Integer Parameter Synthesis
for Timed Automata*

Aleksandra Jovanovié¢, Didier Lime, and Olivier H. Roux

LUNAM Université. Ecole Centrale de Nantes - IRCCyN UMR CNRS 6597
Nantes, France

Abstract. We provide a subclass of parametric timed automata (PTA)
that we can actually and efficiently analyze, and we argue that it re-
tains most of the practical usefulness of PTA. The currently most useful
known subclass of PTA, L/U automata, has a strong syntactical restric-
tion for practical purposes, and we show that the associated theoreti-
cal results are mixed. We therefore advocate for a different restriction
scheme: since in classical timed automata, real-valued clocks are always
compared to integers for all practical purposes, we also search for pa-
rameter values as bounded integers. We show that the problem of the
existence of parameter values such that some TCTL property is satisfied
is PSPACE-complete. In such a setting, we can also of course synthesize
all the values of parameters and we give symbolic algorithms, for reach-
ability and unavoidability properties, to do it efficiently, i.e., without an
explicit enumeration. This also has the practical advantage of giving the
result as symbolic constraints between the parameters. We finally report
on a few experimental results to illustrate the practical usefulness of the
approach.

1 Introduction

Real-time systems are ubiquitous, and to ensure their correct design it seems
natural to rely on the mathematical framework provided by formal methods.
Within that framework, the model-checking of timed models is becoming ever
more efficient. It nevertheless requires a complete knowledge of the system. Con-
sequently, the verification can only be performed after the design stage, when
the global system and its environment are known. Getting a complete knowl-
edge of a system is often impossible and even when it is possible, it increases
the complexity of the conception and the verification of systems. Moreover, if
the model of the system is proved wrong or if the environment changes, this
complex verification process must be carried out again. It follows that the use of
parametric timed models is certainly a very interesting approach for the design
of real-time systems.

However, for general parametric formalisms such as Parametric Timed Au-
tomata, the existence of a parameter value such that some state is reachable is

* This work was partially funded by the ANR national research program ImpRo (ANR-
2010-BLAN-0317).

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 401-ffT5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

402 A. Jovanovié, D. Lime, and O.H. Roux

undecidable and there is currently no algorithm that solves the synthesis prob-
lem of parameter values except for severely restricted subclasses, whose practical
usability is unclear.

It is then a challenging issue to define a subclass of parametric timed au-
tomata, which retains enough of its expressive power and such that, for both
reachability and unavoidability properties, the existence of parameter values is
decidable and for which there exist efficient symbolic synthesis algorithms.

1.1 Related Work

Parametric timed automata (PTA) have been introduced by Alur et al. in [3],
as a way to specify parametric timing constraints. They study the parametric
emptiness problem which asks if there exists a parameter valuation such that
the automaton has an accepting run. The problem is proven undecidable for
PTA that uses three clocks and six parameters, and applies to both dense and
discrete time domains. In [9], the undecidability proof is extended for paramet-
ric timed automata that use only strict inequalities. Further in [12], Hune et al.
identify a class of parametric timed automata, lower bound/upper bound (L/U)
automata, for which the emptiness problem is decidable. However, their model-
checking algorithm, that uses Difference Bound Matrix as data structure, might
not terminate. Decidability results for L/U automata have been further inves-
tigated by Bozzelli and La Torre in [6]. They consider infinite accepting runs
and liveness property, and show that main decision problems such as empti-
ness, finiteness and universality for the set of parameter valuations are decidable
and PSPACE-complete. They also study constrained version of emptiness and
universality, where parameters are constrained by linear system of equalities
and inequalities, and obtain decidability if parameters of different types are not
compared in the linear constraint. They show how to compute the explicit rep-
resentation of the set of parameters, when all the parameters are of the same
type (L-automata and U-automata).

An approach for the verification of Parametric TCTL (PTCTL) formulae has
been developed in [2I] by Wang, where the problem has been proved decidable.
A more general problem is studied in [7], where parameters are allowed both
in the model and desired property (PTCTL formula). The authors show that
the model-checking problem is decidable and the parameter synthesis problem
is solvable, in discrete time, over a PTA with one parametric clock, if equality
is not allowed in the formulae.

In [4], the authors develop a synthesis algorithm that starts from a reference
parameter valuation and derives constraints on parameters, ensuring that the
behaviors of PTA are time-abstract equivalent. They also give a conjecture for
the termination being true on the examples studied. Henzinger et al. in [10],
study more general, hybrid, systems extended with parameters. Their state-
space exploration algorithms have been implemented in the model-checking tool
HyTech. In [20], the authors analyze time Petri nets with parameters in timing
constraints. A property is given as a PTCTL formula, but their model-checking
algorithm consists in analysis of a region graph for each parameter valuation.

Integer Parameter Synthesis for Timed Automata 403

In [19], the authors extend time Petri nets with inhibitor arcs with parameters,
and propose an abstraction of the parametric state-space and semi-algorithms
for the parametric synthesis problem, considering simple PTCTL formulae.

