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Abstract. In this paper we compare different computational strategies
for skin detection. They differ in the type of data used in the train-
ing phase, the type of pre-processing done on the query image, and the
level of visual information used. In particular, we define a high-level
computational strategy, which uses a face detector in the pre-processing
step. Two different implementations of it are proposed: one relies on an
adaptive single gaussian model, the other a fixed threshold skin cluster
detector on an illuminant-independent image representation. The exper-
imental results on a heterogeneous dataset containing images acquired
under uncontrolled lighting conditions show that the high-level strategies
outperform low-level ones.

Keywords: Skin detection, skin segmentation, skin classification, skin
cluster model, parametric skin model, non-parametric skin model.

1 Introduction

The detection of skin regions in color images is a preliminary step in many
applications, such as image and video classification and retrieval in multimedia
databases, semantic filtering of web contents (through the definition of medium-
level features), human motion detection, human computer interaction and video-
surveillance. It can also be useful in image processing algorithms, as well as in
intelligent scanners, digital cameras, photocopiers, and printers. Many different
methods for discriminating between skin and non-skin pixels are available in the
literature. These can be grouped in three types of skin modeling: parametric,
nonparametric, and explicit skin cluster definition methods, [8].

The simplest, and often applied, methods build what is called an explicit
skin cluster classifier which expressly defines the boundaries of the skin cluster
in certain color spaces, [18,11,14,10,15,16,17]. The hypothesis underlying these
methods is that skin pixels exhibit similar color coordinates in an appropriately
chosen color space.

Parametric Gaussian models [9,1,2] assume that skin color distribution can
be modeled by an elliptical Gaussian joint probability density function. These
parametric methods have the useful ability of interpolating and generalizing in-
complete training data; they are expressed by a small number of parameters, and
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require very little storage space. However their performance depends strongly on
the skin distribution of the training images in the selected color space.

The key feature of non-parametric skin modeling methods is that the skin
color distribution is estimated directly on the basis of the training data, without
deriving an explicit model of the skin color. The result of these methods is
sometimes referred to as a Skin Probability Map (SPM), [25,26]. We can take as
an example the histogram-based non-parametric skin model, [13,27,28]. These
nonparametric methods are quick trained and do not, theoretically, depend on
the shape of the skin distribution (as, instead, explicit skin cluster definition and
parametric modeling do).

In real world environment, the skin color strongly varies due to camera set-
tings, illumination, peoples tans, and ethnic groups. The performance of skin
classification is strongly dependent on the skin samples used to train the dif-
ferent methods and ideally a training set should be chosen to adapt for each
different application.

In this paper we compare different computation strategies for skin detection.
They differ in the type of data used in the training phase (i.e. sample images vs
measured skin reflectances), the type of pre-processing done on the query image,
and the type of information used (low-level vs high-level features). In particular,
we propose a high-level computational strategy, which uses a face detector [29]
in the pre-processing step. Within this strategy, we further propose two differ-
ent implementations: the former exploits an adaptive skin detector, the latter
exploits a fixed threshold skin cluster detector on an illuminant-independent
image representation. Different strategies are here described with reference to
the specific algorithms considered and objectively compared on a heterogeneous
dataset of skin images.

2 Computational Strategies Considered

A skin detection strategy can be seen as a pipeline composed of three main
steps: first a training phase, then an eventually pre-processing step and finally
the detection through the skin model adopted. We here propose to distinguish the
computational strategies for skin detection not with respect to the model adopted
to classify skin vs no skin pixels, but instead with respect to the information used
in the training phase. We distinguish between strategies based on a low-level
training phase on skin databases, and high-level strategies where the training
phase exploits information derived from an analysis of automatically detected
faces.

2.1 Low-Level Strategies

Within the low-level strategies, we consider a further subdivision: methods trained
on database of real images, and methods trained on a database of measured skin
reflectances [30].
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Training on Real Images. The generic pipeline of low-level strategies trained
on real images is depicted in Figure 1. The model training is performed on the
well known Compaq skin database [13]. This database is composed of images ran-
domly picked from the World Wide Web, manually labeled into skin and non-skin
pixels. No pre-processing algorithms are here applied before skin detection. In
this work we have six skin detectors among those available in the literature, that
can be grouped into three model types: explicit skin cluster models, parametric
models, and non-parametric ones.

