
Policy Analysis for Self-administrated

Role-Based Access Control

Anna Lisa Ferrara1, P. Madhusudan2, and Gennaro Parlato3

1 University of Bristol, UK
2 University of Illinois, USA

3 University of Southampton, UK

Abstract. Current techniques for security analysis of administrative
role-based access control (ARBAC) policies restrict themselves to the
separate administration assumption that essentially separates adminis-
trative roles from regular ones. The naive algorithm of tracking all users
is all that is known for the analysis of ARBAC policies without separate
administration, and the state space explosion that this results in pre-
cludes building effective tools. In contrast, the separate administration
assumption greatly simplifies the analysis since it makes it sufficient to
track only one user at a time. However, separation limits the expres-
siveness of the models and restricts modeling distributed administrative
control. We undertake a fundamental study of analysis of ARBAC poli-
cies without the separate administration restriction, and show that anal-
ysis algorithms can be built that track only a bounded number of users,
where the bound depends only on the number of administrative roles
in the system. Using this fundamental insight paves the way for us to
design an involved heuristic to further tame the state space explosion
in practical systems. Our results are also very effective when applied on
policies designed under the separate administration restriction. We im-
plement our techniques and report on experiments conducted on several
realistic case studies.

1 Introduction

Role-based access control (RBAC) has emerged in recent years as a simple and
effective access control mechanism for large organizations [6, 17]. RBAC is the
most popular model for large organizations [15, 1] and can implement a variety
of MAC and DAC policies. RBAC is also a popular mechanism in assigning user
privileges in computer systems, and is supported in several systems including
Microsoft SQL Servers [2], Microsoft Active Directory (AGDLP) [3], SELinux,
and Oracle DBMS. It simplifies policy specification and the management of user
rights using a two tier management— it groups users into roles and assigns per-
missions to each role. In any organization, roles can be associated with job func-
tions and hence role-permission assignments are relatively stable, while user-role
assignments change quite frequently (e.g., personnel moving across departments,
reassignment of duties, etc.). Managing the user-role permissions is significantly
easier than managing user rights individually.

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 432–447, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Policy Analysis for Self-administrated Role-Based Access Control 433

Administrative role-based access control (ARBAC) [16, 18] is a policy mech-
anism for controlling how changes can be made to the RBAC policy by various
administrators. ARBAC policies are generally composed of three sub-policies:
one controlling user-role assignment (URA), one controlling permission-role as-
signment (PRA), and one dealing with role-role assignments (RRA). A set of
administrative roles is defined, users are assigned administrative roles, and a
URA mechanism specifies when a user in an administrative role can grant or
revoke role-assignments to users, including administrative roles as well. (PRA
and RRA mechanisms are less common; we will not consider them in this paper.)

Security analysis of ARBAC systems is recognized as an extremely impor-
tant problem, as an analysis tool can help designers to determine whether their
policies meet required security properties. The developers of the administrative
systems have an intended security goal that they want to enforce through the
policy, and they set up the roles and administrative rules (formalized in AR-
BAC) to realize these intentions. Even though ARBAC policies are specified
using simple administrative rules that intuitively meet the designers’ intentions,
it is often very difficult to find out subtle behaviours, yielding security breaches.
This happens mainly because it is hard to foresee the whole effect of multiple
administrative changes and their interaction. Security breaches include privilege
escalation (e.g. an employee of a lower rank gaining access to resources meant
for a higher rank), violation of separation of duty constraints that model conflict
of interest (e.g., a user u simultaneously holding roles r1 and r2), etc.

In most cases the security analysis problem for ARBAC system can be phrased
as a role-reachability problem: given a set of users, can any user in this set gain
access to a given role goal using the ARBAC policy rules? Such a technical
problem seems to be the most useful security question for ARBAC systems.
Indeed, almost all interesting security questions can be reduced to the above
problem (see [10, 22, 4]). Unfortunately, it is very hard to verify security of
ARBAC policies precisely. The main source of complexity is that simulating the
system to examine the entire set of reachable states causes an explosion in state-
space, as it requires tracking all users’ role-memberships. In a system with |U |
users and |R| roles, this means exploring O((2|R|)|U|) configurations, in the worst
case! If the number of users is very small, this can be achieved in practice using
model-checking techniques that use symbolic representations of state-spaces (like
BDDs), but any realistic scenario would involve thousands of users, making this
completely intractable. For those reasons researchers have turned to consider
either restricted scenarios or abstraction techniques [22, 9, 4].

One crucial assumption that has been used to tackle the above problem is
that of separate administration [22]. This essentially assumes that administra-
tive roles and regular roles are disjoint so that administrative operations only
affect regular roles and assignment/revocation of administrative permissions are
not considered. Such a restriction greatly simplifies the analysis since is then
sufficient to consider only the evolution of a single user (at a time) as opposed
to tracking all users. On the other hand, the separate administration restriction
limits the expressiveness of the model [22] and precludes the use of frameworks

434 A.L. Ferrara, P. Madhusudan, and G. Parlato

such as SARBAC [5], UARBAC [13] which do not assume such a limitation.
In particular, the separate administration restriction is increasingly inappro-
priate in a world where administration is getting more and more distributed.
For example, users belonging to regular roles in modern organizations are often
administrators of several resources and have the right to grant administrative
privileges to other users on these resources (e.g., a user may have administra-
tive powers over access to their rooms, their files, etc., and have the ability to
allow administrative access to other users for these resources). In such cases, it
is important that administrative permissions may be granted and revoked. The
separate administration restriction precludes the modeling of such scenarios.