1.2 Contributions

L/U-automata can be seen as the most useful subclass of PTA supported by
many decidability results for reachability-like properties. We show that, even for
the subclass with only upper bounds (U-automata), the existence of parameter
valuations such that some unavoidability property is satisfied is undecidable
though. We also pinpoint some difficulties with the actual synthesis of parameter
values for L/U automata and reachability properties.

We therefore propose a different way of subclassing PTA: instead of syntacti-
cal restrictions of guards and invariants we propose a novel approach based on
restricting the possible values of the parameters. To obtain decidability results,
we show that we have to restrict these values to bounded integers. From a prac-
tical point of view, the subclass of PTA in such setting is not that restrictive
since the temporal constraints for time automata are usually defined on natural
(or rational) numbers. Nevertheless, this subclass is restrictive enough to make
the problems we address decidable and to allow symbolic synthesis algorithms
of parameter values.

We give symbolic algorithms to synthesize the set of all parameters valuations
for reachability and unavoidability properties, without having to enumerate all
the possibilities. These algorithms are implemented in our tool, Roméo.

Finally, we show that the problem of the existence of bounded integer valu-
ations for PTA such that some property is satisfied is PSPACE-complete for a
significant number of properties, which include Timed Computation Tree Logic
(TCTL), and also that lifting either of the boundedness or the integer assump-
tion leads to undecidability even for reachability.

1.3 Organization of the Paper

Section 2l gives the basic definitions related to the formalism of parametric timed
automata. Section Blrecalls the main positive results on L/U-automata and gives
new negative results that make more precise the practical usefulness of that
model. This motivates a different restriction scheme based on limiting the pos-
sible values of the parameters. Section Ml presents symbolic algorithms for the
synthesis problems when valuations are searched as bounded integers. In its de-
velopment this section also exhibits semi-algorithms for the general setting and
the (unbounded) integer setting. Section [l gives the computational complexi-
ties of the associated problems. Finally, section [0l discusses the performance in
practice of the proposed approach, illustrated on a small but realistic case-study.

2 Parametric Timed Automata

Z is the set of integers and IN the set of natural numbers. R is the set of real
numbers. R>q is the set of non-negative real numbers and R = Rx>o \ {0}.

404 A. Jovanovié, D. Lime, and O.H. Roux

For any closed interval [a, b] of R with a,b € Z, we denote by [a..b] its intersection
with Z.

Let X be a finite set. 2% denotes the powerset of X and | X| the size of X.

A linear expression on X is an expression generated by the following grammar,
forkeZandxe X: Au=k|kxx | A+

W.lo.g we consider reduced linear expressions A in which each element of X
occurs at most once and with at most one constant term. We let Coeff(\, x)
denote the coefficient of variable x € X in A. If does not occur in A then
Coeff(A, x) = 0. Coeff(X, z) is well defined since A is reduced.

A denotes the logical conjunction. A linear constraint on x is an expression
generated by the following grammar, with A a linear expression on X, ~€ {>,>}:
yu=A~0]yAnY.

Let V C R. A V-valuation for X is a function from X to V. We denote by
VX the set of V-valuations on X.

For any subset X’ C X, and a V-valuation v on X, we define the restriction
of v to X’ as the unique V-valuation on X’ such that v x/(z) = v(z). If Y is
a set of valuations on X, then Y|y denotes its projection on X' i.e., Y/ x, =
{U|X’ | v E Y}

For a linear expression (resp. constraint) A on X and a V-valuation v of X,
we denote by v(A) the real number (resp. boolean value) obtained by replacing
in A each element = of X by the real value v(z). We denote by C(X) the set of
linear constraints on X.

Given some arbitrary order on X, a valuation can be seen as a real vector of
size | X|. The set of valuations satisfying some linear constraint is then a convex
polyhedron of RIX!.

Let X (resp. P) be a finite set. We call clocks (resp. parameters) the elements
of X (resp. P). A simple (parametric clock) constraint on X (and P) is a linear
constraint on X UP such that exactly one element = of X occurs in each conjunct
of the expression (not necessarily the same for each conjunct), and Coeff(z) €
{-=1,1}. We denote by B(X, P) the set of such simple constraints and B'(X, P)
the set of simple constraints in which the clock variable always has coefficient
—1. As before, for any V-valuation v on P, and any simple constraint v, v(7) is
the linear constraint on X obtained by replacing each parameter p € P by the
real value v(p).

We further define the null valuation Ox on X by Vz € X, 0x(z) = 0. For any
subset R of X, and any valuation on X, we denote by v[R] the valuation on X
such that v[R](z) = 0 if x € R and v[R](z) = v(z) otherwise. Finally v + d, for
d > 0, is the valuation such that (v + d)(z) = v(x) +d for all z € X.

