LLBMC: Improved Bounded Model Checking
of C Programs Using LLVM*

(Competition Contribution)

Stephan Falke, Florian Merz, and Carsten Sinz

Institute for Theoretical Computer Science
Karlsruhe Institute of Technology (KIT), Germany
{stephan.falke,florian.merz,carsten.sinz}@kit.edu

Abstract. LLBMC is a tool for detecting bugs and runtime errors in C
and C+4++ programs. It is based on bounded model checking using an
SMT solver and thus achieves bit-accurate precision. A distinguishing
feature of LLBMC in contrast to other bounded model checking tools for
C programs is that it operates on a compiler intermediate representation
and not directly on the source code.

1 Verification Approach

Bounded model checking (BMC) of C, pioneered by Clarke, Kroening and Lerda
[1], is a well-established method for detecting bugs and runtime errors. A number
of mature tools for BMC of C programs already exists [TJ2I6/8]. These tools only
investigate finite paths in programs by bounding the number of loop iterations
and the function call depth that is considered. This way, property checking
becomes decidable using SMT solvers for the combined theory of bitvectors and
arrays, where the latter are used to model the computer’s main memory.

2 Software Architecture

Details on LLBMC’s architecture and features can be found elsewhere [3/48[9].
The overall approach is summarized in the following figure:

****

[ v

First, the C program is compiled into the compiler intermediate representation
LLVM IR [7]. Then, loops are unrolled, functions are inlined, and the resulting

* This work was supported in part by the “Concept for the Future” of Karlsruhe
Institute of Technology within the framework of the German Excellence Initiative.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 623-p26] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



624 S. Falke, F. Merz, and C. Sinz

LLVM IR program is encoded into LLBMC’s intermediate logic representation ILR.
The ILR formula is finally simplified, lowered to an SMT formula, and solved
using the SMT solver STP [5].

In comparison to the version that participated in SV-COMP 2012, this year’s
version of LLBMC offers the following improvements:

— Lazy, on-demand loop unrolling, function inlining, and ILR encoding.

— Uninitialized local variables are automatically set to nondeterministic values.

— SMT-based support for memcpy, memset, and memmove as an extension of the
theory of arrays [4]. This is an alternative to providing C implementations.

— Extended support for many C library functions and gcc built-in functions.
These library functions are provided as a module containing implementations
of the functions in LLVM IR, where the module is automatically linked to the
module obtained from the C program.

— Utilizes new versions of LLVM (version 3.1) and STP (revision 1668).

3 Strengths and Weaknesses of the Approach

LLBMC is tailored towards finding bugs in C programs, in particular memory-
related ones. Detectable errors include common ones such as arithmetic overflow
and underflow, invalid memory access operations, and invalid use of the mem-
ory allocation system (including invalid frees and memory leaks). Furthermore,
LLBMC supports checking of user assertions and reachability of labels in the C pro-
gram. In SV-COMP 2013, checking for most of these errors has been disabled
and only reachability of the error label “ERROR” resp. only memory safety
checks (in the category “MemorySafety”) are performed.

In the competition, LLBMC is used with a maximal loop iteration bound of
10 and a maximal (recursive) function call depth of 2, where these bounds are
increased iteratively based on the previous run of the tool. If no error is found
within these maximal bounds, the instance is considered safe.

LLBMC did not participate in the categories “ControlFlowInteger-MemSimple”
(LLBMC does not support the simplistic memory model), “Concurrency” (not
supported by LLBMC), and “DeviceDrivers64” (since most of these programs im-
plicitly also assume a simplistic memory model). In the categories where LLBMC
participated, it performed very well, winning two categories (“BitVectors” and
“Loops”) and taking second place in four categories. LLBMC did not produce any
incorrect result, but the time or memory limit was exhausted in 69 cases (out of
the 1000 cases on which LLBMC was executed).

4 Tool Setup and Configuration

The version of LLBMC submitted to SV-COMP 2013 can be downloaded from
http://1lbmc.org/llbmc-sv-comp-13.zip


http://llbmc.org/llbmc-sv-comp-13.zip

LLBMC: Improved Bounded Model Checking of C Programs 625

LLBMC requires clang (version 3.1) in order to convert C input files to LLVM
IR. The ZIP archive contains a wrapper shell script, 11bmcc, to run LLBMC on
individual C files that iteratively increases the loop iteration and function call
depth if these bounds were reported to be insufficient by the previous run of
LLBMC. In fact, the script runs LLBMC twice for each bound: In the first run it
searches only for program errors, but does not check bounds. If no program error
is found, a bounds check is performed in the second run.

By default, 11bmcc only performs a reachability check for a basic block la-
belled “ERROR”, but no other checks. In this case it outputs either SAFE, if the
error label is unreachable (within the maximal bounds), or UNSAFE otherwise.
Notice that LLBMC performs its analysis for a 32-bit machine and does not partic-
ipate in the “DeviceDrivers64” category, which would require the analysis to be
performed for a 64-bit machine (the script, however, supports -m64 as the first
argument if the analysis for a 64-bit machine is desired). For the “MemorySafety”
category, the script should be run with -mem-safety as the first argument. The
script then checks for invalid frees, invalid memory dereferences, and memory
leaks, but does not perform any other checks. In this case, it outputs either
TRUE, if the program is memory safe (within the maximal bounds), or one of
FALSE(p valid-free), FALSE(p valid-deref), or FALSE(p valid-memtrack)
if the corresponding memory safety property is violated in the verification task.

5 Software Project and Contributors

LLBMC is developed by Stephan Falke, Florian Merz, and Carsten Sinz at the
Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany. The tool is
available under either an unlimited non-commercial (academic) license or under
an evaluation license that is valid for 30 days and suitable for a commercial
setting. Further information on LLBMC can be found at http://11lbmc.org.

References

1. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168-176. Springer,
Heidelberg (2004)

2. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. In: Proc. ASE 2009, pp. 137-148 (2009)

3. Falke, S., Merz, F., Sinz, C.: A theory of C-style memory allocation. In: Proc. SMT
2011, pp. 71-80 (2011)

4. Falke, S., Sinz, C., Merz, F.: A theory of arrays with set and copy operations (ex-
tended abstract). In: Proc. SMT 2012, pp. 97-106 (2012)

5. Ganesh, V., Dill; D.L.: A Decision Procedure for Bit-Vectors and Arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519-531. Springer, Hei-
delberg (2007)

6. Ivanci¢, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based
bounded model checking for software verification. TCS 404(3), 256-274 (2008)


http://llbmc.org

626 S. Falke, F. Merz, and C. Sinz

7. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: Proc. CGO 2004, pp. 75-88 (2004)

8. Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded Model Checking of C and C++ Pro-
grams Using a Compiler IR. In: Joshi, R., Miiller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146-161. Springer, Heidelberg (2012)

9. Sinz, C., Falke, S., Merz, F.: A precise memory model for low-level bounded model
checking. In: Proc. SSV 2010 (2010)



	LLBMC: Improved Bounded Model Checking  of C Programs Using LLVM 
	Verification Approach
	Software Architecture
	Strengths and Weaknesses of the Approach
	Tool Setup and Configuration
	Software Project and Contributors
	References