Beyond Separate Administration: While much research has considered the
separate administration model, the naive algorithm of tracking all users is all
that is known for the security analysis of ARBAC policies without separate ad-
ministration, and the state space explosion that this results in precludes building
effective tools. The only relevant work here that we know of is recent work by
Ferrara et al [4] that proposes using abstractions techniques; however, while this
is effective in proving correct policies correct, it is not precise and in particular
cannot generate attacks when the abstraction fails to prove safety.

Several basic questions of security analysis for policies without separate ad-
ministration are still open: Does an analysis of these policies necessarily have to
track all users? The RBAC model provides a layer of abstraction where users
in a system are grouped together into roles; can this be exploited to perform
an analysis that is completely independent of the number of users in the sys-
tem (but dependent on the number of roles)? Finally, can security analysis for
ARBAC be made scalable, given that multiple users may need to be tracked?

The goal of this paper is to answer fundamental theoretical questions on the
security analysis of general ARBAC systems, and exploiting the insights gained,
provide scalable tools to analyze expressive ARBAC policies.

As a first contribution, we show that the security analysis of ARBAC sys-
tems can be achieved completely independent of the number of users. More
precisely, we show that the number of users that an analysis needs to track si-
multaneously depends only on the number of administrative roles (k), and, in
fact, it is always sufficient to track k+1 users simultaneously. The proof of the
theorem is quite non-trivial; a user u may reach a target role just using the
administrators currently in the system (in which case, tracking one user would
suffice). However, users in certain administrative roles may not exist and the
system can evolve to drop administrative privileges of users; further the user
u may collude with a subset of users, who could become administrators of the
right kind and help the user u reach the target role. (When administrators are
computer programs that automatically evolve, as is common in some scenarios,
this does not even mean collusion, and is just exploitation of these software ad-
ministrators). The fundamental theorem we prove shows that, however complex
these collusions are, tracking k + 1 users always suffices.

The proof of the fundamental theorem leads to significant insights on the
users that need to be tracked by an analysis. As a second contribution, we

Policy Analysis for Self-administrated Role-Based Access Control 435

utilize such insights to build a trimming procedure that takes as input an AR-
BAC system, and reduces it to an often much smaller ARBAC system, that has
significantly smaller sets of users, administrative roles, and rules.

The effectiveness of our procedure is amplified by an aggressive pruning algo-
rithm which we propose as our third contribution and whose applicability is of
independent interest (it is effective also for separated administration scenarios).
Static pruning techniques have been previously proposed [10, 22, 4] in order to
reduce the state space to explore. The basic idea behind those techniques is that
of removing roles and administrative rules from the policies that are immaterial
to the reachability of role goal.

As a fourth contribution, we evaluate our techniques on the policies (with-
out separate assumption) in [19]— these systems are initially populated by thou-
sands of users and the naive precise solution known will track all users and would
fail pathetically. Our procedure significantly simplifies the policies considered,
reducing the number of effective users that need to be tracked to be very small
(often 3 to 4), which then leads us to solve the security problem for them. This
result is the first we are aware of that shows that security analysis can be feasible
without separate administration restriction.

Moreover, we evaluate our aggressive pruning technique on the realistic poli-
cies and test cases considered in [9] (with separate assumption). These policies
are considered very complex to analyze given their huge number of roles and rules
ranging respectively from 600 to 40k and 1k to 200k. Only under-approximate
techniques have been found successful on those policies [9], which of course can
find shallow errors but are not complete. We experimentally show that our prun-
ing technique, in contrast to ones known, is extremely effective. Indeed, it reduces
most of the aforementioned complex policies to equivalent systems (in terms of
role-reachability) having as few roles (rules, resp.) as a single one.

Related Work. Besides the work already cited above, there are a few other
works that are related to this paper. Li and Tripunitara [14] have studied the
security analysis problem of ARBAC systems and identified fragments and re-
stricted queries that can be solved in polynomial time. Sasturkar et al [20] have
showed that the problem is Pspace-complete, that most restrictions still are
NP-hard, and some very restricted cases can be solved in polynomial time. Jha
et al. [10] compared the use of model checking and first order logic program-
ming for the security analysis of ARBAC and concluded that model checking is
a promising approach for security analysis. Stoller et al [22] identify the fixed-
parameter complexity of the problem, and show that the problem is tractable if
we fix the number of roles. Their techniques are implemented in the RBAC-PAT
tool [7]. In more recent work, Stoller et al have extended the ARBAC model to
parameterized ARBAC that allows conditions that depend on parameters [21].

2 Preliminaries

Role Based Access Control. An RBAC policy is a tuple 〈U,R, P,UA,PA,�〉
where U , R, and P are finite sets of users, roles, and permissions, respectively,

436 A.L. Ferrara, P. Madhusudan, and G. Parlato

UA ⊆ U × R is the user-role assignment relation, and PA ⊆ P × R is the
permission-role assignment relation. A pair (u, r) ∈ UA represents the member-
ship of user u to role r, and (p, r) ∈ PA means that role r has permission p.
Roles are related by a hierarchy relation defined by the partial order �. The
hierarchy relation allows to inherit permissions by one role from another in the
hierarchy: for any two roles r, r′ ∈ R, r inherits all permissions of r′ whenever
r � r′. However, in the rest of the paper we restrict ourself to consider only
RBAC policies with an empty hierarchy relation. From an analysis point of view
it is always possible to transform a hierarchical RBAC system into one without
hierarchy that preserves the reachability of its roles (see [20]). Furthermore, we
concentrate our analysis on user-role administration. Thus, in the rest of the
paper we refer to an RBAC policy as a tuple 〈U,R,UA〉.
Administrative Role Based Access Control. ARBAC policies [16, 18] de-
scribe a model for role-based administration of RBAC. They are composed of
three modules: URA user-role administration, PRA permission-role administra-
tion, and RRA role-role administration. In this paper we focus on the user-role
administration model which is of most practical interest. In practice user-role
membership changes are the most frequent [11] when compared with changes in
permission-role and role-role relationships. The URA policy describes how the
user-role assignment relation UA can be modified in the evolution of the system.
A central role is played by the set of administrative roles AR: the users in AR
(called administrators) can assign and/or revoke roles to other users.

