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Abstract. We investigate a kinetic version of point-set embeddability. Given a
plane graph G(V,E) where |V | = n, and a set P of n moving points where the
trajectory of each point is an algebraic function of constant maximum degree s,
we maintain a point-set embedding of G on P with at most three bends per edge
during the motion. This requires reassigning the mapping of vertices to points
from time to time. Our kinetic algorithm uses linear size, O(n log n) preprocess-
ing time, and processes O(n2β2s+2(n) log n) events, each in O(log2 n) time.
Here, βs(n) = λs(n)/n is an extremely slow-growing function and λs(n) is the
maximum length of Davenport-Schinzel sequences of order s on n symbols.

Keywords: kinetic graph drawing, point-set embeddability, kinetic algorithm,
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1 Introduction

Problem Statement. Given a plane graph G(V,E) on n vertices and a point-set P =
{p1, p2, ..., pn}, the problem of point-set embeddability without mapping is to draw
G on P such that each vertex is mapped to a point of P and such that no two edges
intersect except at common vertices. A straight-line drawing is a drawing in which each
edge of G is mapped to a curve that is a line segment. A k-bend drawing is a drawing
of G such that each edge is mapped to a chain (curve) of at most k + 1 line segments.
The kinetic point-set embedding problem without mapping, with at most k bends per
edge, is to construct a k-bend drawing without mapping of G on a set P of n moving
points, where the trajectory of each point is an algebraic function of constant maximum
degree s. In the kinetic setting, the trajectory of each point pi(t) = (xi(t), yi(t)) is
defined by two polynomial functions of constant maximum degree s, and the objective
is to maintain the embedding during the motion. During the time period, the point-set
embedding may change or develop edge crossings, so a kinetic algorithm is needed to
repair the embedding by remapping the vertices.

Related Work. Cabello [9] proved that deciding whether a planar graph G can be em-
bedded by straight-line edges without mapping onto a given set P of points is NP-
complete, even when G is 2-connected. Recently, Durocher and Mondal [13] showed
that this problem is NP-complete for 3-connected planar graphs. Biedl and Vatshelle [6]
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proved that the problem is NP-hard for 2-connected outer-planar graphs if the embed-
ding is fixed, 3-connected planar graphs of constant treewidth, and triangulated planar
graphs. Gritzmann et al. [15] showed that the class of planar graphs such that all ver-
tices are on the outer face (outerplanar graphs) is the largest class of graphs that can
be embedded with straight-line edges without mapping onto any point set in general
position (no three or more points collinear). There are algorithms for special cases in
which the graph G is a tree [8, 18] or an outerplanar graph [7, 15].

For k-bend drawing without mapping, Kaufmann and Wiese [19] gave a 1-bend
drawing algorithm for 4-connected plane graphs and a 2-bend drawing algorithm for
general plane graphs; for general graphs, their algorithm takes time O(n log n) (resp.
O(n2)) to draw a point-set embedding with at most three (resp. two) bends per edge. In
particular, their algorithm draws a 3-bend drawing in O(n log n) time and then spends
O(n2) time, using rotation, to transfer the 3-bend drawing to a 2-bend drawing. In ad-
dition, they proved that deciding whether there is a mapping such that each edge has at
most one bend is NP-complete. Giacomo et al. [14] presented an O(n log n)-time algo-
rithm which improves the previous O(n2)-time algorithm by Kaufmann and Wiese [19]
and guarantees that no rotation is needed to obtain a 2-bend drawing.

Kinetic algorithms can model real-world phenomena where objects move with pre-
dictable trajectories in the short term, but may be subject to unpredictable changes in
trajectory in the long term [2]. Basch, Guibas and Hershberger [5] introduced the ki-
netic data structure (KDS) framework to handle such situations. Using this framework,
one can maintain a target attribute of a graph on a set of moving points, where the
trajectory of each point pi(t) = (xi(t), yi(t)) is defined by two algebraic functions
of fixed degree. Kinetic versions of proximity graph problems have been studied ex-
tensively in the past decade. The vertices of proximity graphs represent points and the
edges represent geometric relations between points. Kinetic studies of such graphs in-
clude Delaunay triangulations, Pie Delaunay graphs, and Euclidean minimum span-
ning trees [1, 16, 21].

