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Abstract. We describe the design of DPF, an explicit-state model checker for
database-backed web applications. DPF interposes between the program and the
database layer, and precisely tracks the effects of queries made to the database.
We experimentally explore several implementation choices for the model checker:
stateful vs. stateless search, state storage and backtracking strategies, and dy-
namic partial-order reduction. In particular, we define independence relations at
different granularity levels of the database (at the database, relation, record, at-
tribute, or cell level), and show the effectiveness of dynamic partial-order reduc-
tion based on these relations.

We apply DPF to look for atomicity violations in web applications. Web ap-
plications maintain shared state in databases, and typically there are relatively
few database accesses for each request. This implies concurrent interactions are
limited to relatively few and well-defined points, enabling our model checker to
scale. We explore the performance implications of various design choices and
demonstrate the effectiveness of DPF on a set of Java benchmarks. Our model
checker was able to find new concurrency bugs in two open-source web applica-
tions, including in a standard example distributed with the Spring framework.

1 Introduction

We present the design, implementation, and evaluation of DPF, an explicit-state model
checker for database-backed web applications. Most web applications are organized
in a three-tier architecture consisting of a presentation tier, a business-logic tier, and
a persistent database tier. In a typical usage scenario, a user of the application starts
a session, makes one or more requests to the application, and then closes the session.
The processing of a request depends on the state of the database and can modify the
database. The application server hosting the web application assigns a new thread for
each request, and runs the logic implemented in the business tier to handle the request.
The thread may access the data tier to store or retrieve information to/from a database.
After each request is handled, the response is sent back to the user. Since the under-
lying http protocol is stateless, the application threads typically do not share the state
directly. Instead, all state is stored in the session object and in the persistent store. In
particular, requests by different users (or requests made in different sessions) only share
the database and no other shared state. Most modern languages provide frameworks that
simplify the development of web applications (e.g., Spring and Grails for Java, Django
for Python, Rails for Ruby).
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Since web applications concurrently process requests made by multiple users, there
is the potential for concurrency bugs. One class of bugs are atomicity violations, where
the application may perform several sequential interactions with the database, with-
out ensuring the sequence occurs atomically. This can expose inconsistent states to the
database. Consider two users getting a record and then concurrently deleting it; the
second attempt to delete may fail. Note that such bugs can arise even when the imple-
mentation of the database management system (DBMS) correctly implements ACID
semantics for each transaction. Existing techniques for checking race conditions and
atomicity violations [7, 26] in multi-threaded code cannot be applied directly, as they
usually depend on explicit tracking of synchronization operations or on heap cells that
are read or written.

Since bugs in web applications can have high financial costs, it is reasonable to con-
sider developing systematic state-space exploration tools that look for property viola-
tions. Moreover, the application domain makes model checking [2, 12, 14] especially
attractive: each request handler typically makes few interactions with the database, to
improve latency of the application. Thus, techniques such as partial-order reduction are
expected to work exceptionally well: each thread can atomically run all its code be-
tween two database transactions. At the same time, developing such a model checker
presents new and non-trivial technical challenges: How can we represent the state of the
database in the model checker? How can we store and restore states, particularly in the
presence of a large amount of data in the database? How do we perform partial-order
reduction while respecting the database semantics?

We focus on model checking the business and data tiers of web applications, assum-
ing the correctness of the database management system. We have implemented a model
checker DPF (for Database PathFinder) for Java programs.

A straightforward model checking approach would model the database interactions
using reads and writes on shared-memory objects representing the objects implemented
in the database and use standard explicit-state model checking [12, 14, 28]. Unfortu-
nately, we show that such an approach does not scale. Database queries have complex
semantics, and their correct modeling brings in too many details of the database imple-
mentation. Instead, we represent the application as a multi-threaded imperative program
interacting with a database through a core SQL-like declarative query language, and pre-
cisely model the semantics of a relational database in the semantics of the programming
language. That is, the model checker represents database state as a set of relations, and
directly models integrity constraints on the data, such as primary key constraints. The
actual database is run along with the model checker to store the concrete relations.

We explore several design choices in our model checker. First, we explore stateful vs.
stateless search. In stateful search, we implement two approaches for backtracking the
database state. In the first approach, we exploit the savepoint and rollback mechanism
of the database, so we can roll back the database state at a backtrack point. In the second
approach, we replay the queries performed on the database from an initial state to come
to a backtrack point.

Second, we explore partial-order reduction strategies at various granularity levels.
Partial-order reduction (POR) requires identifying when two operations are dependent.
We give conditions to identify dependent operations at the database, relation, attribute,
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record, and cell levels. Dependencies are more precise as we go down the levels from
database to cell, but require more bookkeeping. We experimentally evaluate the effect
of POR at different levels: we show that the number of states explored decreases from
naı̈ve exhaustive exploration to cell level, with over 20× reduction in some cases.