Fig. 1. Low level strategies trained on real images

The boundaries of the color skin cluster in a given color space are usually
defined through simple, heuristically chosen decision rules. Gasparini et al. [3]
have considered seven explicit skin cluster methods, working within different
color spaces, and often cited in the literature. They have redefined the boundaries
using genetic algorithms in which the fitness function is a weighted harmonic
mean of precision and recall. To meet the widely varying requisites of different
applications, the weighting coefficients were chosen to offer either high recall or
high precision, or to satisfy a reasonable trade-off between the two.

We have here considered the following three methods among all the 21 possible
ones presented in [3]:

– The best method in terms of Recall, with the boundaries obtained in [3].
This method works in the YCbCr color space and was introduced by Chai
and Ngan in [11].

– The best method in terms of Precision, with the boundaries obtained in [3].
This method works in the HSI color space and was introduced by Hsieh et
al. in [18].

– The best method in a tradeoff strategy, with the boundaries obtained in [3].
This method works in the HSV color space and was introduced by Tsekeridou
and Pitias in [10].

We have here considered also two different non-parametric methods. The first one
is a non-parametric histogram-based model developed by Conaire et al. [7]. The
second one was introduced by Chai and Bouzerdoum [12] and uses the Bayes
decision rule for minimum cost to classify pixels into skin color and non-skin
color. Color statistics are collected from YCbCr color space. As a parametric
model, we have considered a Gaussian Mixture Model with two components, as
described by [2].
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Fig. 2. Low-level strategies trained on measured skin reflectances

Training on Measured Skin Reflectances. The underlying idea of these
methods is to use in the training, datasets obtained from a large set of measured
skin reflectances. We considered the D65 CIE standard illuminant [5] and map
the samples within the sRGB, YCbCr and HSV color spaces. Within these color
spaces, we set the boundaries of the skin color cluster so that all the elements
of the training set are included. The pipeline of this skin detection strategy
is depicted in Figure 2. In the pre-processing step, a white balance algorithm
is applied to discard the effect of the eventual illuminant. Finally the trained
cluster classifier is applied to the balanced images.

In this work we have considered seven different color constancy algorithms.
They can be obtained from a unique framework recently defined by Van de Weijer
et al. [22]. These algorithms estimate the illuminant color I by implementing
instantiations of the following equation:

I(n, p, σ) =
1

k

(∫∫
|∇nρσ(x, y)|p dx dy

) 1
p

, (1)

where n is the order of the derivative, p is the Minkowski norm, ρσ(x, y) =
ρ(x, y)⊗Gσ(x, y) is the convolution of the image ρ(x, y) with a Gaussian filter
Gσ(x, y) with scale parameter σ, and k is a constant to be chosen such that the
illuminant color I has unit length (using the 2−norm). The integration is per-
formed over all pixel coordinates. Different (n, p, σ) combinations correspond to
different illuminant estimation algorithms, each based on a different assumption.

The values chosen for (n, p, σ) are reported in Table 1 and set as in [23].The
algorithms are used in the original authors’ implementation which is freely avail-
able online, [5].

Table 1. Values chosen for (n, p, σ) for the state-of-the-art algorithms which are in-
stantiations of Eq.1

Algorithm n p σ

Gray World (GW) 0 1 0
White Point (WP) 0 ∞ 0
Shades of Gray (SoG) 0 12 0
1st-order Gray Edge (GE1) 1 1 1
2nd-order Gray Edge (GE2) 2 1 2
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The last algorithm considered is the Do Nothing (DN) algorithm which gives
the same estimation for the color of the illuminant (I = [1 1 1]) for every image,
i.e. it assumes that the image is already correctly balanced.

2.2 High-Level Strategies

We here investigate high-level strategies for skin detection, where reliable pixels
to be used in the training phase are extracted from automatically detected face
regions. The flowchart of the two proposed strategies is depicted in Figure 3. The
images for the training belong to a database of real images. In the pre-processing
module, a face detector [4] is run on the input image to detect any faces. If no
faces are detected, the input images can be processed with any other state of the
art skin detector. If one or more faces are detected, a preliminary skin detection
module is run on them to filter out any unreliable pixel. Reliable skin pixels are
used to train the chosen skin detection model.