The assignment of a user to a role is subject to a precondition which depends
only on the user’s role-memberships. A precondition is a Boolean formula written
as a conjunction of literals, where each literal is either in positive form r or in
negative form ¬r, for some role r in R. To simplify the notation we represent
each precondition with two subsets Pos and Neg of R. The set Pos represents
the set of all roles the user must be in, as opposed to Neg which is the set of all
roles which the user must not belong to.

The permission to assign users to roles is specified by a set of tuples can assign
⊆ AR × 2R × 2R ×R. The meaning of a can-assign tuple (admin ,Pos ,Neg, r) ∈
can assign is that a member of the administrative role admin ∈ AR can assign
a user whose current role-membership satisfies the precondition (Pos ,Neg) to
the role r ∈ R. (In the rest of the paper we always assume that Pos ∩Neg = ∅).

Rules to remove users from roles are defined by a set can revoke ⊆ AR × R.
If (admin , r) ∈ can revoke then a member of the administrative role admin ∈
AR can revoke the membership of a user from role r (regardless the user role-
membership). In the rest of the paper we refer to an URA model as a pair
〈can assign , can revoke〉.
Separate Administration Restriction. Under the separate administration
restriction, the set of administrative roles will never appear as target of a can-
assign or can-revoke rule. In other words, it is intrinsically assumed that admin-
istrators will never change their membership to administrative roles. We relax

Policy Analysis for Self-administrated Role-Based Access Control 437

the separate administration restriction and allow administrative roles to be part
of the set of roles R, i.e., AR ⊆ R.

ARBAC Systems. In this section we describe ARBAC systems as state-transi-
tion systems, and define the role-reachability problem for them. An ARBAC sys-
tem is a tuple S = 〈U,R, UA, can assign , can revoke〉 where 〈U,R,UA〉 is an
RBAC policy and 〈can assign , can revoke〉 is an URA model over the set of roles
R. A configuration of S is any user-role assignment relation UR ⊆ U ×R. A con-
figuration UR is initial if UR = UA. Given two S configurations UR and UR′,
there is a transition from UR to UR′ with rule m ∈ (can assign ∪ can revoke),

denoted UR
m−→ UR′, if there is an administrator ad and an administrative role

admin with (ad , admin) ∈ UR and a user u ∈ U , and one of the following holds:
[can-assign move] m = (admin , P,N, r), P ⊆ {t | (u, t) ∈ UR}, N ⊆ R \
{t | (u, t) ∈ UR}, and UR′ = UR ∪ {(u, r)};
[can-revoke move] m = (admin , r), (u, r) ∈ UR, and UR′ = UR \ {(u, r)}.
A run of S is any finite sequence of S transitions π = c1

m1−−→ c2
m2−−→ . . . cn

mn−−→
cn+1 for some n ≥ 0, where c1 is an initial configuration of S. An S configuration
c is reachable if c is the last configuration of an S run.

Definition 1 (Role-reachability Problem). For any role r ∈ R, r is reach-
able in S if there is an S reachable configuration UR such that (u, r) ∈ UR, for
some u ∈ U . Given an ARBAC system S over the set of roles R and a role
goal ∈ R, the role-reachability problem asks whether goal is reachable in S.

3 Bounding the Number of Users to Track

In this section we show that the role-reachability problem for ARBAC is solvable
by tracking at most k + 1 users, where k is the number of administrative roles.

Theorem 1. Let S = 〈U,R, UA, can assign , can revoke〉 be an ARBAC system
with k administrative roles. If a role goal ∈ R is reachable in S then there exists
a run of S in which goal is reachable and at most k + 1 users change their
role-combination.

Proof. For any run π = c1
m1−−→ c2

m2−−→ . . . cn
mn−−→ cn+1 of S, we denote with

ρ(π) = admin1, admin2, . . . , adminn the sequence of administrative roles where
adminj is the administrative role used in the j’th transition of π, i.e., for every
j ∈ [1, n], either mj = (adminj , Pj , Nj , tj) or mj = (adminj , tj). A user u is
engaged in π iff there exists at least a transition in π that changes the role-
combination of u. Moreover, u is essential in π if, u is engaged and for some
j ∈ [1, n], u is the only user in admin j in cj . We denote with indexπ(u) the
greatest j ∈ [1, n] such that u is the only user in role adminj in cj .

We now show that, for each run π of S in which role goal is reachable by
a user (say target), it is possible to construct another run π′ having at most
k+1 engaged users. We assume that target reaches role goal, for the first time,
in the last configuration of π. We obtain π′ from π by repeatedly applying the
following rules.

438 A.L. Ferrara, P. Madhusudan, and G. Parlato

Simplification rules: Let π0 = π, and πi be the run obtained after i steps.

1. If πi contains an engaged user, but target , which is not essential, then pick
one of them, say u, and remove from πi all transitions changing u’s role-
combination.

2. If all engaged users in πi are essential, then pick one of them, say u, such that
u �= target , and there is a transitionmj changing u’s role-combination, where
j ≥ � and � = indexπi(u). Then, remove from πi all transitions changing u’s
role-combination after configuration c�.

Notice that the simplification process eventually terminates as we reduce the
length of the run at each step. Also, each step always produces a run provided
πi is itself a run. The key observation to prove this property is that we always
guarantee to leave a user in any administrative role to fire any move in πi.