Our implementation and evaluation on 12 programs suggests that model checking
can be an effective tool for ensuring correctness of web applications. In our experi-
ments, we were able to find concurrency errors in two open-source Java-based web
applications. Specifically, we found concurrency errors in PetClinic, an example e-
commerce application distributed with the Spring framework, and in OpenMRS, an
open-source medical records system. In each case, the programmers had not considered
conflicting but non-atomic accesses made concurrently to the database.

While much of our model checker specializes general model-checking techniques,
our contributions include: (1) design choices that customize the model checker (includ-
ing stateful/stateless search, state storage, and backtracking) to the domain of database-
backed applications (Section 3), (2) domain-specific versions of partial-order reduction
(Section 4), and (3) empirical validation that model checking can be quite effective in
detecting concurrency errors for database-backed applications (Section 5).

2 Modeling Database Applications as Transition Systems

We formalize our model-checking algorithm for a concurrent imperative language that
accesses a relational database using a simplified structured query language (SQL). We
model the semantics of the database as in [5], but additionally allow multiple threads of
execution in the program interacting with the database.

Relational Databases. A relational schema is a finite set of relation symbols with asso-
ciated arities. Each relation symbol is an ordered list of named attributes; an attribute is
used to identify each position. A record is an ordered list of attribute values. The value
of attributeA has position pos(A). A finite relation is a finite set of records. For simplic-
ity of exposition, we assume that each attribute value is an integer; our implementation
handles all the datatypes supported by a database.

A relational database over a relational schema S represents a mapping from relation
symbol r ∈ S to finite relation r, such that r has the same arity as r. We write r ∪ {ρ}
to denote an extension of the relation r with the record ρ, which has the same arity as r,
and r \{ρ} to denote a removal of the record ρ from the relation r. A key can be defined
on a relation symbol r to identify an attribute that has a unique value in each record of
the relation; kdef(r) holds if a key is defined on r and key(r) returns the position of that
key. Finally, for a relational schema S, a relation symbol r ∈ S, a finite relation r of the
same arity as r, and a database R over S, we write R[r← r] for the relational database
where r is mapped to r, while all other relation symbols are the same as in R.

Structured Query Language (SQL). We assume that the program communicates with
the database using a declarative query language. We focus on a simplified data manip-
ulation language that allows querying, insertion, deletion, or update of the relations in
the database. The syntax of the language is as follows.
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1. The SELECT statement SELECT A1, . . . ,Ak FROM r WHERE ψ queries the
database and returns a relation with attributesA1, . . . ,Ak , such that for each record
r in the relation, there is a record in the relation r that agrees with r on A1, . . . ,Ak
and also satisfies the predicate ψ.

2. The INSERT statement INSERT INTO r VALUES (v1,...,vn) inserts a new record
in the relation r, if the integrity constraints are satisfied.

3. The DELETE statement DELETE FROM r WHERE ψ removes all records from
the relation r that satisfy the predicate ψ.

4. The UPDATE statement UPDATE r SET A = F (A) WHERE ψ updates the
values of an attribute by applying the function F in all records that satisfy the
predicate ψ, if the integrity constraints are satisfied.

Note that insertions and updates check integrity constraints on the database. These
are invariants on the database that are specified at the schema level. For example, the
PRIMARY KEY constraint requires that each value of a key attribute appears at most
once in a relation.

We formalize the semantics of the SQL statements in a straightforward way and
additionally include support for integrity constraints. We fix a schema S consisting of a
set of relation symbols. A database R over S consists of a set of relations, one for each
relation symbol r in S of the same arity as r and with the same attributes.

We first define some standard functions. For a relation r = R(r) and predicate
ψ over the attributes of r, we define the selection function σψ(r) as a relation that
includes all records that satisfy the condition ψ: {ρ | ρ ∈ r ∧ ρ |= ψ}. The pro-
jection πA1,...,Ak(r) projects a relation r to only the attributes A1, . . . ,Ak. The sub-
stitution r[A ← F (A)], for a function F mapping integers to integers is defined as
{〈v1,...,vi−1,F (vi),vi+1,...,vn〉 | 〈v1,...,vn〉 ∈ r ∧ i = pos(A)}.

Lastly, for an attribute K , we define a predicate ξK(r) that holds iff each record of r
has a unique value on attribute K , i.e., for all ρ ∈ r, 〈ρpos(K)〉 /∈ πK(r \ ρ).

The semantics of each SQL statement can now be given as a transformer on the
database and an output relation (representing the result of the SQL statement).

Select: For a given set of attributes {Ai | i ∈ {1,...,k}} of a relation r, the select
operation returns a pair of the unmodified relational database and a set of records that
satisfy the predicate ψ and projected on A1,...,Ak: 〈R,πA1,...,Ak(σψ(R(r)))〉.

Insert: For a record 〈v1,...,vn〉 of the same arity as r, the insert operation returns a
relational database that includes a new record in the mapping for relation r if a key is
not defined on r, or the record has a unique value on the key attribute; otherwise, it
returns the original relational database and an empty output relation:

〈R[r← R(r) ∪ {〈v1,...,vn〉}],∅〉, if ¬kdef(r) ∨ ξkey(r)(R
′(r))

〈R,∅〉 , otherwise.