Definition 1 (Parametric Timed Automaton). A Parametric Timed Au-
tomaton (PTA) A is a tuple (L,lg, X, X, P, E,Inv) where: L is a finite set of
locations; Iy € L is the initial location; X is a finite set of actions; X is a finite
set of clocks; P is a finite set of parameters; E C L x X x B(X, P) x 2X x L is
a finite set of edges: if (I,a,7v, R,l') € E then there is an edge from l to ' with
action a, (parametric) guard v and set of clocks to reset R; Inv: L — B'(X, P)
assigns a (parametric) invariant to each location.

Integer Parameter Synthesis for Timed Automata 405

For any Q-valuation v on P, the structure v(A) obtained from A by replacing
each simple constraint v by v(y) is a timed automaton with invariants [2J11]
(TA).

The behavior of a PTA A is described by that of all the timed automata
obtained by considering all possible valuations of the parameters.

Definition 2 (Semantics of a PTA). Let A = (L,lp, X, X, P, E,Inv) be a
PTA and v be a R-valuation on P. The semantics of v(.A) is given by the timed
transition system (Q, qo, —) with:

— Q= {(,u) € L x RE, | u(v(Inv(1))) is true};

g0 = (lo,0x) (g0 € Q due to the special form of invariants);

Time transitions: (1, u) LN (l,u+d), withd > 0, iff vd' € [0,d], ([, u+d') € Q;
Action transitions: (I,u) = (I';u), with a € X, iff (I,u), (I,u) € Q, there
exists an edge (I,a,v, R,') € E, v = u[R] and u(v(y)) is true.

A finite run is a finite sequence p = g1a1q2az2 . . . a—1qy such that for all i, ¢; € Q,
a; € XY UR>o and ¢; 2 giv1. For any run p, we define Edges(p) = e1...en as
the sequence of edges of the automaton taken in the discrete transitions along
the run. We suppose without loss of generality that these edges are indeed thus
uniquely defined. A run is maximal if it either is infinite or cannot be extended.
We denote by Runs(v(A)) the set of runs that start in the initial state of v(A).

We can define several interesting parametric problems on PTA. Among them
we can ask: does there exist valuations for the parameters such that some prop-
erty is satisfied? And, even more interesting, can we compute all of these val-
uations? Given a class of problems P (e.g. reachability, unavoidability, TCTL
model-checking, control) these two questions translate into what we respectively
call the P-emptiness and the P-synthesis problems:

P-emptiness problem
InpPUTS : A PTA A and an instance ¢ of P
PROBLEM : Is the set of valuations v of the parameters such that v(.A)
satisfies ¢ empty?

P-synthesis problem
INPUTS : A PTA A and an instance ¢ of P
PRrROBLEM : Compute the set of valuations v of the parameters such that
v(A) satisfies ¢.

In this paper we mainly focus on reachability and unavoidability properties and
call the corresponding problems EF and AF. Thus, given a PTA A and a subset
G of its locations, EF-emptiness asks: does there exist a valuation v of the
parameters such that G is reachable in v(A)? And AF-emptiness asks: does
there exist a valuation v of the parameters such that all maximal runs in v(.A)
go through G? The related synthesis problems immediately follow.

In [3], the EF-emptiness problem was proved undecidable for PTA. We give
further negative results in the next section.

406 A. Jovanovié, D. Lime, and O.H. Roux

3 L/U Automata

The following syntactic subclass of PTA, called L/U-automaton, has been pro-
posed in [I2] as a decidable subclass for the EF-emptiness problem. It relies on
the notion of upper and lower bounds for parameters:

Definition 3 (Lower and upper bounds). Let v be a single conjunct of a
simple clock constraint on the set of clocks X and the set of parameters P. Let x
be the clock variable occurring in . v is an upper (resp. lower) bound constraint
if Coeff(x) is negative (resp. positive).

p s an upper (resp. lower) bound in the PTA A if for each conjunct v of each
simple clock constraint in the guards and invariants of A, either Coeff(y,p) =0
or p is an upper (resp. lower) bound in 7.

Definition 4 (L/U-automaton). A PTA A is a L/U-automaton if every pa-
rameter is either an upper bound or a lower bound in A but not both.

3.1 Emptiness

EF-emptiness is PSPACE for L/U automata [12] and, more generally, emptiness,
universality and finiteness of the valuation set are PSPACE-complete for infinite
runs acceptance properties [6]. These good results are based on a monotonicity
property that L/U automata have: decreasing lower bounds or increasing upper
bounds only add behaviors. So if we set all lower bounds to 0 and all upper
bounds to a large enough constant that we can compute, then the resulting timed
automaton contains all the possible behaviors. This makes these automata very
well-suited for reachability-like properties. For other properties however this is
not enough. For AF properties, increasing lower bounds or decreasing upper
bounds can suppress a run that was a counter-example to the property, and
then make this property true.