To our knowledge there are no previous results for point-set embeddability of a plane
graph on a set of points moving along predictable trajectories. While we currently have
no particular application in mind, we believe that kinetic graph drawing is of inherent
and compelling interest. We investigate the problem as follows. We find a Hamiltonian
cycle of the graph G and then map the Hamiltonian cycle to the set of points P . For
each edge vivj of G, we draw a curve of line segments such that the slopes of the
line segments are defined based on the difference between the subscripts i and j and
the maximum slope of the edges of the Hamiltonian cycle. This assignment prevents
intersections between edges during the motion except at times when two points change
the ordering of their x-coordinates.

Kinetic Framework. Given a point-set embedding of a plane graph G(V,E), in order to
maintain the embedding as the points move, we define a set of certificates verifying the
correctness of the embedding and a priority queue containing the failure times of these
certificates. When the failure time of a certificate is equal to the current time, we invoke
an update mechanism that replaces the invalid certificate(s) with a new, valid one(s).

The set of all algorithms and data structures used for maintaining the point-set em-
bedding is called a kinetic data structure (KDS). For example, suppose we want to
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Fig. 1. (a) A plane graph G(V,E) on vertices vi, vj , vk , and vl. (b) point set P = {pi, pj , pk, pl}.
(c) A point-set embedding of G on P where vi, vj , vk, and vl map to pi, pl, pj , and pk, respec-
tively. (d) New configuration after pi moves inside the triangle pjpkpl. (e) New configuration
when plpi crosses the edge pjpk.

maintain the point-set embedding of the graphG(V,E) in Figure 1.a on the set of points
P in Figure 1.b, such that a point is outside the triangle created by the three other points;
Figure 1.c depicts a drawing of G before the points move. During the motion, assume
no three or more points are collinear in any positive interval of time. Let pjpkpl be a
triangle and let W (pl) be a wedge whose sides are created by removing the edge pjpk
and extending the two line segments plpj and plpk. As shown in Figure 1.c, the wedge
W (pl) is the area between two half-lines −−→plpj and −−→plpk. To maintain a valid embedding
of the plane graph G as the points move in Figure 1.c, we create a certificate certifying
that pi is outside the wedge W (pl); the correctness of this certificate, over a time inter-
val, certifies the correctness of the point-set embedding of G over that interval. Since
we have the trajectory of the points, we can compute the (failure) time t when the point
pi moves inside the wedge W (pl). When the failure time of this certificate is equal to
the current time t, then at time t+, either point pi moves inside the triangle pjpkpl or
the edge plpi intersects pjpk; in both cases, the point-set embedding is no longer valid.
Therefore, at the critical time t, we replace the previous certificate with a new one and
update the mapping of G on P at time t+. When point pi crosses the half-line −−→plpj the
new certificate should certify that the point pl is outside the wedge W (pj) created by
half-lines −−→pjpi and −−→pjpk; the updated point-set embedding is the triangle pipjpk and the
edge pjpl outside the triangle in the case that pi moves inside the triangle pjpkpl (see
Figure 1.d), or the triangle pjpkpl and the edge pipj outside the triangle otherwise (see
Figure 1.e).

To measure the performance of a KDS there are four generally accepted criteria,
called efficiency, responsiveness, compactness, and locality, which we now describe [5].
When a certificate fails, that doesn’t necessarily imply that the attribute, e.g., the valid-
ity of the point-set embedding, no longer holds. Events that don’t change the target
attribute are called internal events. Those events that produce changes in the target at-
tribute are called external events; in Figure 1.c, the event is external. If the ratio between
the number of the internal events and the number of the external events is polylogarith-
mic in the number of the points then the KDS is efficient. Typically, a KDS processes
some internal events. Indeed our kinetic 3-bend drawing algorithm which we present in
Section 3 processes internal events as well as external events.
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If the processing time of an event is a polylogarithmic function of the number of
points, the KDS is responsive. The KDS is compact if its size is equal to the number of
points, within a polylogarithmic factor. Each point pi has a trajectory, and the trajectory
can change over time. When the trajectory changes, the certificates associated with the
pi must change. If the number of all certificates associated with pi is a polylogarithmic
function of the number of points, the KDS is local. The locality criterion anticipates that,
while points move with predictable trajectories in the short term, they may be subject
to unpredictable changes in the long term.

