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Abstract. In the modern digital society colors are often used to encode
information. Nevertheless the selection of set of colors that maximizes
class discriminability for nominal coding is a non-trivial problem. In this
work we compare four different heuristics for the selection of sets of col-
ors with fixed cardinality and maximum dissimilarity. The performance
of each algorithm is evaluated both on single and multiple illuminants,
on a sample of 1268 colors from the Munsell atlas, using ΔE76 euclidean
metrics on the perceptually uniform CIE L∗a∗b∗ space. Results are pre-
sented for color sets with cardinality up to 25.

Keywords: High contrast color set, greedy algorithm, simulated an-
nealing, genetic algorithm, local search.

1 Introduction

The pervasiveness of color devices has brought a rapid increase in the number of
applications in which color is used to convey information. At least two different
coding can be performed through the use of color set: nominal coding that is used
to represent unordered classes, and ordinal coding that is used to represent a
scale of values. The perceptual process associated to the decoding of categorical
images is complex and relies on many variables, making it very hard to select a
proper set of colors for a satisfactory coding when more than six or seven colors
are required.

Several heuristic procedures have been proposed to define high-contrast sets
of colors. Kelly [8] has conceived a list of 22 maximally contrasting surface colors,
such that each color of the list is maximally different from the one immediately
preceding it. In 1982, Carter and Carter [1] formulated the first algorithm to
compute easily discriminable sets of colors. Several authors [9–13] have devised
algorithms that can also fulfill a number of ergonomical requirements. In 1995,
Campadelli et al. presented an abstract formulation of the problem of selecting
high-contrast color sets [14], defining it as a combinatorial optimization problem
on graphs.

More recently Carter et al. [15] have studied the ability of different metrics and
several color spaces to enhance the discriminability of small visual targets with
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ultra-large color differences. Glasbey et al. [7] proposed a greedy method for the
selection of set of colors for categorical image and showed that its performance
is comparable with that of a simulated annealing algorithm. Leonard et al. [16]
proposed an algorithm for generating color scales for both categorical and ordinal
coding; their method uses a positional space partition strategy to generate a
lightness scale and then applies the method developed from Campadelli et al. [2]
to select discriminable colors according to the lightness constraint. Rodriguez-
Pardo and Sharma [17] proposed a dynamical solution to the problem using
a hierarchical clustering followed by a simple truncation to select the desired
number of high contrast colors at run time.

In this work we address the algorithmic aspect of the selection of high-contrast
color sets under single or multiple illuminats, and present an effective algorithm
based on Local Search, which is fast enough to be used in real time applications.
The sets are extracted from the Munsell atlas and have cardinalities from 2 to
25. The method is also generalized to cope with multiple illuminants simultane-
ously. The results are compared with those obtained by three different heuristics
for the selection of sets of colors with fixed cardinality and maximum dissimi-
larity in the state of the art.

2 Problem Formulation

According to Carter and Carter [1], and Campadelli et al. [2] selecting a subset
of highly contrasting colors from a given range of colors means choosing a subset
such that in it the minimal distance among all possible couples of colors is
maximal. Formally, let C = {c1, . . . , cn} be the given set of n colors, and K any
subset of C with cardinality |K| = k � n. Denoting with C the set of all possible
subsets of C with exactly k elements, by dij the distance between color ci and
color cj , the problem can be formulated as follows:

S = max
C

min
ci,cj∈K

dij (1)

The solution S thus satisfies the Maximal Dissimilarity among Colors (MDC)
criterion [2]. It has been shown [2] that this combinatorial optimization problem
is NP-complete.

3 Algorithms Compared

In this section the algorithms compared are described. They are the Greedy Al-
gorithm, Genetic Algorithm, Simulated Annealing, and the proposed algorithm
based on Local Search.

3.1 Greedy Algorithm

The Greedy Algorithm follows the problem solving heuristic of making the locally
optimal choice at each iteration [3]. It is a generative algorithm, which starts from



High Contrast Color Sets under Multiple Illuminants 135

a starting color cs1 and then adds one color at time until the solution S has the
desired cardinality k. At each iteration the algorithm adds to the current solution
Si the color sample with the largest distance from all the samples already in the
solution, i.e.:

Si+1 = Si ∪ {csi+1} (2)

where

csi+1 = arg max
cj∈C\Si

(
min
ci∈Si

dij

)
(3)

3.2 Local Search

This simple iterative heuristic is based on the concept of neighborhood. The
neighborhood is built through the definition of a neighborhood function of the
following type:

Nh(K) =
{
K̃ ⊂ C : |c ∈ K̃ ∧ c /∈ K| = h, h < k

}
(4)

In this work the 1-neighborhood N1 is used, which means that two solutions
are 1-neighbors if and only if they differ for just one color. Starting from a
random solution with k colors in each iteration, an exhaustive search over the
1-neighborhood of the current solution is performed: the solution that leads to
the higher improvement according to the MDC criterion is then selected as the
new current solution. If no improving solution is found, the program returns.
To speed up the calculation of the optimal solution, a filtering is applied to the
neighborhood of each candidate solution: only the pair of colors with the lowest
dissimilarity in current solution are allowed for replacement (any replacement
that does not alter the worst pair has no effect on the MDC value).

Let (c1, c2) be the pair of colors with the lowest dissimilarity in the current
solution S, i.e.

(c1, c2) = arg min
ci,cj∈S

dij (5)

then the distances d1k and dk2 are computed ∀ck ∈ C, ck /∈ S. Among all the
distances d1k and dk2 only the colors k1 and k2 such that d1k1 > d12 and dk22 >
d12 are used to form the new candidate solutions S∗, which are 1-neighbors of
the current solution S.

The best of these neighbors is selected as the new current solution.

3.3 Simulated Annealing

Simulated Annealing (SA) [6] is a stochastic algorithm that uses the concept
of neighborhood but it allows a wider sampling capacity adding the possibility
to move toward solutions that degrade the quality with respect to the current
candidate solution. Given the current solution Sj at iteration j, the candidate
solution Sj+1 at the next iteration is randomly selected from the 1-neighborhood
of Sj . The acceptance rule for Sj as the current solution, is defined as follows:
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P (Sj+1) =

{
1 ifF (Sj+1) ≥ F (Sj)

e−
F (Sj)−F (Sj+1)

kT ifF (Sj+1) < F (Sj)
(6)

At each iteration a random number is extracted from an uniform distribution in
[0, 1) and compared with P (Sj+1) and if it is smaller than P (Sj+1) the neighbor
Sj+1 is accepted as the new current solution.

The parameter T (usually called temperature) is used to modulate the strin-
gency of the acceptance rule during the search process. The aim of stringency
modulation is that of escaping local minima through an alternation of local
search phases (T ≈ 0) and quasi-random search phases(T = Tmax). The algo-
rithm starts with T = Tmax and after a fixed number of iterations or accepted
solutions, T is decreased by a fixed quantity dt until it reaches 0. Then the cycle
restarts with T = Tmax. The values of the parameters Tmax and dt are the major
determinants in the performance of the algorithm: the value Tmax has to be great
enough in order to escape local minima in few iterations, on the other hand if
the temperature decrease is too slow there is a significant probability of missing
interesting regions of the search space. For the SA we used 1-neighborhood with
uniform random selection between the neighbor solutions that replace one of the
colors of the worst pair, without any preprocessing or exhaustive search. If there
is a given number of consecutive refuses, a 2-neighborhood is generated replacing
one of the colors of the worst pair and one other random color in the solution.

3.4 Genetic Algorithms

Genetic Algorithms (GAs) [4, 5] are the oldest and most known kind of evo-
lutionary algorithms. Their peculiarity is that potential solutions that undergo
evolution are represented as fixed length strings of characters or numbers. The
iterative process of GAs can be summarized by the following pseudocode:

– Generate a population P composed of an even number N of individuals.
– Generation := 0.
– Repeat until a termination condition is satisfied:

• Calculate the fitness of all the individuals in population P .
• Create a new empty population P ′.
• Repeat until population P ′ is composed of exactly N individuals:

∗ Select two individuals i1 and i2 from population P using the chosen
selection algorithm.

∗ Perform the crossover between i1 and i2 with probability pc, and let
j1 and j2 be the offspring (if crossover is not applied, let j1 = i1 and
j2 = i2).

∗ Mutate each character of j1 and j2 with a certain probability pm,
and let k1 and k2 be the offspring.

∗ Insert k1 and k2 into population P ′.
• Perform the copy: P := P ′ and delete P ′.
• Generation:=Generation+1.
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Examples of termination conditions are: a predetermined number of generations
or time has elapsed, a satisfactory solution has been found, or no improvement in
solution quality has been taking place for a predetermined number of generations.
In some cases, another genetic operator is added to crossover and mutation:
elitism, i.e., the copy of the best individual unchanged into the newly generated
population at each generation. In that case, either an odd number of individuals
N is chosen or another individual in P is selected, mutated, and inserted into
P ′ at each generation.