We now indeed prove, with a reduction from the halting problem of 2-counter
machines [1I7], that the AF-emptiness problem for L/U automata is undecidable.
We actually prove it in a more general setting by addressing a further subclass
of L/U-automata that allows only for upper bounds:

Definition 5 (L- and U-automaton). A PTA A is a U-automaton (resp.
L-automaton) if every parameter is an upper (resp. lower) bound in A.

Theorem 1. The AF-emptiness problem is undecidable for U-automata.

3.2 Synthesis

In [6] the authors prove that for L-automata and U-automata, the solution to
the synthesis problem for infinite runs acceptance properties can be explicitly
computed as a linear constraint of size doubly-exponential in the number of
parameters. That is to say this solution can be expressed as a finite union of
convex polyhedra.

Integer Parameter Synthesis for Timed Automata 407

With a different look at the idea used in [6] to prove that the constrained (i.e.
with initial constraints) emptiness problem for infinite runs acceptance proper-
ties is undecidable for L/U-automata, we can express a new and quite strong
result on the solution to the EF-synthesis problem for L /U-automata.

Theorem 2. If it can be computed, the solution to the EF-synthesis problem for
L/U-automata cannot be represented using any formalism for which emptiness
of the intersection with equality constraints is decidable.

Note that, in particular, Theorem [] rules out the possibilty of computing the
solution set as a finite union of polyhedra.

4 Integer Parametric Problems

The decidability results related to emptiness problems for L/U-automata are
mixed: properties related to reachability are decidable but very simple properties
that are not compatible with the monotonicity property, like unavoidability, are
undecidable even for the very restricted subclass of U-automata. As for the
actual synthesis of the constraints between parameters that describe the set of
valuations that satisfy even the simple case of reachability properties, we have to
resort to L- or U- automata, that have severely restricted modeling capacities.

We therefore advocate for different kinds of restrictions to PTA. Note that
with only one irrational constant in the guards of timed automata, reachability is
undecidable [16]. For all practical purposes these constants are actually always
chosen as integers. Even if we insist on rationals, we can make those integers
through adequate scaling and we usually have to since most tools only allow
them as integers. So, instead of using syntactical restrictions in the guards and
invariants of PTA, we think it makes a lot of sense to search for parameter values
as bounded integers.

We therefore focus on synthesizing (or just proving the existence of) integer
valuations for the parameters: a valuation v on a set X is an integer valuation if
Vo € X,v(z) € Z. This induces new emptiness and synthesis problems that we
call integer problems (e.g., integer EF-emptiness problem).

By insisting that these integer values should be bounded we will be (unsurpris-
ingly) able to make all parametric problems decidable, provided the associated
non-parametric problem, obtained by choosing one particular valuation, is de-
cidable of course.

These decidability results are however only interesting for practical purposes
if we can solve the corresponding synthesis problems symbolically, i.e., without
explicitly enumerating all the possible valuations.

To this end, we first introduce symbolic semi-algorithms to solve the synthesis
problems in the general setting (possibly non integer valuations) that are based
on a quite straightforward extension of the symbolic zone-based state-space ex-
ploration that is ubiquitous for timed automata [14].

408 A. Jovanovié, D. Lime, and O.H. Roux

4.1 Symbolic states for PTA

We therefore extend the notion of symbolic state for PTA, as well as the usual
operators associated to them:

Definition 6 (Symbolic state). A symbolic state of a PTA A, with set of
clocks X and set of parameters P, is a pair (I, Z) where | is a location of A and
Z is a set of valuations on X U P.

For state space computation, we define classical operations on valuation sets:

— future: 27" = {v' | v/(2) = v(x) +d,d > 0if x € X;v'(z) = v(z) if z € P};

— reset of the clock variables in set R C X: Z[R] = {v[R] | v € Z};

— initial symbolic state of the PTA A = (L,ly, X, X, P, E,Inv): Init(A4) =
(lo, {v € R*Y" | vix € {0x} nwp(Inv(lo)) x });

— successor by edge e = (I, a,7, R,1'): Succ((l, Z),e) = (I', (ZN)[R]” Ninv(1"))

It follows from [I2] that all reachable symbolic states of a PTA are convex
polyhedra. Also, the following properties trivially hold:

Property 1. The symbolic state abstraction satisfies: (1) Succ is non decreasing,
and for any reachable symbolic state (I, Z): (2) Z is convex, (3) if v is an integer

parameter valuation then v(Z) is a (convex) zone with integer vertices and (4)
for any edge e, Succ((l, Z),e) = Uvez‘p Succ((l,v(2)),e)

We can extend the Succ operator to a sequence of edges ej...e, by defin-
ing Succ((l, Z), erez ... epn) = Succ(...Succ(Succ((l, Z),e1),e2) ..., e,). We then
have:

Lemma 1. For any valuation v € QF and edges e1, ..., en, if we note (I,Z) =
Succ(Init(A),e1...en): v € Zp iff Ip € Runs(v(A)) s.t. Edges(p) =e1...en

4.2 Semi-algorithms for the General Synthesis Problems

The following two algorithms also are natural extensions of their timed automata
counterpart. The difficulty here is the handling of the parameter valuations. For
S = (I, Z), when non-ambiguous, we use S in place of [or Z to simplify the
writing a bit.