Our Results. We provide a kinetic algorithm maintaining a 3-bend drawing without map-
ping of a given plane graphG(V,E) on a set ofn = |V |moving points, where the trajec-
tory of each point is an algebraic function of constant maximum degree s. Our KDS uses
O(n) size, O(n log n) preprocessing time, and processes O(n2β2s+2(n) logn) events,
each in O(log2 n) time. Here, βs(n) =

λs(n)
n is an extremely slow-growing function of

n and λs(n) is the maximum length of Davenport-Schinzel sequences of order s on n
symbols [20, 22]. In terms of the four standard KDS performance criteria, our KDS is effi-
cient, responsive, local, and compact. In particular, in order to obtain a compact KDS, we
provide a newO(n logn)-time algorithm for point-set embedding of a given plane graph
G on a stationary point set P . This algorithm first draws a 3-bend drawing in O(n log n)
time and then, spends linear time to transfer the 3-bend drawing to a 2-bend drawing in a
way that guarantees that no rotation is needed to obtain the 2-bend drawing. In Section 2,
we introduce the main idea of constructing the 3-bend drawing and the 2-bend drawing
without mapping and then, in Section 3, we maintain them kinetically.

2 k-Bend Drawing

In this section we first show an O(n log n) algorithm for point-set embedding of a given
plane graph G on P with at most three bends per edge and then, given this drawing, we
provide a 2-bend drawing in linear time.

A maximal planar subdivision with vertex set V is a triangulation, because no edge
can be added without losing planarity. For any given plane graph G(V,E), we add a
set of edges E′ to the graph G to make it maximally planar, and then we embed the
graph G(V,E ∪ E′) on the set of given points P and, finally, we remove the extra
edges mapped from E′. The remaining drawing is the point-set embedding of the graph
G(V,E) on the set of points P . Therefore, throughout this paper we assume the given
plane graph G is a triangulation.

2.1 3-Bend Drawing

We use a similar approach to that of Kaufmann and Wiese [19] to construct an initial
drawing of the plane graph G on a set of stationary points P . Our algorithm draws
a point-set embedding with at most three bends per edge that we later extend to the
kinetic setting. The key insight from [19] is finding a Hamiltonian cycle that has at least
one edge, called an external edge, on the outer face of G. A Hamiltonian cycle can be
found in linear time [14, 19] by adding dummy vertices; below we explain the approach
of [19].
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Fig. 2. A plane graph