Fig. 3. High level

Pre-processing. Looping on all the faces detected, the face pixels are con-
verted into the HSV color space. To select the reliable skin pixels, the same
technique described in [20] is used. It is based on scale-space histogram filtering
[19] to identify the highest peak location and width of the histogram of the hue
component, within the hue interval corresponding to feasible skin colors. The
boundaries of the reliable skin region are obtained from the training images.
We here propose two different skin-detection model types: an adaptive single
Gaussian model, and a color gamut mapping model.

Adaptive Single Gaussian Model (ASG). For each face detected in the
image the color distribution of the reliable skin pixels is modeled with a single
Gaussian in the HS plane of the HSV color space. This is an adaptive detector
which builds a different model for each face. Each model is applied indepen-
dently to the image under consideration. The results of the different detectors
are combined in a recall-oriented scheme. The optimal threshold for the Gaus-
sian models (which is fixed for all the detected faces) is found from the training
images.
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Color Gamut Mapping Model (CGM). All the images in the training
dataset are processed and the reliable skin pixels found within all the detected
faces are accumulated in the original image color space, i.e. sRGB. Similarly to
[20], where the accumulated skin pixels were used to estimate the illuminant color
with a gamut mapping approach, here the accumulated skin pixels are mapped to
generate an illuminant-invariant skin gamut. Once this gamut has been obtained,
a skin cluster detector with fixed thresholds is applied to the gamut mapped
image. The optimal location of the illuminant-invariant skin gamut and the
optimal thresholds for the skin cluster detector are found on the training images.

3 Experimental Results

All the experiments here reported were obtained using the Test Database for
Skin Detection (TDSD) [24], which contains 554 images where skin pixels have
been manually labeled. This database is a collection of skin images with at least
one face, acquired under various lighting conditions and from different ethnic
groups.

To quantify the performance of the skin detection methods presented, we use
recall, precision and accuracy measures. Classification results are assigned as
true positive (TP), false positive (FP) and false negative (FN). Recall is defined
as follows:

recall =
TP

TP + FN
(2)

Precision is defined as:

precision =
TP

TP + FP
(3)

while Accuracy is defined as the ratio between the number of pixels correctly
classified (both skin and no-skin) and the total number of pixels considered, i.e.:

accuracy =
TP + TN

TP + TN + FP + FN
(4)

To summarize the performance of each strategy, the recall and precision values
are combined into a single value using the F1 measure:

F1 = 2 · precision · recall
precision + recall

(5)

The median values of the precision, recall, accuracy, and F1 measure on the
whole dataset are reported in Table 2.
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The overall performance are finally compared using the Wilcoxon Signed-Rank
Test on the F1 distributions of each algorithm on the whole image database.
This statistical test permits to compare the whole error distributions without
limiting to punctual statistics. Let X and Y be random variables representing the
F1 measure distributions obtained on all the test images by the computational
strategies CX and CY ; let μX and μY be the median values of such random
variables. The Wilcoxon signed-rank test can be used to test the null hypothesis
H0 : μX = μY against the alternative hypothesis H1 : μX �= μY . We can test
H0 against H1 at a given significance level α. We reject H0 and accept H1 if the
probability of observing the error differences we obtained is less than or equal
to α. We have used the alternative hypothesis H1 : μX > μY with a significance
level α = 0.05.

We here report the results of the Wilcoxon test on the precision (Table 3), on
the recall (Table 4), on the accuracy (Table 5), and on the F1 measure (Table 6).
A “+” sign in the (i, j)-position of the table means that the computational strat-
egy i has been considered statistically better than the computational strategy j;
a “-” sign that has been considered statistically worse, and a “=” sign that they
have been considered statistically equivalent. The count of the number of times
that a computational strategy has been considered statistically better than the
others gives us a score which is reported in the last column of the tables.

The Wilcoxon scores are reported in Table 7, together with the average and
median scores.

