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Abstract. In homomorphic encryption schemes, anyone can perform
homomorphic operations, and therefore, it is difficult to manage when,
where and by whom they are performed. In addition, the property that
anyone can “freely” perform the operation inevitably means that cipher-
texts are malleable, and it is well-known that adaptive chosen ciphertext
(CCA) security and the homomorphic property can never be achieved
simultaneously. In this paper, we show that CCA security and the ho-
momorphic property can be simultaneously handled in situations that
the user(s) who can perform homomorphic operations on encrypted data
should be controlled/limited, and propose a new concept of homomor-
phic public-key encryption, which we call keyed-homomorphic public-key
encryption (KH-PKE). By introducing a secret key for homomorphic
operations, we can control who is allowed to perform the homomorphic
operation. To construct KH-PKE schemes, we introduce a new concept,
a homomorphic transitional universal hash family, and present a num-
ber of KH-PKE schemes through hash proof systems. We also present a
practical construction of KH-PKE from the DDH assumption. For �-bit
security, our DDH-based scheme yields only �-bit longer ciphertext size
than that of the Cramer-Shoup PKE scheme.

Keywords: homomorphic public key encryption, CCA2 security, hash
proof system.

1 Introduction

1.1 Background and Motivation

In homomorphic encryption schemes, homomorphic operations can be performed
on encrypted plaintexts without decrypting the corresponding ciphertexts. Ow-
ing to this attractive property, several homomorphic public key encryption (PKE)
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schemes have been proposed [13,16,25]. Furthermore, fully homomorphic encryp-
tion (FHE) that allows a homomorphic operation with respect to any circuit, has
recently been proposed by Gentry [15]. This has had a resounding impact not
only in the cryptographic research community, but also in the business commu-
nity. One of the reasons for such a big impact is that FHE is suitable for ensuring
security in cloud environments (e.g., encrypted data stored in a database can be
updated without any decryption procedure).

Improvement in the security of homomorphic encryption will lead to wider
deployment of cloud-type applications, whereas the property that anyone can
“freely” perform homomorphic operations inevitably means that ciphertexts are
malleable. Therefore, it is well-known that adaptive chosen ciphertext (CCA2)
security and the homomorphic property can never be achieved simultaneously. In
other words, security is sacrificed in exchange for the homomorphic property. Al-
though several previous works (e.g., [1,6,17,26,27]) have attempted to construct
homomorphic PKE schemes that offer security close to CCA2 security while
retaining the homomorphic property, these schemes only guarantee security at
limited levels. Note that not all functionalities of conventional homomorphic en-
cryption are indispensable for real-world applications, and therefore there is the
possibility of realizing a desirable security level by appropriately selecting the
functionalities of conventional homomorphic encryption.

Here, we point out that the underlying cause of the incompatibility of CCA2
security and the homomorphic property, lies in the setting that any user can use
the homomorphic property, and it is worth discussing whether the free availabil-
ity of homomorphic operations is an indispensable functionality in real-world
applications. For example, consider the situation where some data encrypted by
a homomorphic PKE scheme is stored in a public database (e.g., public cloud
computing environment) and it is modified by homomorphic operations. If any-
one can perform a homomorphic operation, then it is hard to reduce the risk of
unexpected changes to the encrypted data in the database in which resources are
dynamically allocated. Even in a closed environment (e.g., private cloud comput-
ing environment), we cannot rule out the possibility of unexpected changes to a
user’s data by any user who is authorized to access the database. Of course, it
is possible to protect such unexpected modification of encrypted data by setting
access permissions of each user appropriately. However, in cloud environments,
security of outsourced data storages may not be assured. Therefore, such access
control functionality should be included in encrypted data itself.

From the above consideration, we see that the property that anyone can per-
form homomorphic operations not only inhibits the realization of CCA2 security,
but also introduces the problem of unexpected modification of encrypted data.