Each 4-connected planar graph is Hamiltonian [23].
In fact, any maximal planar graph with at most two sep-
arating triangles is Hamiltonian [10, 17, 24]; a separat-
ing triangle is a triangle whose removal separates the
graph into more components. We now review how to
construct a 4-connected graph from any planar graph.
Using the algorithm by Chiba and Nishizeki [12], the
separating triangles can be found efficiently. Kauf-
mann and Wiese [19] destroy the separating triangles
by adding dummy vertices and edges to create a 4-
connected graph. Then, using the algorithm of Chiba
and Nishizeki [11], a Hamiltonian cycle of the 4-
connected graph can be found in linear time. Figure 2
depicts a graph with separating triangles. Adding two new vertices z1 and z2 creates a
new graph (see Figure 3.a) having a Hamiltonian cycle (bold edges); z1 is placed on
the edge v1v6 and partitions it into two edges v1z1 and z1v6 and creates two new edges
v7z1 and z1v8; the corresponding dummy point of the dummy vertex z1, in Figure 3.b,
is inserted in the middle of the segment p7p8. The new graph still has two separating
triangles v1v2v4 and v2v4v6. For each dummy vertex zk we add a dummy point to the
given set of points P = {p1, p2, ..., pn}. The dummy vertex is placed on an edge vivj of
the given graph G and partitions vivj into two edges vizk and zkvj . The corresponding
dummy point is inserted in the middle of the segment pipj . Let m be the number of
dummy vertices, let C = (u1, u2, ..., un+m, u1) be the ordered vertices of the Hamil-
tonian cycle with external edge e = u1un+m, and let chain Q = {q1, q2, ..., qn+m} be
the list of P plus the dummy points sorted in increasing order by their x-coordinates.
In particular, for two points qi = (xi, yi) and qj = (xj , yj), if i < j then xi < xj ; note
that no two points have the same x-coordinate. Call the edges on the Hamiltonian cycle
of the plane graph G hull edges, the edges inside the Hamiltonian cycle interior edges,
and the edges outside of the Hamiltonian cycle exterior edges.
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Fig. 3. (a) Adding two dummy vertices z1 and z2 and new edges creates a plane graph with a
Hamiltonian cycle (bold edges). (b) A 3-bend drawing of G.
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In order to support kinetic drawing, we assign different slopes to the edges than does
the algorithm of Kaufmann and Wiese [19]; our slopes prevent intersections between
interior edges during the motion of the points; see Section 3. Let δ be the maximum
absolute slope of the edges of the chain Q. In particular, δ = maxi | yi+1−yi

xi+1−xi
| where

qi = (xi, yi) and qi+1 = (xi+1, yi+1) are consecutive edges of the chainQ. To draw the
point-set embedding we map the hull edge uiui+1 to the edge qiqi+1. For the external
Hamiltonian edge u1un+m and each interior edge uiuj , where i < j, we also draw
an edge with one bend bij at the intersection of two lines, one through ui with slope
(1 + j−i

n+m )δ and the other one through uj with slope −(1 + j−i
n+m )δ; the mapping of

the edge uiuj is qibijqj which has one bend at bij . The interior edges are drawn above
the chain q1, q2, ..., qn+m and the exterior edges are drawn in a similar way below the
chain.

Theorem 1. The above point-set embedding of plane graph G(V,E) onto the set of
n = |V | points P is crossing-free, has at most three bends per edge, and is constructed
in O(n log n) time.

Proof. After sorting the set of points P by x-coordinates in O(n log n) time, we map the
hull edges to edges of the chain Q plus q1qn+m. This chain separates the interior edges
and the exterior edges and it prevents intersections between these two types. In the fol-
lowing, we consider whether there are intersections among the interior edges; the proof
that there is no intersection among the exterior edges is analogous. Let qiqj and qkql
be two interior edges; w.l.o.g., assume i ≤ k. There are two possible situations: either
j ≤ k, in which case it is obvious that edge qibijqj doesn’t cross edge qkbklql (Fig-
ure 3.b, see p2p6 and p6p8), or j > k, which implies that j ≥ l because the embedded
plane graph G has no edge crossing (edge uiuj doesn’t cross edge ukul). In the second
case (i ≤ k < l ≤ j), the slope of qibij (resp. bijqj) is (1+ j−i

n+m )δ (resp. −(1+ j−i
n+m )δ)

which is sharper than the slope of qkbkl (resp. bklql) because j − i > l − k; therefore,
bij is above bkl which means that edge qibijqj doesn’t cross edge qkbklql (Figure 3.b,
see p1p3 and p1p4). By an argument similar to one in [19], it can be proved that each
edge of the graph G is mapped to a chain of at most four line segments. �

2.2 2-Bend Drawing

Let qk be a dummy point and let qibikqkbkjqj be a drawing of the edge uiuj of G that
has three bends at bij , qk, and bkj . To reduce the number of bends to at most two bends