As a general comment, from the experiments comes that the high-level strate-
gies outperform low-level ones. In particular, the Wilcoxon test on the F1 mea-
sure (Table 6) ranks them as the best two strategies among the ones considered.
The average and median of all the Wilcoxon scores, last two columns of Table
7, confirm the effectiveness of the high-level strategies, as ASG and CGM have
the higher values. For what concerns low-level strategies, those trained with an
uncontrolled database (first six methods) outperform the ones trained on the
measured dataset of skin reflectances (labeled from 7 to 24). This is probably
due to the fact that the skin reflectance database is not representative of all the
possible reflectances of real world. However, each single cluster method trained
on the skin reflectance database, improves when applied after a color balance
algorithm, as emerges comparing in all the tests, methods 7, with methods from
10 to 14, method 8 with methods from 15 to 19, and method 9 with methods
from 20 to 24.

Figure 4 depicts the results of applying the CGM strategy to two sample
images of the TDSD: left column, the original images, middle column, the two
skin masks, and finally, last column the corresponding skin pixels detected.
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Table 2. Median values of the precision, recall, accuracy, and F1 measure on the whole
dataset

Strategy type Strategy Precision Recall Accuracy F1 measure

Low-level

HSI precision-oriented 0.8101 0.7043 0.8936 0.6804
YCBCR recall-oriented 0.4389 0.9982 0.7268 0.6066
HSV1 trade-off 0.7175 0.8214 0.8806 0.7019
Bayesian 0.6385 0.9470 0.8689 0.7246
Gaussian Mixture Model 0.4621 0.8242 0.7793 0.5378
Histogram 0.5652 0.5428 0.8193 0.4971
HSV D65+DN 0.4542 0.1528 0.8104 0.2167
RGB D65+DN 0.2617 0.3879 0.6809 0.2926
YCBCR D65+DN 0.2148 0.2246 0.7000 0.2070
HSV D65+GW 0.5026 0.0830 0.8187 0.1371
HSV D65+WP 0.4679 0.1624 0.8098 0.2318
HSV D65+SoG 0.5440 0.1549 0.8140 0.2222
HSV D65+GE1 0.5195 0.1564 0.8135 0.2218
HSV D65+GE2 0.5046 0.1503 0.8120 0.2133
RGB D65+GW 0.3398 0.5167 0.7123 0.3784
RGB D65+WP 0.2731 0.4067 0.6782 0.2964
RGB D65+SoG 0.3292 0.5520 0.6954 0.3675
RGB D65+GE1 0.2987 0.4767 0.6943 0.3427
RGB D65+GE2 0.2925 0.4332 0.6886 0.3252
YCBCR D65+GW 0.4959 0.3615 0.8193 0.3803
YCBCR D65+WP 0.2345 0.2559 0.7080 0.2293
YCBCR D65+SoG 0.3873 0.3966 0.7733 0.3579
YCBCR D65+GE1 0.2915 0.3033 0.7452 0.2715
YCBCR D65+GE2 0.2813 0.2861 0.7385 0.2633

High-level
ASG 0.6860 0.9226 0.8869 0.7621
CGM 0.8016 0.8210 0.9092 0.7760

Fig. 4. Left column, two test images belonging to the TDSD database. Middle column,
the two skin masks obtained applying the CGM strategy. Last column, the correspond-
ing skin pixels detected.
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Table 3. The Wilcoxon test on the Precision for all the 26 skin detection strategies
considered. Each algorithm score is reported in the last column.

Strategy 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

Score

1) HSI precision-oriented = + + + + + + + + + + + + + + + + + + + + + + + + = 24
2) YCBCR recall-oriented - = - - = - = + + - - - - - + + + + + - + + + + - - 11
3) HSV1 trade-off - + = + + + + + + + + + + + + + + + + + + + + + + - 23
4) Bayesian - + - = + + + + + + + + + + + + + + + + + + + + - - 21
5) Gaussian Mixture Model - = - - = - = + + - = - - - + + + + + = + + + + - - 11
6) Histogram - + - - + = + + + + + = + + + + + + + + + + + + - - 19
7) HSV D65+DN - = - - = - = + + - = - - - + + + + + = + + + + - - 11
8) RGB D65+DN - - - - - - - = + - - - - - - = - - - - + - = = - - 2
9) YCBCR D65+DN - - - - - - - - = - - - - - - - - - - - = - - - - - 0