For EF we aggregate the valuations found when reaching the locations in G:

S‘p ifSedG
EFc(S, M) = 0 iftSeM
UecE EFc (S, M U{S}) otherwise
S’'=Succ(S,e)

For AF, when a path reaches G we retain all valuations that also preserve the
other paths that reach G (hence the intersection). If a path cannot reach G we
cut it by keeping valuations that make it impossible (in the complement of the
projection on the parameters).

Integer Parameter Synthesis for Timed Automata 409

AFG(S, M) =
S|p ifSed
0 if Se M
UEGEAF(G (é’, M U{S}) NNep AFG(S”, M U{S}) U (R"\ S[p) otherwise
S’ =Succ(S,e e/ #e

S =Succ(S,e’)

In both algorithms, conditions are evalu-
ated from top to bottom and M represents
a passed list of symbolic states. It records
the symbolic states that have already been

. . . y>2
explored on a given path. It is possible to z=y=0 *) a
have a global passed list shared between all
paths but this complicates the writing of z<b
the algorithms, especially AF. Initially, M
is empty and, for the EF-synthesis prob-
lem, for instance, the invocat'ion of EF is, for Fig.1. The PTA A; with clocks z
the PTA A and a subset of its locations G:
EFc(Init(A), D).

The following theorem states that EF and AF are semi-algorithms for their
respective synthesis problems.

and y and parameters a and b

Theorem 3. For any PTA A and any subset of its locations G, upon termina-
tion, EFg(Init(A), D) (resp. AFg(Init(A), D)) is the solution to the EF-synthesis
(resp. AF-synthesis) problem for PTA A and set of locations to reach G.

Ezample 1. In the PTA A; in Figure [Il after n > 0 iterations of the loop, we
get the following valuation set Z, = {0 <z <b,0<y,a<b,0<na<y—z <
(n+1)b}. We can see that we will never have Z,, = Z,, for m # n and therefore
neither EF g,y (Init(A1), 0) nor AF g,y (Init(A;),) will terminate.

4.3 Extension for the Integer Synthesis Problems

We now modify the two semi-algorithms to symbolically compute integer valu-
ations. For that we use the notion of integer hull.

Let n € IN and let Y be a subset of R"™. We denote by Conv(Y) the convex
hull of Y, i.e. the smallest convex set containing Y. IntVects(Y) denotes the
subset of all elements of Y with integer coordinates. We call those elements
integer valuations (or vectors). The integer hull of Y, denoted by IntHull(Y") is
the smallest convex set containing all the integer vectors of Y, d.e. IntHull(Y") =
Conv(IntVects(Y)).

We extend IntVects to symbolic states by: IntVects((l, Z)) = (I, IntVects(Z))
and extend likewise all the other operators on valuation sets.

We make the following assumption on the symbolic states of PTA.

Assumption 1. Any non-empty symbolic state computed through the Succ op-
erator contains at least one integer point.

410 A. Jovanovié, D. Lime, and O.H. Roux

Though there exist pathological PTA for which this is not true, we believe that
this is not a severe restriction in practice. For instance, considering only non-
strict constraints as invariants, still possibly with strict guards, is an easy restric-
tion that is enough to ensure this property. In any case, since we will compute
the polyhedra and their integer hulls, Assumption [Il can be verified on-the-fly,
at a very low additional cost, during the computation. Under this assumption,
we now show that to address our integer parametric problems, it is sufficient to
consider the integer hulls of the (valuations in the) symbolic states.

We therefore consider the semi-algorithm IEF (resp. IAF) obtained from EF
(resp. AF) by replacing all occurrences of the operator Succ by ISucc with
ISucc((l, Z),e) = IntHull(Succ(l, Z), e). We also extend ISucc to edge sequences
in the same way as for Succ.

To prove the correctness of these two new algorithms, we rely on Lemma
that is the equivalent in our integer setting of Lemma [Tt

Lemma 2. For any integer valuation v € Z¥ and edges e1, ..., e, if (1I,Z) =
ISucc(Init(A),e1...en): v € Z)p iff Ip € Runs(v(A)) s.t. Edges(p) =e1...en

Finally, we can state the main result of this subsection: IEF and IAF are correct
semi-algorithms for their respective integer synthesis problems.

Theorem 4. For any PTA A and any subset of its locations G, upon termi-
nation, 1EFG(Init(A),D) (resp. |IAFg(Init(A),0)) is the solution to the integer
EF-synthesis (resp. AF-synthesis) problem for PTA A and set of locations to
reach G.