1.2 Our Contribution

In this paper, we show that CCA2 security and the homomorphic property can
be simultaneously handled in situations that the user(s) who can perform homo-
morphic operations should be controlled. Specifically, we propose a new concept
of homomorphic PKE, which we call keyed-homomorphic public-key encryption
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(KH-PKE), that has the following properties: (1) in addition to a conventional
public/decryption key pair (pk, skd), another secret key for the homomorphic
operation (denoted by skh) is introduced, (2) homomorphic operations cannot
be performed without using skh, and (3) ciphertexts cannot be decrypted using
only skh. Interestingly, KH-PKE implies conventional homomorphic PKE, since
the latter can be implemented by publishing skh of KH-PKE.

To construct KH-PKE schemes, we introduce a new concept, a homomorphic
transitional universal hash family, which can be constructed from any diverse
group system [11], and present a number of KH-PKE schemes through hash
proof systems (HPSs) [11].

Our Scenarios: Here we introduce situations that the user(s) who can per-
form homomorphic operations should be controlled/limited. For example, in the
situation where encrypted data is stored in a public database, an owner of the
data gives skh to the database manager, who updates the encrypted data af-
ter authentication of users. No outsider can modify the encrypted data in the
public database without having skh. As another example, by considering skh,
a counter can take over the role of aggregating an audience survey, voting, and
so on. An advantage of separating ballot-counting and ballot-aggregation is that
it is possible to reduce the aggregation costs of the counter and to collect the
ballot results for individual areas, groups, and communities.

Naive Construction and Its Limitations: One might think that the func-
tionality and the security of KH-PKE can be achieved by using the following
double encryption methodology: A ciphertext of an “inner” CCA1 secure homo-
morphic PKE scheme is encrypted by an “outer” CCA2 secure PKE scheme,
and the decryption key of the CCA2 secure PKE scheme is used as skh.

However, this naive construction is not secure in the sense of our security
definition. Taking into account the exposure of the homomorphic operation key
skh, an adversary can request skh to be exposed in our security definition. The
adversary is allowed to use the decryption oracle “even after the challenge phase”,
just before the adversary requests skh. However, no such decryption query is
allowed in the CCA1 security of the underlying “inner” scheme, and therefore it
seems hard to avoid this problem.

Even if we turn a blind eye to the above problem, it is obvious that efficiency
of the naive construction is roughly equal to the total costs of the building block
PKE schemes. On the other hand, the efficiency of our KH-PKE instantiations is
very close to the corresponding (non-keyed-homomorphic) PKE schemes based
on HPSs. In particular, the efficiency of our decisional Diffie-Hellman (DDH)-
based KH-PKE scheme is comparably efficient as the Cramer-Shoup PKE (CS)
scheme [9], where for �-bit security, our scheme yields only �-bit longer cipher-
text size than that of the CS PKE scheme. Whereas the naive construction
yields 5�-bit longer ciphertext size even if we choose the Kurosawa-Desmedt
PKE scheme [23] and the Cramer-Shoup lite PKE scheme [9] that seems the
most efficient combination under the DDH assumption. We give the comparison
in Section 5.
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To sum up, our construction is superior than the naive construction from both
security and efficiency perspectives.

Our Methodology: As a well-known result, CCA2-secure PKE can be con-
structed via a HPS [11] which has two projective hash families as its internal
structure: A universal2 projective hash and a smooth projective hash. Also it is
known that a weaker property of universal2, that is called universal1 property,
was shown to be useful for achieving CCA1-secure PKE [22], and universal1 prop-
erty (and smooth property also) does not contradict the homomorphic property.
That is, our aim seems to be achieved if we can establish a switching mechanism
from universal2 to universal1. Moreover, we can simulate the decryption oracle
even after the challenge phase and after revealing skh since the simulator knows
all secret keys in the security proof.

In this paper, we show such a mechanism (which we call homomorphic transi-
tional universal hash family) can be obtained from any diverse group system [11],
and then we propose a generic construction of KH-PKE based on a homomor-
phic transitional universal HPS. Moreover, as an implication result, KH-PKE is
implied by CPA-secure homomorphic PKE (with cyclic ciphertext space) which
implies diverse group systems [19].