10) HSV D65+GW - + - - + - + + + = = - = = + + + + + = + + + + - - 14
11) HSV D65+WP - + - - = - = + + = = - = = + + + + + = + + + + - - 12
12) HSV D65+SoG - + - - + = + + + + + = = + + + + + + + + + + + - - 18
13) HSV D65+GE1 - + - - + - + + + = = = = = + + + + + = + + + + - - 14
14) HSV D65+GE2 - + - - + - + + + = = - = = + + + + + = + + + + - - 14
15) RGB D65+GW - - - - - - - + + - - - - - = + = + + - + - + + - - 8
16) RGB D65+WP - - - - - - - = + - - - - - - = - - = - + - = = - - 2
17) RGB D65+SoG - - - - - - - + + - - - - - = + = + + - + - + + - - 8
18) RGB D65+GE1 - - - - - - - + + - - - - - - + - = = - + - = = - - 4
19) RGB D65+GE2 - - - - - - - + + - - - - - - = - = = - + - = = - - 3
20) YCBCR D65+GW - + - - = - = + + = = - = = + + + + + = + + + + - - 12
21) YCBCR D65+WP - - - - - - - - = - - - - - - - - - - - = - - - - - 0
22) YCBCR D65+SoG - - - - - - - + + - - - - - + + + + + - + = + + - - 10
23) YCBCR D65+GE1 - - - - - - - = + - - - - - - = - = = - + - = = - - 2
24) YCBCR D65+GE2 - - - - - - - = + - - - - - - = - = = - + - = = - - 2
25) ASG - + - + + + + + + + + + + + + + + + + + + + + + = - 22
26) CGM = + + + + + + + + + + + + + + + + + + + + + + + + = 24

Table 4. The Wilcoxon test on the Recall for all the 26 skin detection strategies
considered. Each algorithm score is reported in the last column.

Strategy 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

Score

1) HSI precision-oriented = - - - - + + + + + + + + + + + + + + + + + + + - - 19
2) YCBCR recall-oriented + = + + + + + + + + + + + + + + + + + + + + + + + + 25
3) HSV1 trade-off + - = - - + + + + + + + + + + + + + + + + + + + - = 20
4) Bayesian + - + = + + + + + + + + + + + + + + + + + + + + + + 24
5) Gaussian Mixture Model + - + - = + + + + + + + + + + + + + + + + + + + - = 21
6) Histogram - - - - - = + + + + + + + + = + = + + + + + + + - - 16
7) HSV D65+DN - - - - - - = - - + = = = = - - - - - - - - - - - - 1
8) RGB D65+DN - - - - - - + = + + + + + + - = - - - + + = + + - - 11
9) YCBCR D65+DN - - - - - - + - = + + + + + - - - - - - - - - - - - 6

10) HSV D65+GW - - - - - - - - - = - - - - - - - - - - - - - - - - 0
11) HSV D65+WP - - - - - - = - - + = = = = - - - - - - - - - - - - 1
12) HSV D65+SoG - - - - - - = - - + = = = = - - - - - - - - - - - - 1
13) HSV D65+GE1 - - - - - - = - - + = = = = - - - - - - - - - - - - 1
14) HSV D65+GE2 - - - - - - = - - + = = = = - - - - - - - - - - - - 1
15) RGB D65+GW - - - - - = + + + + + + + + = + = + + + + + + + - - 16
16) RGB D65+WP - - - - - - + = + + + + + + - = - - - + + = + + - - 11
17) RGB D65+SoG - - - - - = + + + + + + + + = + = + + + + + + + - - 16
18) RGB D65+GE1 - - - - - - + + + + + + + + - + - = = + + + + + - - 14
19) RGB D65+GE2 - - - - - - + + + + + + + + - + - = = + + + + + - - 14
20) YCBCR D65+GW - - - - - - + - + + + + + + - - - - - = + - = = - - 8
21) YCBCR D65+WP - - - - - - + - + + + + + + - - - - - - = - - = - - 7
22) YCBCR D65+SoG - - - - - - + = + + + + + + - = - - - + + = + + - - 11
23) YCBCR D65+GE1 - - - - - - + - + + + + + + - - - - - = + - = = - - 8
24) YCBCR D65+GE2 - - - - - - + - + + + + + + - - - - - = = - = = - - 7
25) ASG + - + - + + + + + + + + + + + + + + + + + + + + = + 23
26) CGM + - = - = + + + + + + + + + + + + + + + + + + + - = 20
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Table 5. The Wilcoxon test on the Accuracy for all the 26 skin detection strategies
considered. Each algorithm score is reported in the last column.