Ezxample 2. Let us go back to the PTA A; in Figure [l After n iterations of
the loop, we still get the same valuation set Z, = {0 < 2 < 5,0 < y, < na <
y—x < (n+ 1)b}. This is because Z, is its own integer hull. So, again neither
|EF{£2}(|nit(.A1), @) nor |AF{52}(|nit(A1), @) will terminate.

4.4 Termination for the Bounded Integer Synthesis Problems

To ensure termination of semi-algorithms IEF and IAF, we now consider that
we are searching for bounded integer parameter valuations, i.e., given a priori
some M, N € IN, we search for valuations in [~ M..N]*. Again, this induces new
emptiness and synthesis problems that we call (M, N)-bounded integer problems
(e.g., (100, 100)-bounded integer EF-emptiness problem).

First remark that, in a TA with |L| locations and R(m) regions (m being the
maximal constant appearing in the constraints of the TA), if some location ¢ is
reachable, then there exists a run that leads to £ and visits at most |L| X R(m)
states. Since it takes at most 1 time unit to go from one region to another, the
duration of this run is at most |L| x R(m) time units. So, if we add invariants
x < |L| x R(m) for all clocks x in all the locations of the TA, we obtain an
equivalent TA, with respect to location reachability and unavoidability. Since
R(m) is non-decreasing with m, this is also true if we increase the value of m.

Integer Parameter Synthesis for Timed Automata 411

Now, in our bounded integer parameters setting, we can compute a constant
upper bound for each parametric linear expression used in the guards and in-
variants of the automaton. Let K be the maximum of those upper bounds and of
the constants in the non-parametric constraints of the TA. Using the reasoning
above, we can then add for all clocks z the invariant < |L| x R(K) to all
locations of our PTA and obtain an equivalent PTA, with respect to location
reachability and unavoidability.

For such a PTA A with bounded clocks and for any valuation v € [-M..N]¥,
v(A) is a TA with bounded clocks for which the finiteness of the number of zones
computed with the Succ operator is thus ensured.

Let us define an extension of the Init operator that accepts a bound on the
values of the parameters in the initial symbolic state (and therefore in the whole
computation): for any M, N € N, Initar,n (A) = (lo, {v € R¥YF | v x € {0x}7N
v p(Inv(lp))|x and v p € [-M..N]"}).

Theorem M can be naturally adapted to this setting in the following form:

Theorem 5. For any M, N € N, any PTA A and any subset of its locations
G, upon termination, |EF ¢ (Initas N (A),) (resp. IAFg(Initar,n(A), D)) is the so-
lution to the (M, N)-bounded integer EF-synthesis (resp. AF-synthesis) problem
for PTA A and set of locations to reach G.

To prove the termination of our computations, we rely on Lemma 3] which states
that computing the integer hull of a symbolic state is equivalent to separately
computing each of its subsets corresponding to integer parameters and then
taking the convex hull of their union.

Lemma 3. For any symbolic state (I, Z) of the PTA A s.t. Vv € IntVects(Z|p),
v(Z) is convex and has integer vertices: IntHull(Z) = Conv(UvelntVects(le) v(Z))

We can finally prove that, in this setting, the semi-algorithms do terminate:

Theorem 6. For any M, N € N, any PTA A and any subset of its locations
G, Algorithms |EFg(Initar, n(A), D) and IAFg(Initar, v (A), D) terminate.

Ezample 3. Consider once again the PTA A; in Figure[ll We now suppose that
both parameters are bounded and take their values, say in [0..3]. Then as seen
above, we add the invariants < 4 and y < 4 to both locations (4 is less than the
bound proposed above but enough in this simple case and keeps the computation
understandable). This preserves location-based reachability and unavoidability
properties. Now, after n > 0 iterations of the loop with the “normal” Succ op-
erator, we have the valuation set Z,, = {0 <a <3,0<06<3,a<)b0<z<
4,0<y<4,x<bna<y—z<(n+1)b}. If we do not suppose that a and
b are integers, we still never have Z,, = Z, for any m # n. If we do suppose
they are integers, we compute each time Z!, = IntHull(Z,). We have Z|, = Zy,
7, = Z1n{y < a+3,y < b+2}, Z4 = Zon{x < b—2a+2,y < a+3,y—z < a+2},
Zt=ZsN{a<l,y<a+3,y<b+3a}, Z), =ZsN{y—2z =4a,v <3—3a,z <
b—a}, and when n > 5, Z, = Z; ., = {a = 0,2 = y,0 <z < b,b < 3}.

412 A. Jovanovié, D. Lime, and O.H. Roux

And therefore IEF ¢, (Initg,3(A1), #) terminates and its result is b € [1..3]. Simi-
larly, IAF (4,3 (Initg 3(A1),0) terminates and its result is @ € [1..3] and b € [a..3].