Instantiations: According to our methodology, we present a number of KH-
PKE schemes from various major cryptographic assumptions such as the DDH
assumption, the decisional composite residuosity (DCR) assumption, the deci-
sional linear (DLIN) assumption, the decisional bilinear Diffie-Hellman (DBDH)
assumption, and the decisional quadratic residuosity (DQR) assumption. This
means that it is not difficult to extend all existing HPS to have the homomor-
phic transitional property, and thus a homomorphic transitional HPS is not a
significantly stronger primitive in practice, compared to an ordinary HPS.

In this paper, we present a practical DDH-based KH-PKE scheme. Other KH-
PKE schemes based on the DCR assumption and the DQR assumption from
the Cramer-Shoup HPSs [11], based on the DLIN assumption from the Shacham
HPS [28], and based on the DBDH assumption from the Galindo-Villar HPS [12],
and an identity-based analogue of KH-PKE, called keyed-homomorphic identity-
based encryption (KH-IBE) and its concrete construction from the Gentry IBE
scheme [14] will be given in the full version of this paper.

1.3 Related Work

Several previous works have attempted to construct homomorphic PKE schemes
that provide security close to CCA2 security, while retaining the homomorphic
property. Canetti et al. [6] considered the notion of replayable CCA (RCCA),
which leaves a room for an adversary who is given two ciphertexts (C,C′), to gain
information on whether C′ was derived from C. (Modified RCCA notions have
also been proposed [17,26].) In the RCCA security game, the decryption oracle
given to an adversary is restricted in such a way that the challenge ciphertext and
ciphertexts derived from the challenge ciphertext cannot be queried to the oracle.
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Similarly, in benignly-malleable (gCCA) security [1,29], ciphertexts related to the
challenge one cannot be input to the decryption oracle. Therefore, RCCA and
gCCA are strictly weaker notions than CCA2, and may not be sufficient if the
encryption scheme is used as a building block for higher level protocols/systems.

In [27], Prabhakaran and Rosulek proposed homomorphic CCA (HCCA) se-
curity, where only the expected operation, and no other operations, can be per-
formed for any ciphertext. (Targeted malleability, which is a similar concept
to HCCA, was considered in [4].) In addition, they also showed that CCA2,
gCCA, and RCCA are special cases of HCCA. Note that HCCA does not han-
dle the homomorphic property and CCA2 security simultaneously, since anyone
can perform the homomorphic operation. Chase et al. [8] showed that controlled-
malleable non-interactive zero-knowledge can be used as a general tool for achiev-
ing RCCA and HCCA security.

Embedding a ciphertext of homomorphic PKE into that of CCA2-secure PKE,
was considered in [24,3]. Note that their embedding encryption methods are
nothing more than protecting a ciphertext of homomorphic PKE by that of
CCA2 PKE, and therefore no homomorphic operation can be performed on
embedded ciphertexts. Meanwhile, in our KH-PKE, even after performing the
homomorphic operation, a ciphertext is still valid.

Barbosa and Farshim [2] proposed delegatable homomorphic encryption
(DHE). The difference between KH-PKE and DHE is that in DHE a trusted
authority (TA) issues a token to control the capability to evaluate circuits f
over encrypted data M to untrusted evaluators. Furthermore, their security def-
initions of DHE (input/output privacy (TA-IND-CPA) and evaluation security
(IND-EVAL2)) do not allow an adversary to access the decryption oracle and
the evaluation oracle (the oracle for homomorphic operation) simultaneously.
We note that although Barbosa and Farshim defined verifiability (VRF-CCA2),
where no homomorphic operation can be performed without issuing a corre-
sponding token, KH-CCA security for KH-PKE defined in this paper guarantees
a similar level of security, since if there exists an adversary that can perform the
homomorphic operation without using skh, then the adversary can break the
KH-CCA security.

2 Preliminaries

In this section, we review the basic notations and definitions related to HPSs
(mostly following [11] but slightly customized for our convenience).