To conclude the proof, we show that any of such run π′ has at most k + 1
engaged users. Since each engaged user u in π′ (but target) is essential and no
transition changing u’s role-combination after cindexπ′ (u) exists, it holds that for
any two distinct engaged users u1 and u2 in π′ (both different from target),
adminj1 �= admin j2 , with j1 = indexπ′(u1) and j2 = indexπ′(u2). Thus, the
number of engaged users in π′ is at most equal to the number of administrative
roles in S plus one (that represents user target).
�

4 Reducing the Number of Users to Track

Theorem 1 gives an upper-bound on the number of users to track to solve the
role-reachability problem. Although the number of users to engage is generally
much smaller than the number of users in the system, in practice even tracking
few users can be unfeasible, hence it is extremely desirable to reduce as much as
possible such a parameter. From a theoretical viewpoint such a bound is tight,
but it is unlikely that real world ARBAC instances incur such intricate worst
case scenarios. Thus, the main objective of this section is to devise new heuristics
to reduce the number of administrative roles, hence the number of users to track.

Our proposal is to provide sufficient conditions to eliminate administrative
roles. An administrative role is immaterial if there is a user that can belong to
that role forever without affecting the reachability of any other role. In particu-
lar, we first identify two criteria for an administrative role to be immaterial; then
we transform the policy in such a way that immaterial administrative roles be-
come regular ones. For this purpose, we add to the system a fresh administrative
role, called super , and a new user whose role-membership is the sole role super .
The first component of any rule administrated by an immaterial administrative
role admin is replaced with super . This has the effect of making admin a regular
role (i.e., a role without administrative permissions). More formally, we trans-
form all can-assign moves (admin , P,N, t) ∈ can assign into (super , P,N, t), and
similarly each can-revoke rule (admin , t) ∈ can revoke into (super , t). We now
present two sufficient conditions which lead to immaterial administrative roles.

The first sufficient condition for immaterial administrative role is as follows.
Let admin be an administrative role which does not appear in negative form in

Policy Analysis for Self-administrated Role-Based Access Control 439

any precondition, and that initially contains a user, say u. Since the removal of
u from admin will not allow to fire more rules, we can impose that u will never
be removed from admin making it immaterial.

For the second condition we resort to Theorem 1. If there are at least k + 2
users sharing the same role-membership, we can think that one of them will not
be engaged in any run, making immaterial all administrative roles which those
users are member of. As a side note, it is safe to keep in the system at most
k + 1 users for each role-combination, the remaining ones which we denote as
spare users can be eliminated.

Notice that, the more users share the same role-combination the more the
second condition becomes effective. Therefore, our approach benefits from the
use of any technique that may increase the number of users having the same role-
combination. For instance, we can employ pruning techniques that transform
a system in an equivalent one (in terms of the reachability of role goal) by
eliminating roles and rules. Pruning techniques have been first introduced in [10]
and proved (in some case) useful to reduce the state-space to analyze [10, 22, 4].

Fig. 1 shows algorithm ReduceAdmin that

ReduceAdmin(S ,goal)
̂S ′ ← S ;
do

̂S ← ̂S ′;
̂S ′ ← Pruning(̂S ′, goal);
̂S ′ ← Immaterial(̂S ′);
̂S ′ ← Spare(̂S ′);

while (̂S �= ̂S ′);
return(̂S ′);

Fig. 1. ReduceAdmin

eliminates the immaterial administrative roles.
ReduceAdmin takes as input a pair (S, goal),
where S is an ARBAC system and goal is a role
of S for which we want to check the reachability.
ReduceAdmin returns an ARBAC systems ̂S ′

that preserves the role-reachability of goal and
reduces the number of administrative roles ac-
cording to the two conditions for immaterial ad-
ministrative roles given above. We assume that
S has a special administrative role called super ,
containing a user as described above.

The algorithm recursively executes a do-while
loop until no further simplification of the system is possible. At each iteration, it
first executes a pruning algorithm, that preserves the reachability of goal aimed
at reducing the number of roles and rules, and then it collapses all immaterial
administrative roles into the special role super . Finally, spare users are eliminated
from the system. It is easy to see that ReduceAdmin eventually terminates, as
it shrinks the size of the system at each loop iteration.

Theorem 2 (Correctness of ReduceAdmin). Let S be an ARBAC system
over the set of roles R, goal ∈ R, and S ′ = ReduceAdmin (S, goal). Then, role
goal is reachable in S iff it is reachable in S ′.

Our experiments (see Sec. 6), instantiate Pruning in the algorithm of Fig. 1 with
a novel pruning algorithm that we present in Sec. 5.

5 Aggressive Pruning

In this section we describe a novel pruning algorithm, called aggressive pruning,
to eliminate roles and rules that are irrelevant to the reachability of role goal.

440 A.L. Ferrara, P. Madhusudan, and G. Parlato

We extend previous proposals [10, 22, 4] by identifying six new pruning rules:
the first three rules aim at discarding irrelevant roles while the remaining ones
identify assignment/revocation rules that can be combined or eliminated.

In the rest of the section we refer to S as an ARBAC system with a special
administrative role super which is never removed, and always contains a user
whose sole membership is in role super . Intuitively, super subsumes all admin-
istrative roles admin for which we can guarantee that it always contains some
user ready to perform a rule administered by admin . We denote as persistent all
rules administered by super . At each step in the computation we refer to ̂S =
〈U,R,UA, can assign , can revoke〉 as the current pruned ARBAC system de-
rived from S. Below we introduce six pruning rules, called Ri, for i ∈ {1, . . . , 6},
and denote with [[̂S]]i the ARBAC system resulting from the application of Ri

to ̂S. We now formally define them and argue their correctness.

