
Ultimate Automizer with SMTInterpol�

(Competition Contribution)

Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis,
Jochen Hoenicke, Markus Lindenmann, Alexander Nutz,

Christian Schilling, and Andreas Podelski

University of Freiburg, Germany

Abstract. Ultimate Automizer is an automatic software verification
tool for C programs. This tool is the first implementation of trace abstrac-
tion, which is an automata-theoretic approach to software verification.
The implemented algorithm uses nested interpolants in its interprocedu-
ral program analysis. The interpolating SMT solver SMTInterpol is
used to compute Craig interpolants.

1 Verification Approach

UltimateAutomizer verifies a C program by first executing several program
transformations and then performing an interpolation based variant of trace
abstraction [5].

As a first step we translate the C program into a Boogie [7] program. Next,
the Boogie program is translated into an interprocedural control flow graph [8].
As an optimization we do not label the edges with single program statements
but with loop free code blocks of the program [2].

In our algorithm, the program is represented by an automaton which accepts
all error traces of the program. An error trace is a labeling of an initial path
in the control flow graph which leads to the error location. If all error traces
are infeasible with respect to the semantics of the programming language, the
program is correct.

We use the CEGAR algorithm depicted below. Our abstraction is a nested
word automaton [1] Aerror which accepts only error traces of the program. We
iteratively subtract from our abstraction Aerror the language of an automaton AI
which accepts only infeasible traces. The algorithm terminates if the language
of Aerror is empty or a feasible error trace π was found.

The automaton AI which accepts only infeasible traces is constructed as
follows. If the error trace π is infeasible we consider π as a straight-line program
which has a Hoare annotation I where the initial location is labeled with the
true predicate and the final state assertion is the false predicate. We call such

� This work is supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS).

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 641–643, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



642 M. Heizmann et al.

a Hoare annotation I a sequence of nested interpolants [6] for π. We compute
a sequence of nested interpolants by recursively computing sequences of Craig
interpolants.

After subtracting the language of the interpolant automaton AI from our
abstraction Aerror, we apply a minimization for nested word automata which
preserves the language of Aerror, but reduces the number of states significantly
in many cases.

program P

P is correct P is incorrect

L(Aerror) = ∅ ? π ∈ INFEASIBLE ?

no

return error trace π
such that π ∈ L(Aerror)

yes

construct AI such that π ∈ L(AI) ⊆ INFEASIBLE

and refine abstraction Aerror := minimize(Aerror\AI)

yes no

initial
abstraction
is CFG

Aerror := ACFG

2 Software Architecture

Ultimate Automizer is one toolchain of the software analysis framework Ul-
timate1 which is implemented in Java. Ultimate offers data structures for
different representations of a program, plugins which analyze or transform a
program, and an interface for the communication with SMT-LIBv2 compatible
theorem provers. For parsing C programs, we use the C parser of the Eclipse
CDT project2. The operations on nested word automata are implemented in the
Ultimate Automata Library. As interpolating SMT solver we use SMTIn-
terpol3 [3].

3 Discussion of Approach

Conceptually, our approach is applicable to each class of programs whose se-
mantics can be defined via SMT formulas. However, the current implementation
of Ultimate Automizer supports only sequential programs and does neither
support arrays, pointers, nor bitvector operations.

1 http://ultimate.informatik.uni-freiburg.de/
2 http://www.eclipse.org/cdt/
3 http://ultimate.informatik.uni-freiburg.de/smtinterpol/



Ultimate Automizer with SMTInterpol 643

4 Tool Setup and Configuration

Our competition candidate is a version of Ultimate with a command line user
interface that contains a version of SMTInterpol and can be downloaded from
the following website:

http://ultimate.informatik.uni-freiburg.de/automizer

The zip archive in which Ultimate Automizer is shipped contains the bash
script automizerSV-COMP.sh which calls Ultimate with all parameters that
are necessary to verify C programs using the Ultimate Automizer toolchain.
In order to verify the C program fnord.c, use the directory where you extracted
the zip archive as your working directory and execute the following command:

automizerSV-COMP.sh fnord.c

5 Software Project and Contributors

Our software analysis framework Ultimate was started as a bachelor thesis [4].
In the last years, many students contributed plugins or improved the framework
itself. Soon we will release two user interfaces for Ultimate, a web interface and
a plugin for the Eclipse CDT project. In both user interfaces you can also use
the UltimateAutomizer toolchain to verify C programs.

The Authors thank Alex Saukh and Stefan Wissert for their contributions to
the plugin which translates C programs to Boogie programs. Furthermore the
Authors thank all developers that contributed to Ultimate, to the Ultimate
Automata Library, or to SMTInterpol.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 16:1–
16:43 (2009)

2. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model
checking via large-block encoding. In: FMCAD, pp. 25–32. IEEE (2009)

3. Christ, J., Hoenicke, J., Nutz, A.: Proof Tree Preserving Interpolation. In: Piter-
man, N., Smolka, S. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 123–137. Springer,
Heidelberg (2013)

4. Dietsch, D.: STALIN: A plugin-based modular framework for program analysis.
Bachelor Thesis, Albert-Ludwigs-Universität, Freiburg, Germany (2008)

5. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of Trace Abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009)

6. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Hermenegildo,
M.V., Palsberg, J. (eds.) POPL, pp. 471–482. ACM (2010)

7. Leino, K.R.M.: This is Boogie 2. Manuscript working draft, Microsoft Research,
Redmond, WA, USA (June 2008),
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

8. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL 1995, pp. 49–61. ACM (1995)

http://ultimate.informatik.uni-freiburg.de/automizer
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

	Ultimate Automizer with SMTInterpol (Competition Contribution) 
	Verification Approach
	Software Architecture
	Discussion of Approach
	Tool Setup and Configuration
	Software Project and Contributors
	References