Throughout this paper, PPT denotes probabilistic polynomial time. If n is a
natural number, then [n] = {1, . . . , n}. If D is a probabilistic distribution (over
some set), then [D] denotes its support, i.e. [D] = {x|Prx′←D[x′ = x] > 0}.
Let X = {X�}�≥0 and Y = {Y�}�≥0 be sequences of random variables X� and
Y�, respectively, defined over a same finite set. As usual, we say that X and Y
are statistically (resp. computationally) indistinguishable if |Pr[A(X�) = 1] −
Pr[A(Y�) = 1]| is negligible in � for any computationally unbounded (resp. PPT)
algorithm A. Furthermore, we say that X and Y are ε-close if the statistical
distance of X� and Y� is at most ε = ε(�).
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Projective Hash Families: Let X , Π , W , K, and S be finite, non-empty
sets, and L be a proper subset of X (i.e., L ⊂ X and L �= X). Furthermore, let
H = {Hk : X → Π}k∈K be a collection of hash functions indexed by k ∈ K, and
α : K → S be a function. We say that H = (H,K,X,L,Π, S, α) is a projective
hash family for (X,L) if for all k ∈ K, the action of Hk on the subset L is
uniquely determined by α(k) ∈ S.

Let H = (H,K,X,L,Π, S, α) be a projective hash family, and let ε ≥ 0. We
recall the following properties of a projective hash family: We say that H is
ε-universal1 if for all s ∈ S, x ∈ X \L, and π ∈ Π , it holds that Pr

k
$←K

[Hk(x) =

π ∧ α(k) = s] ≤ ε · Pr
k

$←K
[α(k) = s]. We say that H is ε-universal2 if for all

s ∈ S, x, x∗ ∈ X \ L with x∗ �= x, and π, π∗ ∈ Π , it holds that Pr
k

$←K
[Hk(x) =

π ∧ Hk(x
∗) = π∗ ∧ α(k) = s] ≤ ε · Pr

k
$←K

[Hk(x
∗) = π∗ ∧ α(k) = s]. We say

that H = (H,K,X,L,Π, S, α) is ε-smooth if the following two distributions are

ε-close: {k $← K; x
$← X \L : (α(k), x,Hk(x)) } and {k $← K; x

$← X \L; π $←
Π : (α(k), x, π) }.

If a projective hash family is ε-universal1 (resp. -universal2, -smooth) for a
negligible ε, then we simply call the projective hash family universal1 (resp.
universal2, smooth).

Subset Membership Problems: A subset membership problem M specifies
a collection of probabilistic distribution {I�}�≥0 (indexed by a security param-
eter �) over instance descriptions. An instance description Λ[X,L,W,R] ∈ [I�]
specifies non-empty sets X , W , and L, a binary relation R defined over X ×W ,
where X , W , and L are non-empty sets such that L ⊂ X , and an x ∈ X is in
the subset L if and only if there exists a “witness” ω ∈ W such that (x,w) ∈ R.
(If X , L, W , and R are clear from the context, we will just write Λ to indicate
an instance description.)

We require that a subset membership problem M provides the following al-
gorithms: (1) the instance sampling algorithm takes as input 1�, and returns
Λ[X,L,W,R] ∈ [I�] chosen according to I�, and (2) the subset sampling al-
gorithm takes as input 1� and an instance Λ[X,L,W,R] ∈ [I�], and returns
x ∈ L and a witness ω ∈ W for x. We say that a subset membership prob-
lem M = {I�}�≥0 is hard if the following two distributions are computationally

indistinguishable: {Λ← I�;x
$← L : (Λ, x)} and {Λ← I�;x

$← X \L : (Λ, x)}.

Hash Proof System (HPS): Informally, a HPS is a special kind of (designated-
verifier) non-interactive zero-knowledge proof system for a subset membership
problem M = {I�}�>0. A HPS has, as its internal structure, a family of hash
functions with the special projective property, and this projective hash family
is associated with each instance of the subset membership problems. Although
HPS does not treat for all NP languages, HPS leads to an efficient CCA2-secure
PKE construction.