Removing Irrelevant Roles. A non-administrative role r is irrelevant, if each
can-assign rule can be fired with any user u, regardless of u’s membership to
r. An irrelevant role can be eliminated from the system without affecting the
reachability of goal. The elimination of a set of roles X ⊆ R from ̂S implies the
following changes to the policy: (1) revoke all users-membership from each role
in X ; (2) remove all assignment/revocation rules having a role in X as target;
(3) drop any role in X from each precondition of the remaining can-assign rules.

Formally, letRua(UA, X) = UA\(U×X);Rca(can assign , X) = {(admin , P \
X,N \X, t) | (admin , P,N, t) ∈ can assign∧t /∈ X)}; and Rcr (can revoke , X) =

can revoke \ (R ×X). Removing the roles of X from ̂S results into the system

R(̂S, X) = 〈U,R \X, Rua(UA, X), Rca(can assign , X), Rcr (can revoke, X)〉.
We classify regular roles as non-negative, non-positive, and mixed. A role

r ∈ (R\AR) is non-positive (non-negative, resp.), if r does not appear in positive
(negative, resp.) form in the precondition of any can-assign rule; it is mixed if
it appears both in positive and negative form in some precondition. We now
identify sufficient conditions for a role (different from role goal) to be irrelevant
in each of those categories.

Remove each regular role r ∈ (R \ {goal}) from ̂S such that
R1: r is non-positive and (super , r) ∈ can revoke ;
R2: r is non-negative and for every (admin, P,N, t) ∈ can assign with r ∈ P ,
there is (admin ′, P ′, N ′, r) ∈ can assign such that P ′ ⊆ P \ {r}, N ′ ⊆ N ∪ {t}, and
either admin ′ = admin or admin′ = super ;
R3: r is mixed and both R1and R2 hold.

Fig. 2. Sufficient conditions to remove irrelevant roles

Non-Positive Roles. A non-positive role r is irrelevant if there is a persistent
can-revoke cr with target r. Indeed, since r is a non-positive role, a can-assign
ca could not be fired with respect of a user u, only if r is in its precondition and
u belongs to r. However, the persistent can-revoke cr can be executed before

Policy Analysis for Self-administrated Role-Based Access Control 441

rule ca, thus enabling ca to be performed regardless of u’s membership in r.
We translate this property in the following pruning rule: remove the set X of
all non-positive roles such that for each r ∈ X , (super , r) ∈ can revoke. Then,

[[̂S]]1 = R(̂S, X). This pruning rule is summarised in Fig. 2 as R1.

Non-Negative Roles. Let r be a non-negative role. A can-assign ca could not be
fired with respect to a user u, only if r is in the precondition of ca and u does not
belong to r. However, if u can be assigned to r while satisfying the precondition of
ca (except for u’s membership to r), then the ca can be executed regardless of u’s
membership to r. We translate this property in the following rule: remove the set
X of all non-negative roles r such that, for every (admin , P,N, t) ∈ can assign
with r ∈ P , there is (admin ′, P ′, N ′, r) ∈ can assign such that P ′ ⊆ P \ {r},
N ′ ⊆ N ∪ {t}, and either admin ′ = admin or admin ′ = super . Then, [[̂S]]2 =

R(̂S, X). This rule is summarized in Fig. 2 by R2.

Mixed Roles. A mixed role r is irrelevant, if it satisfies both conditions that
make non-positive and non-negative roles irrelevant. R3 of Fig. 2 captures the
removal of irrelevant mixed roles from ̂S. Then, [[̂S]]2 = R(̂S, X), where X is the

set of all mixed roles of ̂S.
Removing Irrelevant Rules. We describe sufficient conditions to get rid of
some assignment rules. Specifically, we partition those rules in three categories:
(1) combinable which refer to pairs of rules that can be merged into a single one;
(2) implied that identify pairs of rules such that one is subsumed by the other;
(3) non-fireable corresponding to can-assign rules that cannot appear in any run.

Combinable Rules. Two can-assign rules ca1, ca2 can be combined into a single
one if (1) they have the same target role, (2) their precondition sets are the
same but a single role that appears in positive form in one can-assign rule and
in negative form in the other, (3) at each time either there are administrators
ready to fire both rules or none of them can be executed. Those rules can be
merged in a single one where role r is removed from its precondition. Notice
that this operation does not alter the set of reachable configurations since the
resulting rule can be fired iff one between ca1 and ca2 is fireable.

Formally, let ca1 = (admin1, P ∪ {r}, N, t) and ca2 = (admin2, P,N ∪ {r}, t)
∈ can assign , for some P,N . We define the predicate Combinable(ca1, ca2) that
holds true if admin1 = admin2. It is easy to see that if Combinable(ca1, ca2)
holds then ca1 and ca2 are combinable. Then, [[S]]4 = 〈U,R, UA, can assign ′,
can revoke〉where can assign ′ =(can assign\{ca1 | ∃ca2.Combinable(ca1, ca2)})
∪{(admin , P,N, t) | ∃ca1 = (admin , P ∪{r}, N, t), ca2 = (admin2, P,N∪{r}, t) ∈
can assign .Combinable(ca1, ca2)}. R4 of Fig. 3 summarizes this rule.