5 Complexity of the Integer Parametric Problems

When the possible values of the parameters are integer and bounded, we can
enumerate all of the possible valuations in exponential time. And therefore, for
all classes of problems P that are EXPTIME for TA, the P-synthesis prob-
lem (and of course the P-emptiness) can be solved in exponential time. Also,
since the P problem for TA is always a special case of the P-emptiness problem
for PTA, for problems that are complete for some complexity class containing
EXPTIME, we can deduce that the corresponding bounded integer emptiness
problem is complete for the same complexity class. For instance, the reacha-
bility control problem is EXPTIME-complete for TA [13]. The corresponding
parametric emptiness problem is: for a PTA A with actions partitioned between
controllable and uncontrollable, does there exist a parameter valuation v such
that there exists a controller for v(.A) that enforces the reachability of some lo-
cation whatever the uncontrollable actions that occur? This problem is therefore
EXPTIME-complete for bounded integer parameters.

For simpler problems, we have a better and a bit surprising result, using the
classical construction of Savitch giving PSPACE=NPSPACE [18]:

Theorem 7. The P-emptiness problem for PTA with bounded integer parame-
ters is PSPACE-complete for any class of problems P that is PSPACE-complete
for TA.

In particular the whole TCTL model-checking, including reachability and un-
avoidability, is PSPACE-complete for TA [I] and as a consequence, the corre-
sponding emptiness problem, which includes EF-emptiness and AF-emptiness,
is PSPACE-complete for PTA with bounded integer parameters.

Finally, it is important to remark that we cannot easily lift either of the
boundedness or the integer assumptions: the EF-emptiness problem for PTA
with bounded rational parameter values is undecidable [I6], and Theorem [§ fol-
lows from the undecidability proof of [3]:

Theorem 8. The EF-emptiness problem for PTA with possibly unbounded in-
teger parameter values is undecidable.

6 On Performance in Practice: Task Set Schedulability

The PTA in Figure [[l demonstrates that it is very easy to find an example for
which the symbolic computation does not terminate without the bounded integer
parameters restriction but one could object that this PTA models nothing real
(if @ = 0, there are zeno runs for instance). We now show with a very simple but
realistic case-study that this restriction is also useful for real applications.

Integer Parameter Synthesis for Timed Automata 413

Consider the scheduling problem adapted from [8] for a non-preemptive set-
ting: we have three real-time tasks 7, 7o and 73. 7y is periodic with period a
and has an execution time Cy € [10,b]. 72 is sporadic: it has only a minimal
delay between two activations and that delay is 2a. The execution time of 5 is
Cy € [¢,d], with ¢ < d. Finally, 73 is periodic with period 3a and has an execu-
tion time C5 € [20, 28]. These three tasks are scheduled using a non—preemptiv
priority policy defined by 7 > 1o > 73. We say that the system is schedulable if
each task always has at most one instance running, which is a safety property.

We can model this problem with a parametric time Petri net (which, as it
will be bounded by the property can be seen as a subclass of PTA [19]) in
Roméo. Schedulability is verified using implementations of the semi-algorithms
EF and IEF presented in section @l The symbolic computations use the state
class abstraction of [BJI9], which is specific to time Petri nets, and do not re-
quire extrapolation. It is however very similar to the zone-based abstraction and
trivially satisfies Property [[l The rest of the results carry over to that abstrac-
tion without any difficulty. We use a machine with an Intel Core 17 at 2.3 GHz
and 8 Gb RAM.

Table [provides some insight on the performance of Algorithm IEF and a
comparison to Algorithm EF. The only difference in the implementations of the
two algorithms is the application or not of the integer hull operator. The table
shows the total time for the verifications, the part of it used for computing
the integer hull for Algorithm IEF, and the memory consumptions. DNF means
that the computation did not finish within 90 min (memory was not a problem
here). The constraint generated for the first column is a > 44, for the second
a—>b>24,b > 10, and for the third a — b > 24,b > 10,0 < ¢ < 28. For the
fourth column the constraint is much more complex so we will not reproduce it
here. Note that in all these cases some parameters are unbounded so an explicit
enumeration of all possible parameter values coupled with an efficient (DBM-
based or discrete-time decision diagram-based) verification was not possible (and
termination of Algorithm IEF was actually not guaranteed).

Table 1. Usefulness of the Integer Hull

a€0,00) a€f0,00) a€0,00) ac0,00) ac][0,00)
b=20 b e [10,00) b€ [10,00) b€ [10,00) b€ [10,00)

c=18 c=18 ce0,28] c¢=18 c>0

d=28 d=28 d =28 de[18,00) d>c¢
IEF Time 1s 2.8s 27s 840 s DNF
Int. Hull 0.2s (20%) 0.4s (14%) 2.9s (11%) 146s (17%) -
IEF Mem. 15Mo 35 Mo 153 Mo 1289 Mo —
EF Time 1.5s 6.4s DNF DNF DNF

EF Mem. 19.6 Mo 55 Mo — — —

1A running task cannot be interrupted even if another task with a greater priority is
ready.