As in [11], we will occasionally introduce an arbitrary finite set E to extend
the sets X and L in an instance Λ[X,L,W,R] ∈ [I�] of M into X×E and L×E.
If E is not required (e.g., for a smooth HPS in our construction), then we omit E
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from the following algorithms. A HPS P = (HPS.param,HPS.priv,HPS.pub), for
M associates each instance Λ = Λ[X,L,W,R] ofM with a projective hash family
H = (H,K,X × E,L× E,Π, S, α), provides the following three algorithms: (1)
The index sampling algorithm HPS.param takes an instance Λ as input, and
returns k ∈ K and s ∈ S such that α(k) = s. (2) The private evaluation
algorithm HPS.priv takes Λ ∈ [I�], k ∈ K and (x, e) ∈ X × E as input, and
returns π = Hk(x, e) ∈ Π . (3) The public evaluation algorithm HPS.pub takes
Λ ∈ [I�], s ∈ S, x ∈ L, e ∈ E, and a witness ω for x as input, and returns
π = Hk(x, e) ∈ Π . We say that P is ε-universal1 (resp. ε-universal2, ε-smooth)
if for all � > 0 and for all Λ[X,L,W,R] ∈ [I�], H is an ε-universal1 (resp. ε-
universal2, ε-smooth) projective hash family.

Note that the homomorphic property of the underlying smooth projective
hash family is required in our construction, where for all k ∈ K, and x1, x2 ∈ X ,
we have Hk(x1) +Hk(x2) = Hk(x1 + x2) ∈ Π holds. Then, we call this smooth
projective hash family homomorphic smooth projective hash family, and also call
a smooth HPS homomorphic smooth HPS if the underlying smooth projective
hash family has the homomorphic property.

Diverse Group System and Derived Projective Hash Family: Here, we
recall the definition of diverse group systems introduced in [11], which were used
to construct projective hash families. Let X , L, and Π be abelian groups, where
L is a proper subgroup ofX , and Hom(X,Π) be the group of all homomorphisms
φ : X → Π . LetH be a subgroup of Hom(X,Π). ThenG = (H, X, L,Π) is called
a group system. In addition, we say that G is diverse if for all x ∈ X \ L, there
exists φ ∈ H such that φ(L) = 〈0〉, but φ(x) �= 0.

We recall the projective hash family H = (H,K,X,L,Π, S, α) derived from
a diverse group system G ([11, Definition 2]): Let g1, . . . , gd ∈ L be a set of
generators of L (i.e., for all x ∈ L, there exist ω1, . . . , ωd ∈ Z such that x =
∑d

i=1 ωigi). Set S = Πd, and define α : K → S by α(k) = (φ(g1), . . . , φ(gd)),
where φ = Hk. Note that H is a projective hash family because Hk(x) for x ∈ L

is determined by α(k) such that Hk(x) = φ(
∑d

i=1 ωigi) =
∑d

i=1 ωiφ(gi). The
following was shown by Cramer and Shoup [11, Theorem 2].

Lemma 1. The projective hash family H derived from a diverse group system
G as above is 1/p̃-universal1, where p̃ is the smallest prime dividing |X/L|.

3 Definition of KH-PKE

In this section, we give the formal definitions of the syntax and the security
requirements of KH-PKE.

3.1 Syntax of KH-PKE

Definition 1 (Syntax of KH-PKE for homomorphic operation �). Let
M be a message space. We require that for all M1,M2 ∈ M, it holds that
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M1 �M2 ∈ M. A KH-PKE scheme KH-PKE = (KeyGen,Enc,Dec,Eval) for
homomorphic operation � consists of the following four algorithms:

KeyGen: This algorithm takes a security parameter 1� (� ∈ N) as input, and
returns a public key pk, a decryption key skd, and a homomorphic operation
key skh.

Enc: This algorithm takes pk, and a message M ∈ M as input, and returns a
ciphertext C.