Implied Rules. Consider two can-assign rules ca1, ca2 with the same target role.
Then, ca1 implies ca2 if for every user u, whenever ca2 is fireable on u, then also
ca1 is fireable on u. We give a sufficient condition to detect when ca1 implies ca2.
For every pair of rules ca1 = (admin1, P1, N1, r) and ca2 = (admin2, P2, N2, r),

442 A.L. Ferrara, P. Madhusudan, and G. Parlato

R4: Let ca1 = (admin1, P ∪ {r}, N, t), ca2 = (admin2, P, N ∪ {r}, t) ∈ can assign
for some P,N , and admin1 = admin2. Then, replace the combinable rules ca1

and ca2 with the can-assign role ca = (admin1, P,N, t).
R5: If ca1 = (a1, P1, N1, r), ca2 = (a2, P2, N2, r) ∈ can assign , either admin1 =

super or admin1 = admin2, P1 ⊆ P2, and N1 ⊆ N2, then remove the implied
rule ca2 from S .

R6: Let ca = (admin, P, N, t) ∈ can assign and let Q = P ∩ {r | (u, r) ∈ UA} such
that ∃i ∈ [1, |Q|] and for every Z ⊆ Q with |Z| = i, there is no can-assign rule
(admin ′, P ′, N ′, r) ∈ can assign with r ∈ Z, (P ′∩Q) ⊆ Z and Z ∩N ′ = ∅, then
remove the non-fireable rule ca from S .

Fig. 3. Sufficient conditions to remove/combine assignment rules

we define a predicate Implies(ca1, ca2) that holds true iff the following holds:
P1 ⊆ P2, N1 ⊆ N2, and either admin1 = super or admin1 = admin2. It is easy
to see that if Implies(ca1, ca2) holds, then ca1 implies ca2. Formally, [[̂S]]5 =
〈U,R,UA, can assign \ X, can revoke〉, where X = {ca′ ∈ can assign | ∃ca ∈
can assign . Implies(ca, ca′)}. R5 of Fig. 3 captures this rule.

Non-Fireable Rules. A can-assign rule ca is non-fireable if for every run π =
c1

m1−−→ . . . cn
mn−−→ cn+1 of ̂S, mi �= ca for every i ∈ [1, n]. We now give a sufficient

condition that allows to detect when a ca = (admin , P,N, t) is non-fireable. Let
Q = P \ {r | (u, r) ∈ UA}, that is, the set of P roles that contain no member

in the initial configuration of ̂S. Moreover, let NotFireable be a predicate over
the set of can-assign rules, such that NotFireable(ca) holds true iff the following
holds: there exists i ∈ [1, |Q|] such that for every Z ⊆ Q with |Z| = i, there is
no rule (a′, P ′, N ′, r) ∈ can assign with r ∈ Z, (P ′ ∩Q) ⊆ Z and Z ∩N ′ = ∅.

The following lemma holds:

Lemma 1. Let ca ∈ can assign. If NotFireable(ca) holds true, then can-assign
rule ca is non-fireable.

Formally, [[̂S]]6 = 〈U,R,UA, can assign \ NF , can revoke〉, where NF is the set
of all ca such that NotFireable(ca) holds true. R6 of Fig. 3 captures this rule.

The correctness of all pruning rules is summarized by the following lemma:

Lemma 2. Let ̂S be an ARBAC system. For every i ∈ {1, . . . , 6}, (1) [[̂S]]i is

an ARBAC system, (2) goal is reachable in ̂S iff goal is reachable in [[̂S]]i, and
(3) |[[̂S]]i| < | ̂S| or |[[̂S]]i| = | ̂S|.

AggressivePruning Algorithm. takes as input an ARBAC system S and
a role goal of S and returns a system S ′ obtained by repeatedly applying the
pruning rules Ri, for i ∈ {1, . . . , 6}, along with some existing pruning rules
described in [4, 22]. The algorithm eventually terminates as the application of
each pruning rule reduces or leaves unaltered the ARBAC system.

Theorem 3. LetS beanARBACsystemandS′ = AggressivePruning(S, goal).
Role goal is reachable in S ′ iff goal is reachable in S.

Policy Analysis for Self-administrated Role-Based Access Control 443

6 Experimental Results

We have implemented the procedure ReduceAdmin of Sec. 4 along with Ag-
gressivePruning of Sec. 5. Here, we evaluate both procedures on several bench-
marks from the literature. The experiments are conducted on a Macbook Pro
with an Intel Core i5 2.3 GHz processor and 4GB of RAM. The results of our
experiments are reported in Tables 1-3. The tables report the number of roles
and rules for each original ARBAC policy. Table 3, in addition reports also the
number of administrative roles and the number of users for each policy. All ta-
bles report the same information about the original policies, about the policies
obtained after the application of our procedures, as well as the time taken.

AggressivePruning Evaluation on a Bank Policy. The first set of ex-
periments are conducted on a policy modeling a bank [9]. The bank comprises
several branches, each consisting of four divisions with five non-managerial roles
and two managerial ones. The policy is designed in a way that in any branch
a user (non-manager) can be part of at most three non-managerial roles out of
five (see [8] for details). The policy has 612 roles and 6142 rules.

The evaluation of our pruning procedure
Table 1. AggressivePruning on
the Bank Policy

ARBAC Policy After Pruning
#roles #rules #roles #rules Time

1
612 6142 0 0 3.0s
612 6142 2 1 3.0s
612 6142 2 1 3.0s

2
612 6142 0 0 2.0s
612 6142 0 0 2.0s
612 6142 2 1 2.0s

3 612 6142 468 3285 0.0s

4 612 6142 462 3272 0.1s

on the bank policy is shown in Table 1 that
is divided in four sets of experiments, one
for a different security query on the pol-
icy. The first query is: Can any user (non-
manager) be assigned to four non-manage-
rial roles in a business division in any of
the branches? The first experiment consid-
ers the original policy. After a single itera-
tion the pruning algorithm eliminates some
combinable and implied rules and finds that
rules assigning users to the role goal are
non-fireable. For the remaining two exper-

iments, we introduce errors in the policy: we add can-assign rules that allow a
(non-manager) user to be part of four non-managerial roles in one of the divi-
sions, respectively, in a single branch (second experiment) and in all branches
(third experiment). In both cases, after some iterations that involve all six prun-
ing rules, the simplified system is left with the sole role goal, and a single
can-assign rule: (admin , ∅, ∅, goal) witnessing that goal is reachable.

