing network diagrams. In: Proc. of the 1st Gen.
Conf. on Soc. Graph., pp. 22–50 (1980)

27. Misue, K., Sugiyama, K.: Multi-viewpoint perspective display methods: Formula-
tion and application to compound graphs. In: Proc. Conf. on HCI, pp. 834–838.
Elsevier (1991)

28. Sarkar, M., Brown, M.H.: Graphical fisheye views of graphs. In: Proc. Conf. on
HCI, pp. 83–91. ACM (1992)

29. de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimen-
sionality reduction. In: Adv. Neur. Info. Process. Sys., vol. 15, pp. 705–712. MIT
Press (2003)

30. Storey, M.D., David Fracchia, F., Mueller, H.A.: Customizing a fisheye view algo-
rithm to preserve the mental map. Jour. Vis. Lang. Comp. 10(3), 245–267 (1999)

31. Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychome-
trika 17(4), 401–419 (1952)

32. Tzeng, J., Lu, H.H.S., Li, W.H.: Multidimensional scaling for large genomic
datasets. BMC Bioinformatics 9(1), 179–197 (2008)

33. Webb, A.R.: Statistical Pattern Recognition. John Wiley & Sons (2002)


	Graph Drawing by Classical Multidimensional Scaling: New Perspectives

	Introduction
	Classical Multidimensional Scaling
	CMDS Principles
	CMDS in Graph Drawing
	Choosing an Origin

	Focus+Context
	A Better Perspective on a Better Drawing
	High-Dimensional Layout
	Final Projection
	Relation to Choice of Origin

	Discussion
	References