Dec: This algorithm takes skd and C as input, and returns M or ⊥.
Eval: This algorithm takes skh, two ciphertexts C1 and C2 as input, and outputs

a ciphertext C or ⊥.

Note that the above definition for the evaluation algorithm Eval does not say
anything about the homomorphic property, and its functionality is defined as a
correctness requirement below. Let pk be a public key generated by the KeyGen
algorithm, and Cpk,M be the set of all ciphertexts of M ∈ M under the public
key pk, i.e., Cpk,M = {C|∃r ∈ {0, 1}∗ s.t. C = Enc(pk,M ; r)}.

Definition 2 (Correctness). A KH-PKE scheme for homomorphic operation
� is said to be correct if for all (pk, skd, skh) ← KeyGen(1�), the following
two conditions are satisfied: (1) For all M ∈ M, and all C ∈ Cpk,M , it holds
that Dec(skd, C) = M . (2) For all M1,M2 ∈ M, all C1 ∈ Cpk,M1 , and all
C2 ∈ Cpk,M2 , it holds that Eval(skh, C1, C2) ∈ Cpk,M1�M2 .

If an operation � is commutative, then the Eval algorithm is also called com-
mutative, and we require that the distribution of Eval(skh, C1, C2) and that of
Eval(skh, C2, C1) are identical. We instantiate DDH/DLIN/DBDH-based KH-
PKEs with multiplicative homomorphic operations (� := ×), a DCR-based
KH-PKE with additive homomorphic operations (� := +), and a DQR-based
KH-PKE with XOR homomorphic operations (� := ⊕). Thus, our concrete
instantiations are all commutative schemes.

Next, we define the security notion for KH-PKE, which we call indistinguisha-
bility of message under adaptive chosen ciphertext attacks (KH-CCA).

Definition 3 (KH-CCA). A KH-PKE scheme is said to be KH-CCA secure
if for any PPT adversary A, the advantage

AdvKH-CCA
KH-PKE,A(�) =

∣
∣Pr[(pk, skd, skh)← KeyGen(1�);

(M∗0 ,M
∗
1 , State)← AO(find, pk); β

$← {0, 1};
C∗ ← Enc(pk,M∗β); β′ ← AO(guess, State, C∗); β = β′]− 1

2

∣
∣

is negligible in �, where O consists of the three oracles Eval(skh, ·, ·), RevHK, and
Dec(skd, ·) defined as follows. Let D be a list which is set as D = {C∗} right
after the challenge stage (D is set as ∅ in the find stage).
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– The evaluation oracle Eval(skh, ·, ·): If RevHK has already been queried before,
then this oracle is not available. Otherwise, this oracle responds to a query
(C1, C2) with the result of C ← Eval(skh, C1, C2). In addition, if C �= ⊥ and
either C1 ∈ D or C2 ∈ D, then the oracle updates the list by D ← D ∪ {C}.

– The homomorphic key reveal oracle RevHK: Upon a request, this oracle re-
sponds with skh. (This oracle is available only once.)

– The decryption oracle Dec(skd, ·): This oracle is not available if A has queried
to RevHK and A has obtained the challenge ciphertext C∗. Otherwise, this
oracle responds to a query C with the result of Dec(skd, ·) if C �∈ D or returns
⊥ otherwise.

Here, let us remark on the definition of KH-CCA security. Throughout this
paper, an adversary who has skh is called an insider, whereas an adversary who
does not have skh is called an outsider.

In case A does not query the RevHK oracle (i.e., A is an outsider), A is
allowed to adaptively issue decryption queries and evaluation queries of any
ciphertexts. In particular, in order to capture the malleability in the presence of
the homomorphic operation, the Eval oracle allows the challenge ciphertext C∗ as
input. To avoid an unachievable security definition, the Dec oracle immediately
answers ⊥ for “unallowable ciphertexts” that are the results of a homomorphic
operation for C∗ and any ciphertext of an adversary’s choice. Such unallowable
ciphertexts are maintained by the list D.