Delete: The delete operation creates a new mapping for the relation symbol r, which
includes all the records that do not satisfy the predicate ψ and an empty output relation:
〈R[r← R(r) \ σψ(R(r))],∅〉

Update: The update operation creates a new mapping for the relation symbol r, which
includes all records that do not satisfy the predicate ψ and all records that satisfy the
predicate ψ with substituted value for A. The update is possible if either a key is not
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defined on r or the integrity constraints are satisfied after the update; otherwise, the
operation does not modify the relational database:

〈R[r ← R(r) \ σψ(R(r)) ∪ σψ(R(r))[A← F (A)]],∅〉, if ¬kdef(r) ∨ ξkey(r)(R
′(r))

〈R,∅〉 , otherwise.

Multithreaded Database Programs. Our program model consists of multithreaded
imperative programs with a fixed number of threads, where each thread has its own
local variables (including relation-valued variables). In addition to usual assignment,
conditional, and looping constructs, each thread can make SQL statements to a shared
database with a fixed schema S. We assume w.l.o.g. that there is no global shared mem-
ory state (but our implementation supports additional global state as well). In order
to model transactions, we assume that a statement can be enclosed within a keyword
“transaction,” and the database implementation guarantees that the entire transaction
executes atomically. We omit a concrete syntax for our programs.

The state of a program consists of the state of the relational database and local states
of each thread:

State of the program = State of the database × States of the threads
States of the threads = a map from each thread to its local state

Local state = Location in the program× a map from each local var to its value

At the beginning of the execution of a program, each local state is in an initial state,
where the program counter is at the starting location for each thread and each value is
initialized to the default value of the appropriate type. The initial state of the database
is provided by the user and represents the state at the beginning of an execution. Note
that the result of the exploration depends crucially on the initial database state.

The execution of a program advances by performing the following steps in a loop:
(1) select a thread non-deterministically from the set of live threads, and (2) execute
the statements of the thread until the thread finishes the execution or is about to exit
from a transaction statement (this represents a commit of the transaction); the sequence
of statements executed by a thread without interruption is called a transition [8]. The
program execution ends when all threads finish the execution.

Note that while two transactions can be interleaved in a concrete run of a program,
we rely on the correctness properties of the database implementation to run transactions
atomically and in isolation. Moreover, we rely on a lower-level primitive that performs
retries in case a transaction must be aborted, so that we only check execution paths of
the program in which transactions commit.

Explicit-State Model Checking. Now that we have modeled a database application as
a state-transition system, we can implement an explicit-state model checker that sys-
tematically explores all interleavings of the program [12, 14, 28]. Since the database is
the only shared state, the only visible operations of the program (i.e., points at which
thread switches must be scheduled) are transaction statements.

In the next two sections, we discuss key implementation choices in the model checker:
(1) representation of the database (in-memory vs. on-disk), (2) state storage, check-
pointing and restoration, and matching, and (3) partial-order reduction.
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3 Design Decisions and Implementation

Extending JPF. We implemented our model checker DPF (Database PathFinder) for
Java programs as an extension of Java PathFinder (JPF) [16, 28]. JPF is a popular, ex-
tensible and configurable model checker for Java programs; a user can select stateful
or stateless search, state storing and restoring mechanism, state matching algorithm,
search heuristic, etc. JPF implements a backtrackable Java Virtual Machine that ex-
plores a program by interpreting bytecode instructions. As a consequence, JPF does
not support (i.e., cannot analyze) Java programs that employ native methods, since the
native methods are not implemented as java bytecode. To overcome the limitations one
has to implement native methods to operate on JPF’s internal memory representation.

Although in principle JPF should be able to explore any Java program, including
database applications, there are significant challenges in applying it in our context.
First, JPF is unable to execute database applications because applications use native
methods, e.g., from Java Database Connectivity (JDBC) used by Java programs to in-
teract with databases. Second, JPF sees accesses to shared-memory objects as the only
source of non-determinism.1 Therefore, JPF does not consider database transactions as
the scheduling points, which are the key scheduling points for database applications.
Thus, JPF will not explore their interleavings. Third, JPF may perform incorrect ex-
ecution of database applications. JPF stores the in-memory state of an application at
each scheduling point and restores the state when it explores the next choice from that
point. This ignores the state of the database (and of external files). Similarly, JPF stores
hashes only of in-memory objects, and will ignore the database state when matching
the state in stateful exploration. Next, we describe how we customized JPF to address
these challenges and enable the (optimized) exploration of database applications.

Design 1: In-Memory Database. The simplest approach to address all the challenges
is to configure a database application to use an in-memory database, e.g., H22, which
uses data structures in memory to represent a database but exposes a SQL interface
to these data structures. Consequently: 1) there are no accesses to external resources
(although we still had to implement a few native methods used by H2), 2) the database
becomes, from the JPF perspective, an in-memory object shared among threads and
therefore JPF schedules all relevant threads at each access to the data structures that
represent the database, 3) the database is stored/restored by JPF at scheduling points as
any other in-memory object, and 4) state matching hashes the state of the database (at
the concrete level of the data structures that implement the database rather than at the
abstract level of the database).

