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We show that planarity testing can be interpreted as a train switching prob-
lem. Train switching problems have been studied in the context of permutation
networks, i.e., permuting the cars of a train on a given railroad network [5].
The cars enter the network one at a time, some are stored temporarily in the
network and the cars leave the network in the prescribed permutation. For the
planarity test we use the metaphor of train switching in the context of graph
layouts. In a graph layout the vertices are processed according to a total order,
i.e., an ordering of the vertices, which is called linear layout. The edges are data
items that are inserted to and removed from a given data structure. The vertices
are processed in the order of the linear layout. At each vertex, at first all edges
incident to preceding vertices are removed from the data structure and then all
edges incident to succeeding vertices are inserted into the data structure. These
operations must obey the principles of the underlying data structure, such as
“LIFO” for a stack or “FIFO” for a queue. A graph G is a stack graph, i.e., has
a stack layout, if and only if it is outerplanar, and it is a 2-stack graph if and
only if it is a subgraph of a planar graph with a Hamiltonian cycle [3].

In [TI2], we have studied graph layouts in the deque: A deque has two ends,
a head and a tail, to insert and remove edges. A deque can emulate two stacks
and additionally allows for “queue edges”, i.e., edges inserted and removed at
opposite sides. In [I], we introduced linear cylindric drawings (LCDs) to visu-
alize deque layouts and showed that plane LCDs characterize deque graphs. An
example of an LCD is shown on the poste in “Deque Layout”. The vertices
are drawn left-to-right in the order of the linear layout. The sides of insertion
and removal of the edges in the deque layout are defined by the embedding.
For instance, edge {1,4} leaves vertex 1 and enters vertex 4 below the path
which means that edge {1,4} is inserted and removed at the tail of the deque.
Edge {2,5} leaves vertex 2 above and enters vertex 5 from below and is therefore
inserted at the head and removed at the tail.

The metaphor of train switching can readily be applied to deque layouts
to obtain a deque train switching problem: The linear layout corresponds to a
railroad without junctions. The train stations, i.e., the vertices, are positioned
along the railroad in the order of the linear layout. If e is an edge inserted into
the deque at vertex u and removed at v, then e corresponds to a car that has
to be transported from station w to station v. The train that moves the cars
corresponds to the deque. At each station v, the cars destined for v have to
be removed from the head/tail of the train. All cars with source station v are
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prepended and appended to the train. We obtain that a graph is a deque graph
if and only if the corresponding deque train switching problem is solvable.
Deque graphs are characterized as the graphs that are subgraphs of planar
graphs with a Hamiltonian path [2]. A single deque is still not able to layout all
planar graphs [2]. However, the ability to split a deque into pieces aptly enhances
it to characterize planarity. We call this extended deque splittable deque (SD).
For the SD, linear layouts are generalized to tree layouts: A tree layout is a DFS
tree of a connected graph. The processing starts at the root of the tree and an
empty SD. At each vertex v, the SD is split into k pieces, where k is the number
of children of v in the DF'S tree. These pieces are consecutive in the sense that
their concatenation results in the original SD and each piece is assigned to a child
of v as the child’s input. Each edge to a tree ancestor of v is removed from the
head or tail of the corresponding piece. An edge to a descendant of v has to be
inserted at the head or tail of the piece belonging to the according subtree. If v is
a leaf, the SD is not split and must be emptied. We have the following theorem,
where the proof is based on the Fraysseix-Rosenstiehl’s planarity criterion [4]:

Theorem 1. A graph is planar if and only if it is an SD graph.

SD layouts can be visualized similarly to deque layouts. An example is shown
in “Splittable Deque Layout”, where the DFS tree edges are drawn bold. Along
a path from the root to a leaf, e. g., vertex 7, the SD layout is equal to a deque
layout: The path itself is the linear layout and the embedding defines the sides
of insertions/removals, e. g., edge b is inserted at the head and removed at the
tail. At vertex 3, the SD is split into three pieces and each piece is assigned to
one of its children.

The metaphor of train switching can be applied to SDs to obtain the SD train
switching problem (see “Train Switching Example”). Here, the railroad has a
tree structure. At the junctions, i.e., the branches in the DFS tree, the train is
split. Hence, a graph is planar if and only if its SD train switching problem is
solvable.
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