4 Experimental Results

In this work the Munsell Atlas has been used as the set C, which is composed of
n = |C| = 1269 color samples. The algorithms described in Section 3 have been
used to select from the set C, the subset which maximizes the MDC criterion.
The subset extracted has cardinalities ranging from 2 to 25 colors. The distance
used is the ΔE76, which is the Euclidean distance in the CIE L∗a∗b∗ color space.
Two different experiments are run: in the first one, only one illuminant has been
considered. In the second one, the subset extracted had to maximize the MDC
criterion under three different illuminants simoultaneously. In the first experi-
ment, the CIE L∗a∗b∗ color values of the samples have been computed from the
spectral reflectances of the color samples using the XYZ color matching func-
tions and the CIE D65 standard illuminant. In the second experiment, together
with the CIE D65 illuminant, also the CIE A and CIE F2 standard illuminants
have been considered.

Table 1. Algorithm characteristics

Algorithm Deterministic Population-based Dependence on starting point speed

Greedy yes no yes very high
LS yes ∗ no yes ∗ high
GA no yes no slow
SA no yes no slow
∗ LS is deterministic once the starting point is fixed.

4.1 Single Illuminant

The minimum distance among the samples in the color sets extracted by the
different algorithms tested are reported in Table 2. They are computed under
the CIE D65 standard illuminant. For the greedy algorithm the result reported
is the best among all the results obtained starting from each different sample in
the set C. Also for the other methods, the result reported in the best obtained
over 100 independent runs. For comparison, we have also reported the distances
of color palettes available in Color Brewer 2.0 (http://colorbrewer2.org/).

http://colorbrewer2.org/
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Table 2. Best solutions found by the different methods considered. The values reported
are the minimum distance over the selected sets. They are relative to the colors under
the CIE D65 illuminant.

Set cardinality Greedy Algorithm Local Search Genetic Algorithm Simulated Annealing Color Brewer

2 128.67 128.67 128.67 128.67 116.60
3 91.12 96.41 96.41 94.31 92.86
4 78.74 78.74 77.91 78.29 63.84
5 68.99 68.99 65.34 68.90 47.11
6 58.41 61.44 59.02 58.89 40.97
7 53.52 55.61 52.76 51.35 39.32
8 48.55 52.73 47.58 47.58 36.70
9 46.69 48.62 42.37 43.83 32.74
10 43.62 45.25 38.67 39.64 24.12
11 41.33 42.58 35.28 37.06 23.64
12 39.67 42.56 33.45 35.20 23.64
13 37.13 39.04 31.46 33.07 n.a.
14 36.15 37.94 29.40 31.33 n.a.
15 33.70 36.52 27.40 30.85 n.a.
16 33.55 35.04 25.73 28.95 n.a.
17 31.70 33.47 24.53 28.54 n.a.
18 30.65 32.61 24.35 27.56 n.a.
19 30.06 32.15 22.78 26.37 n.a.
20 29.66 31.15 22.32 25.43 n.a.
21 28.53 30.39 20.50 25.11 n.a.
22 27.85 29.55 19.99 24.49 n.a.
23 27.02 28.78 19.42 23.69 n.a.
24 26.73 27.77 18.27 23.16 n.a.
25 26.35 27.47 18.61 22.35 n.a.

The best sets found are also reported in Figure 1 where they are plotted in the
sRGB color space under the D65 illuminant.

From the results reported in Table 2 it is possible to see that the best results
are always obtained with the Local Search (LS) algorithm. It is also possible to
notice that the Greedy algorithm gives good results, and that the improvement
of the LS over the greedy reduces as the number of colors in the subset increases.

The results of the Simulated Annealing could certainly improve if a larger
number of iterations is selected. The number of iteration used has been selected
in order to solve the optimization problem in reasonable time.

Genetic algorithm has shown to perform poorly on this problem. This could
be surprising considering that GAs are among the best heuristics for many well
known hard optimization problems. In this case the reason can be founded in
the structure of the solutions that are fully connected graph: this means that
the fitness according to MDC depends on the shortest connection. Since this
connection can be found between any pair of colors in the solution, the preser-
vation of good solutions relies on the preservation of long schemes that is an
unlikely event according to the schema theorem [5]. To partially overcome this
limitation we built a positional structure in the solutions so that each position
maps a given portion of the chromatic plane: in this way short scheme should
describe dissimilarity relation between sets of similar colors. Presented results
are relative to this implementation.
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4.2 Multiple Illuminants

For the experiment using multiple illuminants, the cost function reported in eq.1
is modified as follows:

S = max
C

min
illuminants

min
ci,cj∈K

dij , (7)

i.e. the solution found maximizes the minimum distance between the worst cou-
ple in the set under the illuminants considered.