However, this approach has a number of drawbacks. JPF explores the implemen-
tation of the database together with an application, therefore introducing unnecessary
overhead. We would rather explore the semantics of the application assuming correct-
ness of the DBMS implementation. Next, keeping a database in JPF memory is not
acceptable for any realistic application with many records. Also, state matching is not
optimal, since many internal structures are part of the state (e.g., different orders of two
records lead to different states, even when they encode the same relation).

1 JPF also supports data non-determinism, but that is irrelevant for our discussion.
2 http://h2database.com/

http://h2database.com/


Model Checking Database Applications 555

Our experimental evaluation showed that this technique does not complete in rea-
sonable time or space for any real application, and not even for micro-benchmarks.

Design 2: On-Disk Database. To enable JPF to work with on-disk databases, we first
intercept the native methods from the JDBC API and extended JPF to view some of
these methods as scheduling points. We next extend JPF to restore the database, and
so support stateless exploration even when the application updates the database. Our
first approach to tackle this problem was to intercept all method invocations that access
the database and save the SQL operations used in these accesses. We keep a mapping
from each memory state that JPF encounters during exploration to the sequence of SQL
operations executed up to that state. When JPF restores the memory state, we addition-
ally first restore the database to what it was at the beginning of the exploration and
then replay the saved SQL operations that correspond to the state being restored. While
this approach correctly restores the database for each state, we recognized that in some
cases we may further optimize state restoring by leveraging the roll back mechanism
of databases. In our second approach, for each new state in JPF, we set a savepoint [3].
Then, when JPF restores the memory state, we instruct the database to roll back to the
appropriate savepoint. Note that the second approach works only for depth-first search
exploration because there can be at most one sequence of savepoints in a database.

To further optimize the exploration, we consider stateful search. Before each state
matching, we compute the hash of the database and add it to the hash that JPF computes
for the memory state. We explore two ways of hashing databases: the full approach
that computes hash of the entire database each time, and the incremental approach that
updates the hash value each time the database is changed. Note that the incremental hash
function must be commutative [15, 20]; otherwise, the same set of records may lead to
different hash values if they are inserted in different order. Our current implementation
modifies the H2 database to support incremental hashing.

4 Partial-Order Reduction

POR [8, 11, 12, 30] is an optimization technique that exploits the fact that many paths
are redundant as they execute independent transitions in different orders. Two transi-
tions are independent [11] if their executions do not affect each other, i.e., if the two
transitions commute and do not disable each other. The naı̈ve approach (i.e., without
POR) trivially considers any two operations to be dependent and exhaustively explores
the entire transition graph. POR techniques identify dependent transitions and explore
a set of paths that is a subset of the paths that are executed by the naı̈ve approach.

For database applications, we can track dependencies among SQL operations at dif-
ferent granularity levels: database, relation, attribute, record, and cell. These levels
differ in precision of the tracked information (thus enabling more pruning in the ex-
ploration) and in the cost of tracking that information (the more precise ones are more
expensive to track). We now describe the dependency conditions for these levels.

Figure 1 compactly presents the sufficient conditions to identify dependent transi-
tions for more precise granularities. These conditions assume that there is one SQL
operation per transition and that both transitions use the same relation symbol r (as
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Fig. 1. Conditions to identify dependent transitions where r1 = r2

transitions on different relations are trivially independent in our language). Recall that
kdef(r) holds if the relation symbol has a key; if so, we assume the key is called K .

Figure 1 uses the following notation. A pair of transitions is named by the first let-
ter of their SQL operations, e.g., 〈S1,I2〉 stands for 〈SELECT1,INSERT2〉. Recall that
these operations have parameters; we use X1 and X2 to refer to the parameters of the
operations, e.g., in an expression σψ1({〈v21 ,...,v2n〉}), ψ1 is the predicate used in the first
transition and v21 ,...,v

2
n are the attributes used in the second transition. RO refers to the

database after the operation O is executed. Finally, symbol � splits a condition in the
part sufficient if a primary key is not defined on the relation and the part that is addi-
tionally sufficient if a primary key is defined; other than that, � is equivalent to logical
∨ operator; the conditions are weaker for relations that have keys because the implicit
constraints preclude some insert/update operations.

Relation Granularity. Most pairs of transitions are (conservatively) marked as depen-
dent. For example, consider 〈S1,I2〉 (the second row in Figure 1), which are dependent
if the record to be inserted by I2 would be selected by S1. Because the only available
information at the relation granularity level is the name of the relation used in the oper-
ations, it is not possible to know if S1 would select the record inserted by I2. However,
the relation granularity is still more precise than the naı̈ve exploration for the two cases
(〈S1,S2〉 and 〈D1,D2〉) when the transitions are always independent. First, a SELECT
operation does not modify the state of the database, so two SELECT operations are
independent (this is similar to read-read independence in shared-memory programs).
Second, two DELETE operations are independent, because a DELETE operation either
removes all the records that satisfy the predicate or does not affect the database if no
record satisfies the predicate (Section 2). Thus, two DELETE operations commute, and
the set of removed records is the union of the sets of records removed by these opera-
tions. Note that we do not consider all options of databases (e.g., foreign keys, observing
failing operations, etc.), which may change the notion of dependence in some cases. For
example, two DELETE statements may not commute if a foreign key is defined because
the first delete may remove the records such that the second delete cannot execute. Also,
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while database and relation granularities are the same for our language when r1 = r2,
these granularities may differ when other options of databases are considered.