414 A. Jovanovié, D. Lime, and O.H. Roux

Table 2. Scaling a’s upper bound for b € [10, 100], ¢ = 18 and d € [18, 100]

a €[0,100] a € [0,1000] a € [0, 10000]
IEF Time 1079 s 1150 s 1178 s
Int. Hull 166s (15.4%) 167s (14.5%) 168s (14.3%)
IEF Mem. 1598 Mo 1667 Mo 1667 Mo

With Table 2] we illustrate the smooth scaling of our approach with the value
of upper bounds. Not that the performance of Algorithm IEF is actually worse
when all parameters are bounded (compare with the fourth column of Table [I]).
This is due to the fact that our implementation uses inclusion for convergence,
which is favored by the reduced number of constraints in the absence of upper
bounds. In this setting, termination is guaranteed however.

7 Conclusion

We have presented novel results for the parametric verification of timed systems
modeled as parametric timed automata. Our new negative results show that even
when severely restricting the form of the parametric constraints we encounter
undecidabilty for many interesting problems. So we have proposed instead to
restrict the codomain of the valuations to bounded integers.

This is completely orthogonal to previous restriction schemes in the sense
that it does not enforce any syntactic restriction on PTA, thus simplifying the
modeling activity. Also experimental evidence shows that the symbolic approach
we propose to avoid an explicit enumeration of all the possible parameter values
is robust to scaling the bounds of the parameters (and improves on convergence
even without any bounds in some cases).

Also, in this setting, most problems are of course decidable and we have
proved that, for instance, emptiness for TCTL properties, which include reacha-
bility and unavoidability, is PSPACE-complete. We have also proved that lifting
the boundedness or the integer assumption leads to undecidability. We have ex-
hibited symbolic algorithms that allow to avoid the explicit enumeration of all
possible valuations and implemented them in our tool RomEo [15].

Our current lines of work on this problem include improving the computation
of the integer hulls, the search for less restrictive codomains for parameter val-
uations, and extension of this work for parametric timed games and PTA with
stopwatches.

Acknowledgments. The authors thank Claude Jard and Enea Zaffanella for
the related discussions, as well as an anonymous reviewer from CONCUR’12 for
her/his very useful comments.

Integer Parameter Synthesis for Timed Automata 415

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information
and Computation 104(1), 2-34 (1993)

Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183-235 (1994)

Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM
Symposium on Theory of Computing, pp. 592-601 (1993)

André, E., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. In: RP Workshop on Reachability Problems, Liverpool,
U.K., vol. 223, pp. 29-46 (2008)

Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. on Soft. Eng. 17(3), 259-273 (1991)

Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods in System Design 35(2), 121-151 (2009)
Bruyere, V., Raskin, J.-F.: Real-time model-checking: Parameters everywhere. Log-
ical Methods in Computer Science 3(1), 1-30 (2007)

Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Time state space analysis of real-time
preemptive systems. IEEE Trans. on Soft. Eng. 30(2), 97-111 (2004)

Doyen, L.: Robust parametric reachability for timed automata. Information Pro-
cessing Letters 102(5), 208-213 (2007)

Henzinger, T.A., Ho, P.-H., Wong-toi, H.: Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer 1, 460-463 (1997)

Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inform. and Computation 111(2), 193-244 (1994)

Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. Journal of Logic and Algebraic Programming 52-53,
183-220 (2002)

Jurdzinski, M., Trivedi, A.: Reachability-Time Games on Timed Automata. In:
Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 838-849. Springer, Heidelberg (2007)

Larsen, K.G., Pettersson, P., Yi, W.: Model-Checking for Real-Time Systems. In:
Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62-88. Springer, Heidelberg (1995)
Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: A Parametric Model-
Checker for Petri Nets with Stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54-57. Springer, Heidelberg (2009)

Miller, J.S.: Decidability and Complexity Results for Timed Automata and Semi-
linear Hybrid Automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, pp. 296-310. Springer, Heidelberg (2000)

Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall (1967)
Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177-192 (1970)

Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch
Petri nets. Journal of Universal Computer Science 15(17), 3273-3304 (2009)
Virbitskaite, 1., Pokozy, E.: Parametric Behaviour Analysis for Time Petri Nets.
In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 134-140. Springer,
Heidelberg (1999)

Wang, F.: Parametric timing analysis for real-time systems. Information and Com-
putation 130(2), 131-150 (1996)

	Integer Parameter Synthesis for Timed Automata
	Introduction
	Related Work
	Contributions
	Organization of the Paper

	Parametric Timed Automata
	L/U Automata
	Emptiness
	Synthesis

	Integer Parametric Problems
	Symbolic states for PTA
	Semi-algorithms for the General Synthesis Problems
	Extension for the Integer Synthesis Problems
	Termination for the Bounded Integer Synthesis Problems

	Complexity of the Integer Parametric Problems
	On Performance in Practice: Task Set Schedulability
	Conclusion
	References