(a)
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qj qk qi

qj
qk

(b)

bik

bkj bkj

bik

Fig. 4. Saving a bend at the dummy point qk

per edge we replace the chain bikqkbkj
with a vertical line segment through
qk [19], saving a bend at qk, see Figure 4.
The new edge qiqk may cross other edges
and destroy the planarity, see Figure 4.b,
and so we need new assignments for the
slopes of the edges in the point-set em-
bedding. Let rij = [i, j] denote the range
of subscripts for the edge qiqj . The idea
behind our 2-bend drawing algorithm is
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to find the edges whose ranges contain the range rij , for all edges qiqj ; if rkl covers
rij we assign slopes to segments of qkbklql so that they don’t intersect the segments
of qibijqj . To store these nested layers of ranges we construct a nested tree T data
structure. Each node nij of T corresponds to an edge qiqj and the subtree rooted at nij

stores all ranges covered by rij . Figure 5.b shows the nested tree T for the graph in
Figure 5.a.
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Fig. 5. (a) A 3-bend drawing. (b) The nested tree T . (c) The 2-bend drawing.

Lemma 1. Tree T can be built in O(n) time from a 3-bend per edge drawing.

Proof. Using a stack we construct the nested tree T . For the external Hamiltonian
edge q1qn+m, we push q1 onto the stack, create a node n1n+m as the root of T and
a pointer pointing to this node. We process the endpoints of edges in order of increasing
x-coordinate; if there are two or more edges incident to the same point, then we process
these edges by decreasing order of their corresponding ranges. If we encounter the first
endpoint of an edge qiqj , where i < j, we push the point qi and insert into T a new
rightmost child of the node to which the pointer points; after this the pointer must point
to the newly created node. If we encounter the second endpoint qj of qiqj , clearly, the
top of the stack is the first endpoint qi and we pop the point qi and make the pointer
point to the parent of the node nij (in Figure 5.a, after creating the root n18, first we
see the point q1 of the edge q1q5, whose range r15 includes the range r13 and so we
create the node n15 as the rightmost child of n18; the pointer then points to n15. After
encountering the point q1 of the edge q1q3 and creating the node n13, the pointer points
to the node n13. Here, there are three q1’s in the stack corresponding to the three edges
q1q8, q1q5, and q1q3. When we encounter q3 we pop its corresponding q1 and make the
pointer point to n15; continuing this process gives the nested tree T in Figure 5.b). The
running time is clear. �
By traversing the nested tree T from the leaves to the root we show how to draw a
2-bend drawing. For each node nij of T corresponding to the edge qiqj we store two
values δl and δr; the slopes of qibij and bijqj will be generated from δl and δr. Let
nkl be the parent of the node nij corresponding to the edge qkql. If nij is a leaf and
neither endpoint of qiqj is a dummy point we set δl = δr = δ and set the slopes of
qibij and bijqj equal to (1 + j−i

n+m )δl and −(1 + j−i
n+m )δr, respectively. If qj (resp. qi)

is a dummy point we set δl = δ (resp. δr = δ); then, bij is the intersection of the
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vertical line through qj (resp. qi) and the line through qi with slope (1 + j−i
n+m )δl (resp.

−(1 + j−i
n+m )δr). To assign slopes to the edges whose ranges cover the range rij , we

find the slope α of the line through ql (resp. qk) and bij (see Figure 5.c) and set δr = |α|
(resp. δl = α). After assigning the slopes δl and δr to all leaves we can find the slopes
of the edges corresponding to the internal nodes of T . For each internal node nij we
set δl (resp. δr) to be the maximum of the δl’s (resp. δr’s) of the children of the node
nij ; the slope of qibij (resp. bijqj) is (1 + j−i

n+m )δl (resp. −(1 + j−i
n+m )δr). If one of the

endpoints of the edge qiqj corresponding to the internal node nij is a dummy point we
handle nij as we did for a leaf.

The above process assigns slopes to the edges such that if the range rkl covers the
range rij then the slope of qkbkl (resp. bklql) is sharper than the slope of qibij (resp.
bijqj) except when one of the endpoints of qiqj , say pj , is a dummy point; in this case
as explained above, we compute the slope α and use it to assign a valid slope to bklql
so that it does not intersect bijqj . Therefore, qiqj doesn’t cross qkql . Lemma 1 together
with the fact that traversing the nodes of the tree T takes linear time yields the following
theorem.