Attribute Granularity. The attribute granularity is more precise than the relation gran-
ularity, i.e., the transitions that are dependent according to the attribute granularity are
dependent according to the relation granularity, while the opposite may not hold. At
the attribute granularity level, the extracted information includes a set of attributes used
by each transition. Consider two rows in Figure 1 (〈S1,U2〉 and 〈U1,U2〉) when the at-
tribute granularity may give more precise result. S and U are dependent if the attribute
whose values are to be updated is in the set of attributes to be selected. Similarly, U and
U are dependent if both update the same attribute; note that even when the attribute is
the same, the transitions may actually be independent if they modify different records.

Record Granularity. The record granularity is never less precise than the relation gran-
ularity but is incomparable to the attribute granularity. The conditions that are sufficient
for two transitions to be dependent are as follows. For 〈S1,I2〉, it suffices to check if the
record to be inserted by I2 would be selected by S1. 〈S1,D2〉 requires that at least one
of the records to be deleted by D2 be in the set of records to be selected by S1. 〈S1,U2〉
requires that the sets of records selected by S1 before and after the update differ. If a
key is not defined, 〈I1,I2〉 are never dependent because both records can be inserted in
the database. However, if a key is defined, these transitions are dependent if the values
of the keys to be inserted are the same. 〈I1,D2〉 requires that the record to be inserted by
I1 would be deleted by D2. If a key is not defined, 〈I1,U2〉 are dependent if the record
to be inserted would be updated; if a key is defined, the transitions are dependent if the
record to be inserted and any updated record have the same key value. 〈D1,U2〉 requires
different set of records to be selected by D1 before and after the update if a key is not
defined. If a key is defined, the transitions are dependent if a set of records to be selected
by U2 before and after delete is different. For 〈U1,U2〉, if a key is not defined, different
sets of records should be selected using the condition of one operation on the database
before and after the other operation is executed. If a key is defined, the transitions are
dependent if they would insert any records that have the same key value.

Cell Granularity. The cell granularity combines the power of attribute and record gran-
ularities to identify values in the records that are accessed by each operation. This makes
the cell granularity the most precise. The conditions are conjunction of conditions re-
quired for attribute and record granularities.

We implemented dependency analysis for relation and cell granularities in DPF.
Since the set of relation symbols used in the SQL statements does not depend on the
database content, our implementation caches the set of relation symbols for each oper-
ation and uses the cache in dependency analysis for the relation granularity.

POR vs. Database Management System (DBMS) Serializability. DBMS checks if
two transitions are serializable when they execute concurrently [3]. In contrast, DPF
checks if two transactions commute even if they are executed serially. DBMS employs
mechanisms, such as read/write sets [3], to answer the serializability question. While
it may be possible to use these mechanisms to check dependence, our straightforward
implementation of dependence-tracking using DBMS conflict detection was imprecise
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as the read/write sets involved implementation-specific objects such as locks that may
not affect dependence. Thus, we implemented the semantic notions described above.

5 Experimental Evaluation

We now present a performance evaluation of DPF and describe three bugs we found.

Configurations. First, we evaluate DPF with in-memory database. Second, we evaluate
DPF with on-disk database combined with one of two approaches to restore the database
(Replay or Rollback), one of two approaches to hash the database (Full or Incremental),
and one of three POR granularity levels (Naı̈ve, Relation, or Cell). Therefore, we have
13 configurations of DPF. All experiments were performed on a machine with a 4-core
Intel Core i7 2.70GHz processor and 4GB of main memory, running Linux version
3.2.0, and Java Oracle 64-Bit Server VM, version 1.6.0 33.

Benchmarks. Our set of benchmarks includes four real-world applications and 7 ker-
nels that we used to evaluate DPF. The applications are as follows: OpenMRS3 is an
open-source enterprise electronic medical record system platform with 150K lines of
Java code in the core repository; PetClinic4 is an official sample distributed with the
Spring framework [27] and implements an information system to be used by a veteri-
nary clinic to manage information about veterinarians, pet owners, and pets; RiskIt5

is an insurance quote application with 13 relations, 57 attributes, and more than 1.2 mil-
lion records; and UCOM6 is a program for obtaining statistics about usage of a system.
RiskIt and UCOM have been used in previous research studies on database applica-
tions [13,23,24]. The kernels include these: InsertDelete is created to test the 〈I,D〉
dependency; IndAtts is created to test POR with the attribute granularity by spawning
a couple of threads that update values of different attributes; IndCells is created to
test POR with the cell granularity by spawning multiple threads that use different cells;
IndD is created to test the dependency among delete operations; IndRels is created to
test POR with the relation granularity; Accesses spawns threads that perform many
(independent and dependent) SQL operations; and Entries is created to test our two
approaches for hashing the database.

