
Symbiotic: Synergy of Instrumentation,

Slicing, and Symbolic Execution�

(Competition Contribution)

Jiri Slaby, Jan Strejček, and Marek Trt́ık

Faculty of Informatics, Masaryk University
Botanická 68a, 60200 Brno, Czech Republic

{slaby,strejcek,trtik}@fi.muni.cz

Abstract. Symbiotic is a tool for detection of bugs described by fi-
nite state machines in C programs. The tool combines three well-known
techniques: instrumentation, program slicing, and symbolic execution.
This paper briefly describes the approach of Symbiotic including its
strengths, weaknesses, and modifications for SV-COMP 2013. Architec-
ture and installation of the tool are described as well.

1 Verification Approach

Symbiotic implements our technique [4] that combines instrumentation, pro-
gram slicing, and symbolic execution in order to detect bugs described by finite
state machines. More precisely, we instrument a given program with code that
tracks runs of state machines representing various erroneous behaviors. If an in-
strumented state machine enters an error location during a program execution,
then the original program contains a bug specified by the machine. After instru-
mentation, we slice [5] the program to reduce its size without affecting runs of
state machines. Finally, we symbolically execute [3] the sliced program to find
bugs in the program.

As reachability of an ERROR label is the only bug considered in the SV-COMP,
we have modified our instrumentor to put assert(0) function calls at ERROR

labels in the code. Given the instrumented code, we execute Clang to produce
an Llvm bitcode. This is in turn interprocedurally sliced with respect to slicing
criteria, which are the instrumented assert calls. In other words we remove
all the code except the one that has an effect on reachability of assert calls.
The sliced Llvm bitcode is finally symbolically executed by Klee [1]. There are
several possible outputs that Klee may generate. It can either find a reachable
assert and report it, or finish the computation without any report, or terminate
in some errant way (out of time, out of memory, invalid memory dereference,
or some internal error for example). We map these to the demanded answers:
UNSAFE, SAFE, or UNKNOWN respectively. This is taken care of in a simple scripted
filter.
� This work has been supported by The Czech Science Foundation (GAČR), grant
No. P202/12/G061.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 630–632, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Symbiotic: Synergy of Instrumentation, Slicing, and Symbolic Execution 631

2 Software Architecture

Libraries/External Tools. For the code translation and for operations with the
Llvm bitcode we use Llvm/Clang 3.11. The symbolic executor is Klee which
itself uses the Stp constraint solver [2]. We obtained both Klee and Stp from
the respective GIT repositories and used the snapshots. For more information
about Klee, see [1].

Software Structure and Architecture. The architecture described in Section 1
is summarized in Figure 1. The slicer is written as a plug-in for the optimizer
opt from the Llvm suite. It is publicly available in a separate repository at
https://github.com/jirislaby/LLVMSlicer/. The slicer improves the sym-
bolic execution considerably. For ease of use, all parts of the tool pipeline are
one by one run by a single script runme.

Slicer

LLVM

KleeFilter

Clang
LLVMC

SAFE/UNSAFE/UNKNOWN

C
Instrumentor

Klee Result

Fig. 1. Pipeline of the tool

Implementation Technology. The instrumentation is performed by a bash script
using sed. The final filter also uses bash with the help of grep. The rest of the
toolchain is written in C++ and compiled using gcc.

3 Discussion of Strengths and Weaknesses of the
Approach

The strength of the tool lies in its high precision of the answers. In theory,
the only source of incorrect answers is the slicer: it can completely remove an
infinite loop in some cases and thus an unreachable ERROR label located below the
loop may become reachable. However, there is no such case in the competition
benchmarks.

All incorrect answers produced by our tool in the competition are due to bugs
in implementation. Since the tool submission, we have fixed most of the bugs
and improved the implementation a bit. The biggest change on the competition
benchmarks can be seen in the category FeatureChecks (118 files):

1 http://llvm.org

https://github.com/jirislaby/LLVMSlicer/
http://llvm.org


632 J. Slaby, J. Strejček, and M. Trt́ık

Competition Version Current Version
Correct Answers SAFE/UNSAFE 81 116
Incorrect Answers SAFE/UNSAFE 17 0
UNKNOWN (including timeouts) 20 2

In general, the main weakness of the tool is a high percentage of UNKNOWN

results. These results come mainly from high computation cost of the symbolic
execution of programs with loops or recursion. This problem is relieved by slic-
ing, but there are still many cases where the sliced code remains complex and
symbolic execution runs out of time or memory. Other sources of UNKNOWN results
are internal errors of Klee and general limitations of constraint solving.

4 Tool Setup and Configuration

Download and Installation Instructions

– Requirements: llvm-3.1, clang-3.1.
– Download Symbiotic 1 at: https://sf.net/projects/symbiotic/.
– Change the current directory to /opt (this location is needed for Klee).
– Untar the archive with the tool.
– Change directory into /opt/symbiotic.
– Run ./runme <benchmark.c> for each source file in the set.

Results Reported SAFE/UNSAFE/UNKWNOWN answers match the competition rules.
The counterexample for an error in some <benchmark.c> is generated for each
error path in the benchmark to <benchmark.c>-klee-out/. There is also a sliced
code referred by all the error paths.

5 Software Project and Contributors

The concept of the tool has been developed by the authors of this paper. The tool
was implemented by Jiri Slaby (contact person), Marek Trt́ık, and Ben Liblit
(several fixes). It is available under the GNU GPLv2 License and is hosted by
the Faculty of Informatics, Masaryk University.

References

1. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of OSDI, pp.
209–224. USENIX Association (2008)

2. Ganesh, V., Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007)

3. King, J.C.: Symbolic execution and program testing. Communications of
ACM 19(7), 385–394 (1976)

4. Slabý, J., Strejček, J., Trt́ık, M.: Checking Properties Described by State Machines:
On Synergy of Instrumentation, Slicing, and Symbolic Execution. In: Stoelinga, M.,
Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 207–221. Springer, Heidelberg
(2012)

5. Weiser, M.: Program slicing. In: Proceedings of ICSE, pp. 439–449. IEEE Press
(1981)

https://sf.net/projects/symbiotic/

	Symbiotic: Synergy of Instrumentation, Slicing, and Symbolic Execution
	Verification Approach
	Software Architecture
	Discussion of Strengths and Weaknesses of the Approach
	Tool Setup and Configuration
	Software Project and Contributors
	References