Strategy 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

Score

1) HSI precision-oriented = + + + + + + + + + + + + + + + + + + + + + + + = - 23
2) YCBCR recall-oriented - = - - - - - + + - - - - - + + + + + - + - = = - - 8
3) HSV1 trade-off - + = + + + + + + + + + + + + + + + + + + + + + = - 22
4) Bayesian - + - = + + + + + + + + + + + + + + + + + + + + - - 21
5) Gaussian Mixture Model - + - - = - - + + - - - - - + + + + + - + = + + - - 11
6) Histogram - + - - + = = + + = = = = = + + + + + = + + + + - - 13
7) HSV D65+DN - + - - + = = + + - = = = = + + + + + = + + + + - - 13
8) RGB D65+DN - - - - - - - = - - - - - - - = - = = - - - - - - - 0
9) YCBCR D65+DN - - - - - - - + = - - - - - = + = = = - = - - - - - 2

10) HSV D65+GW - + - - + = + + + = + = = = + + + + + = + + + + - - 15
11) HSV D65+WP - + - - + = = + + - = = = = + + + + + = + + + + - - 13
12) HSV D65+SoG - + - - + = = + + = = = = = + + + + + = + + + + - - 13
13) HSV D65+GE1 - + - - + = = + + = = = = = + + + + + = + + + + - - 13
14) HSV D65+GE2 - + - - + = = + + = = = = = + + + + + = + + + + - - 13
15) RGB D65+GW - - - - - - - + = - - - - - = + = + + - = - - - - - 4
16) RGB D65+WP - - - - - - - = - - - - - - - = - = = - - - - - - - 0
17) RGB D65+SoG - - - - - - - + = - - - - - = + = = = - = - - - - - 2
18) RGB D65+GE1 - - - - - - - = = - - - - - - = = = = - = - - - - - 0
19) RGB D65+GE2 - - - - - - - = = - - - - - - = = = = - - - - - - - 0
20) YCBCR D65+GW - + - - + = = + + = = = = = + + + + + = + + + + - - 13
21) YCBCR D65+WP - - - - - - - + = - - - - - = + = = + - = - - - - - 3
22) YCBCR D65+SoG - + - - = - - + + - - - - - + + + + + - + = + + - - 11
23) YCBCR D65+GE1 - = - - - - - + + - - - - - + + + + + - + - = = - - 8
24) YCBCR D65+GE2 - = - - - - - + + - - - - - + + + + + - + - = = - - 8
25) ASG = + = + + + + + + + + + + + + + + + + + + + + + = - 22
26) CGM + + + + + + + + + + + + + + + + + + + + + + + + + = 25

Table 6. The Wilcoxon test on the F1 measure for all the 26 skin detection strategies
considered. Each algorithm score is reported in the last column.

Strategy 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

Score

1) HSI precision-oriented = + = - + + + + + + + + + + + + + + + + + + + + - - 21
2) YCBCR recall-oriented - = - - + + + + + + + + + + + + + + + + + + + + - - 20
3) HSV1 trade-off = + = = + + + + + + + + + + + + + + + + + + + + - - 21
4) Bayesian + + = = + + + + + + + + + + + + + + + + + + + + - - 22
5) Gaussian Mixture Model - - - - = + + + + + + + + + + + + + + + + + + + - - 19
6) Histogram - - - - - = + + + + + + + + + + + + + + + + + + - - 18
7) HSV D65+DN - - - - - - = - = + = = = = - - - - - - = - - - - - 1
8) RGB D65+DN - - - - - - + = + + + + + + - = - - - - + - = + - - 9
9) YCBCR D65+DN - - - - - - = - = + = = = = - - - - - - - - - - - - 1

