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Abstract. CPACHECKER is a freely available software-verification
framework, built on the concepts of CONFIGURABLE PROGRAM ANAL-
vsis (CPA). Within CPACHECKER, several such CPAs are available,
e.g., a Predicate-CPA, building on the predicate domain, as well as an
Explicit-CPA, in which an abstract state is represented as an explicit
variable assignment. In the CPACHECKER configuration we are submit-
ting, the highly efficient Explicit-CPA, backed by interpolation-based
counterexample-guided abstraction refinement, joins forces with an aux-
iliary Predicate-CPA in a setup utilizing dynamic precision adjustment.
This combination constitutes a highly promising verification tool, and
thus, we submit a configuration making use of this analysis approach.

1 Software Architecture

CPACHECKER is designed as an extensible framework for software verification,
which is written in Java. The framework allows for parsing the input program
into its internal data structures and provides interfaces to SMT solvers and
interpolation procedures (e.g., MathSA). The paramount design decision of
CPACHECKER is separation of concerns, thus, each of the ready-made verification
algorithms available within CPACHECKER is implemented as a single CPA [I]. As
these CPAs may be flexibly recombined on a per-demand basis, developing novel
verifiers or reusing existing components for other domains is greatly facilitated.

2 Verification Approach

CPACHECKER [2] represents the set of reachable states as an abstract reachability
graph (ARG), which is built by successor computations along the edges of the
program’s control-flow automaton. The nodes of the ARG, representing sets of
reachable program states, track all the relevant information, such as the program
counter, the call stack, and the abstract data states of the main CPAs.

In contrast to our contribution from last year, which was doing software model
checking via predicate abstraction, the main CPA in our configuration for this
year, namely the Explicit-CPA, performs explicit-state software model checking
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in order to verify properties of a program. This approach has the advantage
over more sophisticated techniques, like, e.g., approaches based on predicate
abstraction, that the state representation is simpler and successor computation
is more efficient. However, once applied to real-world code, representing each
and every state of a program explicitly is bound to fall prey to the problem
of state-space explosion, unless a proper abstraction technique is put in place.
To this end, we extend the Explicit-CPA by abstraction and interpolation-based
counterexample-guided abstraction refinement (CEGAR) [3].

There, the analysis starts with an initially empty precision, and, eventually, a
counterexample will be found. The (in)feasibility of the (spurious) counterexam-
ple will be determined by a full-precision check, performed by our Explicit-CPA.
If infeasible, the interpolation procedure will extract a refined, parsimonious pre-
cision to be used in the next iteration of the CEGAR loop. This abstract-refine
approach circumvents the problem of state-space explosion in many cases, lead-
ing to improved run times and more solved instances than the naive approach.

However, due to the less expressive state representation of the explicit domain,
it can occur that during explicit refinement, a spurious counterexample cannot
be excluded by means of the explicit domain. To further improve the precision
of our analysis, we add a Predicate-CPA in a dynamic precision adjustment
approach [3]. There, the precision of the Predicate-CPA gets only refined in just
those corner cases where the Explicit-CPA lacks expressiveness, and accordingly,
the Predicate-CPA plays only an auxiliary, supporting role in the whole analysis.

Additionally, to limit the number of false positives reported by our verifier,
once the analysis finds what it believes to be a real counterexample, the respec-
tive error path is given to cBMch Only if CBMC agrees with our result, the
bug will be reported, otherwise, the analysis continues hunting for another bug.

3 Strengths and Weaknesses

The CPAcHECKER framework is striving for maximal reuse of existing com-
ponents like the parser front-end, interfaces to the theorem provers, and, as
described above, already existing CPAs. Hence, we rather adhere to software-
engineering best practices instead of optimizing algorithms into a highly-tuned,
but then also monolithic piece of software that becomes ever harder to maintain.
We expect our verifier to perform well where the property to be proven is
strongly connected to the control flow. This is confirmed by the impressive re-
sults we obtained in the categories “ControlFlowInteger”, “SystemC” and, most
notably, in the category “DeviceDrivers64”, where compared to the naive ap-
proach, our novel abstract-refine concept also has the most noticeable effect [3].
However, CPACHECKER, and in particular the CPAs used in our configuration,
do not provide support for the verification of properties in multi-threaded or
recursive programs, while also lacking support for properties regarding memory
safety. We wish to add more thorough handling of structures, unions, pointers,
pointer aliasing and heap data structures into the analysis in the near future.
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4 Setup and Configuration

CPACHECKER is available under the Apache 2.0 license and both source code and
binary releases are available for download at http://cpachecker.sosy-1lab.org.
Due to the fact that CPACHECKER is written in Java, it is deployable on almost
any platform. However, configurations depending on the predicate analysis cur-
rently work only under GNU/Linux, because the MathSAT library is available
only for this platform. For the purpose of the software-verification competition,
we submit version 1.1.10-svcompl3 of CPACHECKER, with the configuration
sv-comp13--explitp-pred. The command line for running this configuration is

./scripts/cpa.sh -sv-compl3--explitp-pred -heap 12000m
-disable-java-assertions path/to/sourcefile.cil.c

For C programs that assume a 64-bit environment (i.e., those in the category
“Linux Device Drivers 64-bit”) the parameter stated below needs to be added:

-setprop cpa.predicate.machineModel=LINUX64

For the category “Memory Safety”, the property to verify is given by -spec p
with p in {valid-free, valid-deref, valid-memtrack}. On machines with less
than 16 GB RAM, we recommend to decrease the amount of memory given to
the Java VM accordingly. CPACHECKER will print the verification result and the
name of the output directory to the console. Additional information, e.g., the
error path, will be written to the respective files in this output directory.

5 Project and Contributors

The CPACHECKER project is as an international open-source project, maintained
at the University of Passau by the Software Systems Lab. It is used and extended
by members of the Russian Academy of Science, the Technical University of
Vienna, and the University of Paderborn. We would like to thank all contributors
for their help and efforts spent on the CPACHECKER project, and in particular,
we would like to thank Dirk Beyer for maintaining the CPACHECKER project.
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