Tests. As for other dynamic techniques, DPF requires an input that initiates the explo-
ration. While our kernels do not require any input, we had to construct test inputs for
four applications. Unfortunately, none of the applications include concurrent test cases.
(A concurrent test case spawns two or more threads.) However, all applications include
a (large) number of sequential test cases. We created concurrent test cases by combining
the existing sequential test cases; each sequential test case is executed by one thread.
Combining sequential test cases can be challenging and currently we mostly do it man-
ually. In the future, we would like to investigate in more detail the power of concurrent
test cases that are obtained by combining sequential test cases. Also, we would like

3 http://openmrs.org (version 1.9.1)
4 http://static.springsource.org/docs/petclinic.html (revision 616)
5 https://riskitinsurance.svn.sourceforge.net (revision 96)
6 http://sourceforge.net/projects/redactapps (version of October 14, 2012)
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1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.
B
en
ch
m
ar
k DB Type � In-memory On-disk

DB Hashing� na Full Incremental
DB Restore � na Replay Rollback Replay Rollback
Granularity � na Naı̈ve Rel. Cell Naı̈ve Rel. Cell Naı̈ve Rel. Cell Naı̈ve Rel. Cell

� Statistics � � � � � � � � � � � � � �

Applications

O
pe
nM

R
S

Expl [ms] - 53513 3201 3082 145881 3121 3137 53482 2634 3095 149579 3098 3109
Speedup [X] na na 16.72 17.36 na 46.74 46.50 na 20.30 17.28 na 48.28 48.11

#States - 33855 2193 1625 33855 2193 1625 33855 2193 1625 33855 2193 1625
Reduction [X] na na 15.44 20.83 na 15.44 20.83 na 15.44 20.83 na 15.44 20.83

#Trans - 68182 3221 2214 68182 3221 2214 68182 3221 2214 68182 3221 2214
Memory [MB] - 437 102 104 460 106 104 437 102 102 442 102 104
Hash [ms] na 89 15 9 100 10 16 17 2 4 27 1 1

P
et
C
lin

ic
1

Expl [ms] - 107225 20334 14223 94448 18188 13343 106107 20976 14682 93750 18714 14056
Speedup [X] na na 5.27 7.54 na 5.19 7.08 na 5.06 7.23 na 5.01 6.67

#States - 39571 10919 5646 39571 10919 5646 39571 10919 5646 39571 10919 5646
Reduction [X] na na 3.62 7.01 na 3.62 7.01 na 3.62 7.01 na 3.62 7.01

#Trans - 52733 13962 6708 52733 13962 6708 52733 13962 6708 52733 13962 6708
Memory [MB] - 610 503 387 541 515 393 617 499 393 577 509 390
Hash [ms] na 295 73 56 305 84 57 27 16 37 31 11 36

P
et
C
lin

ic
2

Expl [ms] - 4549 3359 3589 3709 2785 3005 4647 3495 3657 3599 2822 2976
Speedup [X] na na 1.35 1.27 na 1.33 1.23 na 1.33 1.27 na 1.28 1.21

#States - 1234 458 451 1234 458 451 1234 458 451 1234 458 451
Reduction [X] na na 2.69 2.74 na 2.69 2.74 na 2.69 2.74 na 2.69 2.74

#Trans - 1744 620 609 1744 620 609 1744 620 609 1744 620 609
Memory [MB] - 167 102 102 102 102 105 101 102 106 106 102 102
Hash [ms] na 19 12 10 11 16 9 4 2 2 2 0 3

R
is
kI
t

Expl [ms] - 1012343 615514 391515 1050192 632422 397537 26447 25969 25805 26509 25982 26635
Speedup [X] na na 1.64 2.59 na 1.66 2.64 na 1.02 1.02 na 1.02 1.00

#States - 706 276 203 706 276 203 706 276 203 706 276 203
Reduction [X] na na 2.56 3.48 na 2.56 3.48 na 2.56 3.48 na 2.56 3.48

#Trans - 1349 415 278 1349 415 278 1349 415 278 1349 415 278
Memory [MB] - 368 368 367 367 368 366 368 368 368 368 366 368
Hash [ms] na 167227 95498 58708 168815 100173 62133 7 2 5 9 5 7

U
C
O
M

Expl [ms] - 173510 39289 39262 177845 41901 41631 12102 9439 9545 11999 9426 9883
Speedup [X] na na 4.42 4.42 na 4.24 4.27 na 1.28 1.27 na 1.27 1.21

#States - 1152 433 416 1152 433 416 1152 433 416 1152 433 416
Reduction [X] na na 2.66 2.77 na 2.66 2.77 na 2.66 2.77 na 2.66 2.77