For the second set of experiments the query is: Can any user (non-manager) be
assigned to four non-managerial roles in a business division in all the branches?
As above, the first experiment is done on the original policy, while the other
two experiments on the modified policies. In the first and second experiment
the pruning algorithm finds out that goal is unreachable (rules assigning users
to goal are non-fireable), while in the third experiment it returns a system
constituted by the sole role goal and a single can-assign rule: (admin , ∅, ∅, goal).

444 A.L. Ferrara, P. Madhusudan, and G. Parlato

Table 2. AggressivePruning on Complex Policies with Separate Administration

Size Policy After Aggressive Pruning
First Suite Second Suite Third Suite

#roles #rules #roles #rules Time #roles #rules Time #roles #rules Time
3 15 1 1 0.0s 3 5 0.0s 3 5 0.0s
5 25 1 1 0.0s 1 1 0.0s 1 1 0.0s

20 100 1 1 0.0s 11 26 0.0s 11 26 0.0s
40 200 1 1 0.0s 1 1 0.0s 1 1 0.1s

200 1000 1 1 0.1s 1 1 0.1s 1 1 0.1s
500 2500 1 1 0.1s 1 1 0.1s 1 1 0.2s

4000 20000 1 1 6.0s 1 1 6.0s 1 1 6.3s
20000 80000 1 1 3m24s 1 1 3m32s 1 1 3m20s
30000 120000 1 1 8m14s 1 1 8m33s 1 1 7m47s
40000 200000 1 1 14m50s 1 1 18m7s 1 1 21m1s

The single experiment in the third set considers the query: Can any user
(manager included) retain permissions of four non-managerial roles in a business
division in any of the branches? While the query in the forth set is: Can any
user (manager included) retain permissions of four non-managerial roles in a
business division in all of the branches? Both queries are carried out on the
original policy and in both cases the pruning algorithm makes use of all six
rules, reducing the system approximatively by a third.

AggressivePruning Evaluation on Big Policies. The authors of [9] created
three sets of complex test suites capturing the complexity of realistic systems.
Each suite comprises ten policies where the number of roles and rules ranges
respectively from 3 to 40k and 15 to 200k. Each suite presents different kind
of source of complexity. Sources of complexity are parameters such as the size
of the policy and type of administrative rules. We refer to [9] for a comprehen-
sive description. We evaluate our pruning on these policies, whose results are
summarized in Table 2. In [9] it has been experimentally proven that existing
static pruning techniques [10, 22] are ineffective on such complex policies. In con-
trast, our aggressive pruning is extremely effective making the policies orders of
magnitude smaller. In these policies R5 (implied rules) plays an essential role.

ReduceAdmin Evaluation. We evaluate ReduceAdmin on two sets of re-
alistic ARBAC policies without separate administration, used in several case
studies [22, 7, 9, 21]: a hospital and a university policy [19]. Table 3 summarizes
the results of our evaluation. Besides the information of the original and the
simplified policy, we also indicate whether the role goal is reachable.

The first set of experiments concerns the hospital policy. The first experiment
in the table tests that a user is not a member of both the roles Receptionist and
Doctor. The second one is meant to check that a patient is not his own primary
doctor. The third experiment checks that nurse and doctor roles are disjoint.
The last experiment tests if a doctor is able to assign a user to the role that
groups patients with third party consent.

Policy Analysis for Self-administrated Role-Based Access Control 445

Table 3. ReduceAdmin evaluation

ARBAC Policy After ReduceAdmin
Reach

name #roles #rules #admin #users #roles #rules #admin #users Time

1
Hospital 12 25 6 1092 3 5 2 9 0.3s NO
Hospital 12 25 6 1092 5 9 3 19 0.0s NO
Hospital 12 25 6 1092 3 5 2 9 0.0s YES
Hospital 12 25 6 1092 6 8 3 16 0.0s YES

2

University 32 130 9 943 3 2 1 1 0.2s NO
University 32 130 9 943 1 1 1 1 0.2s YES
University 32 130 9 943 12 16 2 23 0.2s NO
University 32 130 9 943 11 13 2 21 0.2s YES
University 32 130 9 943 14 25 3 34 0.2s YES

For the University policy, the first experiment verifies whether a user can be
an explicit member of both roles DeptChair and Dean. The second experiment
checks if a user may have both privileges of Dean and DeptChair. The third
experiment tests if a user can be simultaneously an explicit member of both
Undergrad and Grad roles. The last experiment verifies that a user can be simul-
taneously in the roles GradAdmissionsCom and AdmissionsOfficer.

Observations: Our techniques allow to significantly reduce, not only the num-
ber of roles and rules, but also the number of administrative roles and the amount
of distinct user role-combinations. For instance, in the hospital policy, we need
to consider at most 19 users out of the initial 1092, each with at most 6 roles,
and only 2 or 3 of them need to be tracked! These two experiments, particularly
benefit from the application of the pruning rule R5 (implied rules). The pruning
rules concerning the removal of positive and negative roles play a significant role
for the fourth university experiment and the third and the fourth hospital exper-
iments. Such policy simplifications allowed us to fully check the role-reachability
problem for such policies by using off-the-shelf tools. For example, we encoded
the reduced policies into Boolean programs and then used Getafix [12] that
fully verified them in few seconds. We did the same exercise with the original
policies and tried several model-checking tools for finite state systems and none
of them could terminate the analysis.