10) HSV D65+GW - - - - - - - - - = - - - - - - - - - - - - - - - - 0
11) HSV D65+WP - - - - - - = - = + = = = = - - - - - - = - - - - - 1
12) HSV D65+SoG - - - - - - = - = + = = = = - - - - - - = - - - - - 1
13) HSV D65+GE1 - - - - - - = - = + = = = = - - - - - - = - - - - - 1
14) HSV D65+GE2 - - - - - - = - = + = = = = - - - - - - = - - - - - 1
15) RGB D65+GW - - - - - - + + + + + + + + = + = + + = + = + + - - 14
16) RGB D65+WP - - - - - - + = + + + + + + - = - - = - + - + + - - 10
17) RGB D65+SoG - - - - - - + + + + + + + + = + = + + = + = + + - - 14
18) RGB D65+GE1 - - - - - - + + + + + + + + - + - = = - + = + + - - 12
19) RGB D65+GE2 - - - - - - + + + + + + + + - = - = = - + - + + - - 11
20) YCBCR D65+GW - - - - - - + + + + + + + + = + = + + = + = + + - - 14
21) YCBCR D65+WP - - - - - - = - + + = = = = - - - - - - = - - - - - 2
22) YCBCR D65+SoG - - - - - - + + + + + + + + = + = = + = + = + + - - 13
23) YCBCR D65+GE1 - - - - - - + = + + + + + + - - - - - - + - = = - - 8
24) YCBCR D65+GE2 - - - - - - + - + + + + + + - - - - - - + - = = - - 8
25) ASG + + + + + + + + + + + + + + + + + + + + + + + + = - 24
26) CGM + + + + + + + + + + + + + + + + + + + + + + + + + = 25
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Table 7. Scores for the Wilcoxon test on the precision, recall, accuracy and F1 measure,
together with their average and median values

Strategy Precision Recall Accuracy F1measure Average Median

1) HSI precision-oriented 24 19 23 21 21.75 22
2) YCBCR recall-oriented 11 25 8 20 16 15.5
3) HSV1 trade-off 23 20 22 21 21.5 21.5
4) Bayesian 21 24 21 22 22 21.5
5) Gaussian Mixture Model 11 21 11 19 15.5 15
6) Histogram 19 16 13 18 16.5 17
7) HSV D65+DN 11 1 13 1 6.5 6
8) RGB D65+DN 2 11 0 9 5.5 5.5
9) YCBCR D65+DN 0 6 2 1 2.25 1.5

10) HSV D65+GW 14 0 15 0 7.25 7
11) HSV D65+WP 12 1 13 1 6.75 6.5
12) HSV D65+SoG 18 1 13 1 8.25 7
13) HSV D65+GE1 14 1 13 1 7.25 7
14) HSV D65+GE2 14 1 13 1 7.25 7
15) RGB D65+GW 8 16 4 14 10.5 11
16) RGB D65+WP 2 11 0 10 5.75 6
17) RGB D65+SoG 8 16 2 14 10 11
18) RGB D65+GE1 4 14 0 12 7.5 8
19) RGB D65+GE2 3 14 0 11 7 7
20) YCBCR D65+GW 12 8 13 14 11.75 12.5
21) YCBCR D65+WP 0 7 3 2 3 2.5
22) YCBCR D65+SoG 10 11 11 13 11.25 11
23) YCBCR D65+GE1 2 8 8 8 6.5 8
24) YCBCR D65+GE2 2 7 8 8 6.25 7.5
25) ASG 22 23 22 24 22.75 22.5
26) CGM 24 20 25 25 23.5 24.5

4 Conclusions

In this paper we have compared 26 computational strategies for skin detection.
They differ in the type of data used in the training phase (i.e. real images vs
measured skin reflectances), the type of pre-processing done on the query image,
and the type of information used (low-level vs high-level features). In particular,
we have defined a high-level computational strategy, which uses a face detector
in the pre-processing step. Within this strategy, we have proposed two different
implementations: the former exploits an adaptive skin detector, the latter ex-
ploits a fixed threshold skin cluster detector on an illuminant-independent image
representation.

The experimental results on a dataset containing uncontrolled images show
that the high-level strategies outperform low-level ones. In particular theWilcoxon
test on the F1 measure ranks them as the best two strategies among the ones con-
sidered. The average and median Wilcoxon scores for all the metrics considered,
further confirms the effectiveness of the high level approach.
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