#Trans - 3421 822 775 3421 822 775 3421 822 775 3421 822 775
Memory [MB] - 371 370 370 370 370 370 371 365 371 371 365 371
Hash [ms] na 35141 6664 6705 36121 7320 7153 8 0 2 14 2 5

Kernels

In
se
rt
D
el
et
e Expl [ms] 4427 1078 1072 1075 1085 1078 1102 1097 1079 1080 1050 1061 1081

#States 898 40 36 36 40 36 36 40 36 36 40 36 36
#Trans 1416 66 54 54 66 54 54 66 54 54 66 54 54

Memory [MB] 177 72 72 72 72 72 72 57 72 72 57 57 57
Hash [ms] na 1 0 2 1 3 4 0 0 1 0 2 0

In
dA

tts

Expl [ms] 723195 4742 4344 5219 5482 5273 5821 4665 4755 5320 5523 5215 6003
#States 168561 3269 3153 3057 3269 3153 3057 3269 3153 3057 3269 3153 3057
#Trans 361251 9975 8561 8369 9975 8561 8369 9975 8561 8369 9975 8561 8369

Memory [MB] 428 165 284 141 165 236 165 165 155 141 236 198 229
Hash [ms] na 50 57 72 43 58 71 8 15 28 10 23 27

In
dC

el
ls

Expl [ms] 115328 2314 1811 2512 2368 2244 2497 2325 2292 2558 2391 2218 2562
#States 26693 1061 981 921 1061 981 921 1061 981 921 1061 981 921
#Trans 64472 3055 2405 2285 3055 2405 2285 3055 2405 2285 3055 2405 2285

Memory [MB] 249 102 102 105 102 99 102 104 99 102 105 99 104
Hash [ms] na 11 10 17 12 6 7 1 1 11 3 2 21

In
dD

Expl [ms] - 19133 12693 13174 45553 16009 17970 18835 12414 13117 44644 16051 17381
#States - 15610 11732 11732 15610 11732 11732 15610 11732 11732 15610 11732 11732
#Trans - 58277 35005 35005 58277 35005 35005 58277 35005 35005 58277 35005 35005

Memory [MB] - 294 352 372 284 369 390 202 285 284 284 327 298
Hash [ms] na 38 42 34 44 46 51 17 17 26 22 34 26

In
dR

el
s

Expl [ms] 113317 1902 2326 2499 2452 2287 2382 2375 2219 2418 2438 2176 2332
#States 26693 1061 921 921 1061 921 921 1061 921 921 1061 921 921
#Trans 64472 3055 2285 2285 3055 2285 2285 3055 2285 2285 3055 2285 2285

Memory [MB] 254 102 102 102 102 105 104 102 104 104 104 105 105
Hash [ms] na 7 13 6 14 15 7 0 3 9 3 5 8

A
cc
es
se
s Expl [ms] - 18396 10231 3170 14363 8689 3069 18365 10860 3219 14376 8347 3084

#States - 14856 8759 369 14856 8759 369 14856 8759 369 14856 8759 369
#Trans - 26125 11884 590 26125 11884 590 26125 11884 590 26125 11884 590

Memory [MB] - 154 327 84 214 286 72 194 381 72 139 223 65
Hash [ms] na 93 68 26 102 57 19 28 20 29 18 18 16

E
nt
ri
es

Expl [ms] - 4675 3751 3190 3442 2900 3014 4215 3218 2979 2856 2495 2628
#States - 467 302 139 467 302 139 467 302 139 467 302 139
#Trans - 819 426 215 819 426 215 819 426 215 819 426 215

Memory [MB] - 102 105 102 155 155 105 105 72 74 104 72 72
Hash [ms] na 400 324 223 405 314 252 2 2 5 4 3 6

Fig. 2. Exploration statistics for multiple DPF configurations
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Fig. 3. Exploration time (left) and number of states (right) for the Entries benchmark

to combine DPF with the existing approaches [6, 18] to discover entry points in web
applications and run multiple threads that use these points.

Results. Figure 2 shows, for each benchmark (listed in column 1) several statistics
(column 2) for each of the 13 evaluated configurations of DPF (columns 3–15). Specif-
ically, we show the exploration time, speedup in time (over Naı̈ve approach), number
of explored states, reduction in the state space (over Naı̈ve approach), number of tran-
sitions, memory usage, and time for hashing the database; because of space limit we
show speedup and reduction only for the applications.