7 Conclusions

We have laid out the foundations of reasoning with ARBAC policies where users
self-administer the resources, without recourse to a separate set of administra-
tors. We have identified a small model theorem for analysis of such policies,
arguing that tracking a bounded number of users suffices to check the policy.
Using this technical insight, we have developed heuristics to reduce an ARBAC
system and shown its effectiveness in analyzing real-world policies.

The work reported by us in [4], which presents abstraction techniques aimed
at proving ARBAC policies correct is complementary to our work here which is a

446 A.L. Ferrara, P. Madhusudan, and G. Parlato

precise analysis that can find security breaches. A combination of these two ap-
proaches into a CEGAR scheme would be interesting. The broader view that we
suggest is that security analysis of RBAC/ARBAC policies can be solved using
model-checking and abstraction techniques commonly used in program verifica-
tion. Developing such techniques for a larger range of policies beyond RBAC is
an interesting future direction to pursue.

Acknowledgements. This research was partially supported by ERC Advanced
Grant ERC-2010-AdG-267188-CRIPTO and NSF CCF #1018182.

References

[1] http://en.wikipedia.org/wiki/Role-based_access_control

[2] http://www.microsoft.com/sqlserver/en/us/default.aspx

[3] http://www.microsoft.com/it-it/server-cloud/windows-server/

active-directory.aspx

[4] Ferrara, A.L., Madhusudan, P., Parlato, G.: Security analysis of access control
policies through program verification. In: CSF, pp. 113–125. IEEE (2012)

[5] Crampton, J.: Understanding and developing role-based administrative models.
In: CCS, pp. 158–167. ACM (2005)

[6] Ferraiolo, D., Kuhn, R.: Role-based access control. In: NCSC, pp. 554–563 (1992)
[7] Gofman, M.I., Luo, R., Solomon, A.C., Zhang, Y., Yang, P., Stoller, S.D.: RBAC-

PAT: A Policy Analysis Tool for Role Based Access Control. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 46–49. Springer, Heidel-
berg (2009)

[8] Jayaraman, K., Ganesh, V., Tripunitara, M., Rinard, M.C.,
Chapin, S.J.: Arbac policy for a large multi-national bank (2010),
http://kjayaram.mysite.syr.edu/mohawk/casestudy.pdf

[9] Jayaraman, K., Ganesh, V., Tripunitara, M.V., Rinard, M.C., Chapin, S.J.: Auto-
matic error finding in access-control policies. In: CCS, pp. 163–174. ACM (2011)

[10] Jha, S., Li, N., Tripunitara, M.V., Wang, Q., Winsborough, W.H.: Towards formal
verification of role-based access control policies. IEEE Trans. Dependable Sec.
Comput. 5(4), 242–255 (2008)

[11] Kern, A.: Advanced features for enterprise-wide role-based access control. In: AC-
SAC, pp. 333–342. IEEE (2002)

[12] La Torre, S., Madhusudan, P., Parlato, G.: Analyzing recursive programs using a
fixed-point calculus. In: PLDI, pp. 211–222. ACM (2009)

[13] Li, N., Mao, Z.: Administration in role-based access control. In: ASIACCS, pp.
127–138. ACM (2007)

[14] Li, N., Tripunitara, M.V.: Security analysis in role-based access control. In: SAC-
MAT, pp. 126–135. ACM (2004)

[15] O’Connor, A.C., Loomis, R.J.: http://csrc.nist.gov/groups/SNS/rbac/

documents/20101219 RBAC2 Final Report.pdf

[16] Sandhu, R.S., Bhamidipati, V., Munawer, Q.: The arbac97 model for role-based
administration of roles. ACM Trans. Inf. Syst. Secur. 2(1), 105–135 (1999)

[17] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

[18] Sandhu, R.S., Munawer, Q.: The arbac99 model for administration of roles. In:
ACSAC, pp. 229–238. IEEE (1999)

http://en.wikipedia.org/wiki/Role-based_access_control
http://www.microsoft.com/sqlserver/en/us/default.aspx
http://www.microsoft.com/it-it/server-cloud/windows-server/active-directory.aspx
http://www.microsoft.com/it-it/server-cloud/windows-server/active-directory.aspx
http://kjayaram.mysite.syr.edu/mohawk/casestudy.pdf
http://csrc.nist.gov/groups/SNS/rbac/documents/20101219_RBAC2_Final_Report.pdf
http://csrc.nist.gov/groups/SNS/rbac/documents/20101219_RBAC2_Final_Report.pdf

Policy Analysis for Self-administrated Role-Based Access Control 447

[19] Sasturkar, A., Yang, P., Stoller, S.D., Ramakrishnan, C.R.: Policy analysis for
administrative role based access control. Tech. Rep., Stony Brook Univ. (2006)

[20] Sasturkar, A., Yang, P., Stoller, S.D., Ramakrishnan, C.R.: Policy analysis for
administrative role based access control. In: CSFW, pp. 124–138. IEEE (2006)

[21] Stoller, S.D., Yang, P., Gofman, M.I., Ramakrishnan, C.R.: Symbolic reachability
analysis for parameterized administrative role-based access control. Computers &
Security 30(2-3), 148–164 (2011)

[22] Stoller, S.D., Yang, P., Ramakrishnan, C.R., Gofman, M.I.: Efficient policy analy-
sis for administrative role based access control. In: CCS, pp. 445–455. ACM (2007)

	Policy Analysis for Self-administrated Role-Based Access Control
	Introduction
	Preliminaries
	Bounding the Number of Users to Track
	Reducing the Number of Users to Track
	Aggressive Pruning
	Experimental Results
	Conclusions
	References