Theorem 2. Given a 3-bend drawing of the plane graph G on P , which can be con-
structed in O(n log n) time, a 2-bend drawing of G on P can be constructed in linear
time.

3 The Kinetic Drawing

Now, we kinetically maintain the drawing of Section 2. We give a KDS for maintaining
the edges above the chain q1, q2, ..., qn+m; the lower part can be maintained analo-
gously.

3.1 Kinetic 3-Bend Drawing

In the 3-bend drawing of Section 2.1, each edge qiqj above the chain is defined by two
line segments qibij and bijqj with positive slope (1+ j−i

m+n )δ and negative slope −(1+
j−i
m+n )δ, respectively, where δ = maxi | yi+1−yi

xi+1−xi
|. To maintain the point-set embedding

over time, we maintain the maximum slope δ with a tool called the kinetic tournament
tree [4]. We now describe it. Let ˜Q be a set of moving objects such that each object has
a time-varying value. The goal is to maintain over time the object with the maximum
value. The kinetic tournament tree is a balanced binary tree that stores the objects at its
leaves in an arbitrary order; each internal node stores the object with the maximum value
of its two children. The root of the tree maintains the object in ˜Q with the maximum
value. For example, suppose we want to maintain the lowest point among a set of n
moving points along the y-axis such that each point moves according to an algebraic
function. We can use a kinetic tournament tree with the points at the leaves; the root
of the tree maintains the lowest point during the time intervals between critical events
where the ordering changes.
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Here, we store the edges of the chain q1(t), q2(t), ..., qn+m(t) at the leaves of a
kinetic tournament tree KT . At each internal node of KT , we store the winner edge
of the two children, i.e., the edge having the larger absolute slope. We also define a
certificate certifying the winner is steeper than the other edge; the failure time of the
certificate is the time when the other edge becomes the winner. This event is called a
tournament event. When a tournament event at an internal node occurs, we apply the
changes from the internal node to the root of the tournament tree, in O(log n) time, so
that the edge at the root of the tree always has the steepest slope among all edges of the
chain Q.

We maintain a list LQ of the set of points Q sorted by increasing order of their x-
coordinates. When the points move the order of the x-coordinates of two consecutive
points may change. Let qi′ , qi, qj , and qj′ be four consecutive points of LQ. For qi and
qj , we maintain a certificate certifying that the x-coordinate of qi is smaller than the
x-coordinate of qj ; the failure time of the certificate is the time t when xi(t) = xj(t)
and the order is changed at time t+. Call this an order event. Whenever an order event
between qi and qj occurs, we delete two edges qi′qi and qjqj′ from KT and add two
new edges qi′qj and qiqj′ into KT (see Figure 6). Thus, we need a dynamic version of
the kinetic tournament tree KT , called a dynamic kinetic tournament tree (DKT ) [3],
which supports insertions and deletions. The following theorem gives the construction
time for a DKT and bounds the total number of events in this tournament.

Theorem 3. [3] A dynamic kinetic tournament tree DKT , with a sequence of m inser-
tions and deletions whose maximum size at any time is n (assuming m ≥ n), generates
at most O(mβs+2(n) logn) events. Processing a tournament event takes O(log2 n)
time, and the DKT can be constructed in O(n) time.

Since the trajectory of each point is an algebraic function of constant degree at most
s, the Euclidean length of each edge of the chain is an algebraic function of constant
degree at most 2s. Thus, the number of swaps between consecutive points in the sorted
list LQ is quadratic, and Theorem 3 implies the following.

Lemma 2. DKT can be constructed in linear time; the number of tournament events
is O(n2β2s+2(n) logn), and each event can be handled in O(log2 n) time.

In addition to the sorted list LQ and DKT , we need a priority queue, called an event
queue, to maintain the failure times of the tournament events and the order events. Since
the number of dummy vertices is m = O(n), the sizes of the event queue and DKT are
linear.

Lemma 3. The proposed KDS (consisting of LQ, DKT , and the event queue) uses
linear space.