We can observe the following. (1) In-memory database is not acceptable even for
small examples, e.g., comparing columns 3 and 4 for IndCells, the exploration time
is over 50x slower for in-memory database. In fact, using in-memory database, DPF
often runs out of memory or time limit (set to 1h), marked with “-”. (2) More precise
POR granularity can significantly reduce the exploration time, e.g., looking at columns
4 to 6 for Accesses, going from Naı̈ve to Relation reduced the time 2x and going from
Relation to Cell reduces the time 3x more. However, more precise POR granularity does
not always result in smaller exploration time because more precise POR granularity has
additional cost to compute the dependency more precisely, e.g., for IndCells columns
5 and 6, the time for Relation is smaller than the time for Cell. Therefore, less precise
POR could perform better when the number of explored states is small and there are no
independent accesses, which is almost never the case for real applications [12]. Addi-
tionally, if there is a task that should be performed at each state, more precise granular-
ity yields significantly better results even for small number of states, e.g., for RiskIt,
columns 4 and 6 show significant improvement compared to columns 13 to 15. (3) Us-
ing Rollback to restore the database is not always faster than Replay, e.g., for OpenMRS
columns 4 and 7, the time for Replay is smaller than the time for Rollback. We noticed
that Rollback does well if the state space graph is closer to being a tree (i.e., the ratio of
number of states and transitions is closer to 1). (4) Incremental always takes less time
than Full for the hashing process itself, and when hashing time becomes a substantial
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part of exploration, Incremental also significantly reduces the exploration time, e.g.,
compare RiskIt columns 4 and 10.

Scalability. Figure 3 illustrates scalability of the selected DPF configurations. We show
the plots only for Entries, because of the space limit, where we parametrized the
code to have an increasing number of SQL operations per thread. The plots depict the
exploration time (left) and the number of explored states (right) for different number of
SQL operations in each thread. (Note that the y axis is in logarithmic scale.) It can be
seen that more precise granularity level scales better.

Bugs. While performing the experiments, DPF discovered one bug in OpenMRS and two
bugs in PetClinic. We reported two bugs to the developers [4]. The bugs manifest as
uncaught exceptions with a specific schedule of database transactions. The exception in
OpenMRS happens if two users access the same concept class (e.g., Test, Drug, etc.) and
one of the users edits and saves (or deletes) the concept after the second user has already
deleted the concept. A bug in PetClinic is similar: the exception happens when two
users attempt to delete the same pet of the same owner simultaneously. The following
schedule leads to the bug: both users access the same owner then the same pet of the
owner, and then one sends delete request after delete request by another user has been
completed. The second user to send the delete request will get an exception.

We have found a second bug in PetClinic when it is configured to use database
access through Hibernate. An exception happens if two users access the same owner
then the same pet (the execution can be the same as in the bug that we have already
reported), and then send delete requests simultaneously. In the delete handler the object
is first taken from the database (SQL select) and then deleted (SQL delete), however
these two operations are non-atomic and if both users first get the object and then try
to delete only the first delete succeeds while the second throws an exception. This bug
differs from the first schedule described above. In the first case, the bug occurs when
two delete requests on the same object are performed sequentially. In the second, the
bug occurs when there is a context switch point after the select of one request when the
second request runs to completion, and then the first request fails to delete.

6 Related Work

Detecting Concurrency Issues Related to External Resources. Paleari et al. [22]
proposed a dynamic approach to detect dataraces in web applications that interact with
databases. The approach analyzes a log file of a single run and identifies dependencies
among SQL queries based on the set of relations and attributes that are read/written. The
solution ignores program semantics, thus leading to false alarms. Our dependency anal-
ysis is more precise and it is used to optimize model checking of database applications
without false alarms. Closely related work by Zheng and Zhang [31] applies static anal-
ysis to detect atomicity violations in external resources, such as files and databases, in
application servers. The difference between their work and ours is the usual distinction
between static program analysis and model checking: static analysis can be less pre-
cise (i.e., have false positives); but model checking requires setting up the environment
to uncover bugs. Since web application code often contains complex language features
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such as reflection, building up of queries using string operations, etc., static analysis is
likely to be imprecise in this domain.

Test Generation for Web Applications. Symbolic techniques have been used in gen-
erating test cases for database-backed applications [5, 17, 24] and in detecting vulner-
abilities [6, 29]. In contrast to these papers, which focus on data non-determinism for
a single thread of the application server, we focus on concurrent interactions of multi-
ple server threads with the database. We assume correctness of DBMS implementation;
orthogonal research looks for bugs in databases and transaction models [9, 19].

Model-Checking Tools. Explicit-state software model checking [2, 12, 14, 21, 28] has
been shown useful for finding concurrency bugs. Our contribution is to apply the tech-
niques to the important domain of web applications, and to adapt shared-memory model-
checking techniques to checking database interactions. QED [18] is a model checker for
web applications that systematically explores sequences of requests to a web applica-
tion and looks for taint-based vulnerabilities but does not interleave transactions within
a request. Artzi et al. [1] described an explicit-state model checker for web applica-
tions that does not consider concurrent requests. Petrov et al. [25] developed a tool for
detecting data races in client-side web applications.

7 Conclusions and Future Work

DPF is the first step toward scalable systematic exploration tools for database-backed
web applications, and much work remains. DPF can be extended to support: (1) other
database constraints, e.g., foreign key, that can semantically affect even relations that
do not syntactically appear in a SQL operation, (2) operations with multiple relations,
e.g., join clause, (3) transactions with multiple SQL operations, and (4) exploration of
transactions that can be aborted. In addition, dynamic exploration of closed programs
in DPF can be combined with static techniques [31], data non-determinism [5, 24], and
automatic generation of environment models [10].
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