The minimum distance among the samples in the color sets extracted by
the different algorithms tested are reported in Table 3. They are the minimum
distance under the three different illuminants considered: CIE D65, CIE A, and
CIE F2. For the Greedy Algorithm the result reported is the best among all the
results obtained starting from each different sample in the set C. Also for the
other methods, the result reported in the best obtained over 100 independent
runs. The results for the Color Brewer samples are approximated converting the
sRGB values to the CIE XYZ color space and using the BS-CAT [18] to change

Fig. 1. Best solutions found by the different methods considered. The colors selected
are rendered in sRGB under the CIE D65 illuminant.



140 S. Bianco and A.G. Citrolo

Table 3. Best solutions found by the different methods considered. The values reported
are the minimum distance over the selected sets over the three illuminants consideerd.

Set cardinality Greedy Algorithm Local Search Genetic Algorithm Simulated Annealing Color Brewer ∗

2 126.77 126.77 126.77 126.77 113.17
3 76.80 77.95 75.92 75.92 73.91
4 69.98 69.98 66.60 69.98 58.53
5 55.35 55.35 55.35 54.19 40.97
6 49.09 50.87 48.58 48.72 40.97
7 44.89 46.66 43.88 41.90 39.32
8 42.90 44.91 37.78 37.98 34.31
9 37.39 40.46 34.95 34.17 32.74
10 36.57 37.53 31.08 32.33 24.12
11 34.23 36.38 28.01 30.34 23.64
12 33.14 34.73 25.74 28.55 23.64
13 31.32 32.45 24.69 26.97 n.a.
14 29.17 30.88 23.68 25.99 n.a.
15 28.22 29.82 21.02 24.67 n.a.
16 27.31 29.57 20.01 23.86 n.a.
17 26.89 28.26 18.79 23.94 n.a.
18 25.66 27.31 18.77 22.12 n.a.
19 25.35 26.39 17.90 21.55 n.a.
20 24.28 25.59 17.13 21.13 n.a.
21 23.20 24.81 16.58 20.51 n.a.
22 23.11 24.67 15.58 20.25 n.a.
23 22.46 23.80 14.46 19.30 n.a.
24 22.35 22.95 14.44 19.23 n.a.
25 21.25 22.63 13.66 18.95 n.a.

∗ the results are approximated using the BS-CAT [18].

the white point from D65 to A and F2. The best sets found with cardinality lower
than 14 are reported in Figure 2, where they are plotted in the sRGB color space
under the three illuminants considered. In Figure 3 all the best subsets found
are plotted in the sRGB color space under the D65 illuminant.

From the analysis of the results reported in Table 3 it is possible to see that,
similarly to what happens in Table 2 for the single illuminant case, the best re-
sults are always obtained with the Local Search (LS) algorithm. It is also possible

D65 A F2

Fig. 2. Examples of the extracted subsets with cardinality up to 14 rendered under
the three different illuminants considered
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Fig. 3. Best solutions found by the different methods considered. The colors selected
are rendered in sRGB under the CIE D65 illuminant.

to notice that the Greedy algorithm gives good results, and that the improve-
ment of the LS over the greedy reduces as the number of colors in the subset
increases. As one could expect, it is also possible to notice that in comparison
with Table 2 the performance are lower.

5 Conclusions

In this work we have proposed a new fast method based on Local Search to se-
lect high contrast color sets. Its performance are compared with three different
heuristics for the selection of sets of colors with fixed cardinality and maximum
dissimilarity: the Greedy Algorithm, Genetic Algorithms, and Simulated An-
nealing. The performance of each algorithm is evaluated both under single and
multiple illuminants, on the Munsell atlas, using euclidean metrics on the per-
ceptually uniform CIE L∗a∗b∗ color space and maximizing the MDC criterion.
Results are presented for color sets with cardinality up to 25.
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Reproducible Results

We aim to make our research reproducible by everyone. The code used to select
the samples of the high contrast color sets reported in this paper is therefore
available online at http://www.ivl.disco.unimib.it.
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