Let Inc(qi) be the set of internal edges incident to qi. Whenever the time of the next
event in the queue is equal to the current time, we update the KDS and replace the fail-
ure certificates with new ones. When an order event between qi and qj occurs, edges in
the set Inc(qi) (if non-empty) cross edges in the set Inc(qj) (if non-empty), see Fig-
ure 6.b. To remove the edge crossings and restore the embedding we allocate Inc(qi) to
the point qj and vice versa, see Figure 6.c. Then, we delete the order certificates corre-
sponding to qi and qj from the event queue and replace them with new ones certifying
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Fig. 6. (a) Before changing the ordering of qi and qj . (b) After points qi and qj change their order.
(c) Allocating Inc(qi) to the point qj and vice versa.

that the order of the x-coordinates of qi′ , qj , qi, and qj′ is in increasing order; the failure
times are the times when two consecutive points change their x-coordinate ordering.

Theorem 4. Given an initial point-set embedding of a plane graph G = (V,E) with
at most three bends per edge on a set P of n = |V | points, where the trajectory of each
point is a known algebraic function of constant degree at most s, there is a kinetic data
structure KDS that maintains the embedding and that satisfies the following properties.
The KDS has linear size, and processes O(n2β2s+2(n) logn) tournament events and
O(n2) order events, each in O(log2 n) time. The KDS is efficient, responsive, compact
and local.

Proof. The time required to apply a constant number of changes in the queue is O(log n).
When an order event occurs a constant number of insertions and deletions is made in
DKT ; each one takes O(log2 n) time (see Lemma 2). The compactness and the re-
sponsiveness, which depend on the number of events and the time to process them,
respectively, follow from Lemmas 2 and 3.

When a tournament event occurs, the winner stored at an internal node changes and
the event may change the maximum slope δ. The only type of event that may cause
edges of the drawing to cross is the order event. The ratio between the number of inter-
nal events (tournament events) and the number of external events (order events) is poly-
logarithmic in n, so the KDS is efficient. Each order event involves a constant number
of other order events and O(log n) tournament events, so the number of all certificates
associated with a particular point is polylogarithmic in n. Hence, the proposed KDS is
local. �

3.2 Kinetic 2-Bended Drawing

Recall from Section 2.2 that the slopes of edge qiqj , for a 2-bend per edge drawing,
arise from two values δl and δr stored at node nij . In order to maintain these values in
the kinetic setting we define two dynamic kinetic tournament trees DKT l and DKT r

whose nodes store δl’s and δr’s, respectively, of the children of node nij ; the root of
DKT l (resp. DKT r) stores the larger value δl (resp. δr) of the children.

Let nkl be the parent of node nij and let Pkl be the path from nkl to the root of the
nested tree T . When the root of the tournament tree DKT l or DKT r changes, one of
the children of nkl is deleted and a new one is inserted; thus, an insertion and a deletion
are done in the corresponding tournament tree of nkl; this tournament tree may cause
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an insertion and a deletion in the parent of nkl and hence updates to all corresponding
tournament trees on the path Pkl. When two points qi and qj change their x-coordinate
ordering, we update the values δl and δr of the nodes corresponding to these points, up
to the root of T . Using this process we obtain a compact KDS for 2-bend drawing.

4 Conclusion

We have introduced the investigation of graph drawing on moving points. In particular,
we have introduced the kinetic data structure framework for maintaining a point-set
embedding of a plane graph G on a set P of moving points, where each point moves
according to an algebraic function of constant degree. We described an efficient kinetic
algorithm for maintaining an embedding of G with at most three bends per edge. In
terms of the standard evaluation criteria for a KDS framework, our KDS for maintaining
a drawing for G with at most three bends per edge is efficient, responsive, local, and
compact. We also gave a new O(n log n)-time algorithm for point-set embedding with
at most two bends per edge; we can kinetically maintain the 2-bend drawing but while
this KDS is compact, it does not satisfy the other three performance criteria. Therefore,
future directions for this research include finding a KDS for point-set embedding with
at most two bends per edge that satisfies all four performance criteria and finding a KDS
for straight-line drawings for some special graphs like outerplanar graphs and trees.
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