The situation that the Dec oracle does not answer for ciphertexts that are
derived from the challenge ciphertext C∗ might seem somewhat analogous to
the definition of RCCA security [6]. However, there is a critical difference be-
tween KH-CCA and RCCA: In the RCCA security game, the Dec oracle does
not answer if a ciphertext C satisfies Dec(skd, C) ∈ {M∗0 ,M∗1 }. That is, the func-
tionality of the Dec oracle is restricted regardless of the adversary’s strategy. On
the other hand, in the KH-CCA security game, in case an adversary selects the
strategy that it does not submit C∗ to the Eval oracle, the restriction on the
Dec oracle is exactly the same as the CCA2 security for ordinary PKE scheme,
and it is one of the adversary’s possible strategies whether it submits C∗ to
the Eval oracle, and thus the adversary has more flexibility than in the RCCA
game.

If an outsider A becomes an insider after A obtains the challenge ciphertext
C∗, then A is not allowed to issue a decryption query after obtaining skh via the
RevHK oracle. In other words, A is allowed to issue a decryption query until right
before obtaining skh, even if C∗ is given to A. This restriction is again to avoid a
triviality. (If A obtains skh, A can freely perform homomorphic operations over
the challenge ciphertexts, and we cannot meaningfully define the “unallowable
set” of ciphertexts.)

Note that we can show that any KH-CCA secure PKE scheme satisfies CCA1
(thus CPA also) security against an adversary who is given (pk, skh) in the setup
phase. Showing this implication is possible mainly due to the RevHK oracle that
returns skh to an adversary, and the Dec oracle in the KH-CCA game.



Chosen Ciphertext Secure Keyed-Homomorphic Public-Key Encryption 41

4 Generic Construction via Homomorphic Transitional
Universal HPS

In this section, we give a generic construction of KH-PKE from an enhanced
variant of universal HPS, which we call homomorphic transitional universal HPS.
A homomorphic transitional universal HPS has, as its internal structure, a family
of hash functions which we call transitional universal projective hash family.

4.1 Homomorphic Transitional Universal Projective Hash Families

Informally, a projective hash family H = (H,K,X,L,Π, S, α) is said to be a
transitional universal projective hash family if an index k ∈ K for specifying a
hash function from the family can be divided into two components as (k′, k̂),
and even if k̂ is exposed, it still yields the universal1 property.

Definition 4 (Homomorphic Transitional (ε, ε′)-Universal Projective
Hash Families). Let H = (H,K,X × E,L × E,Π, S, α) be an ε-universal2
hash family. We say that H is (ε, ε′)-transitional if (1) The function index space
K can be divided into two subspaces K1 and K2 such that K = K1 ×K2 (say−→
k := (k′, k̂) ∈ K1 × K2), and (2) Considering the probability space defined by

choosing k′ ∈ K1 at random. Then for all s ∈ S, x ∈ X \L, k̂ ∈ K2 and π ∈ Π,

it holds that Pr
k′ $←K1

[Hk′,̂k(x, e) = π ∧ α(k′, k̂) = s] ≤ ε′ · Pr
k′ $←K1

[α(k′, k̂) = s].

Especially, if ε and ε′ are negligible, then H is called a transitional univer-
sal projective hash family. Moreover, if for all (k′, k̂) ∈ K1 × K2 and for all
(x1, e1), (x2, e2) ∈ X × E, Hk′,̂k(x1 + x2, e1 + e2) can be efficiently computed

given k̂, (x1, e1, Hk′,̂k(x1, e1)) and (x2, e2, Hk′,̂k(x2, e2)), then H is called a ho-
momorphic transitional universal projective hash family.

Next, we show that the projective hash family [10, §7.43 Theorem 3] based on a
diverse group system, satisfies the homomorphic transitional universal property
as it is.

The Cramer-Shoup (CS) Projective Hash Family [10] : LetH = (H,K,X,
L,Π, S, α) be a universal1 projective hash family derived from a diverse group
system G = (H, X, L,Π) (see the last paragraph of Section 2), and E be an

abelian group. Then the CS projective hash family Ĥ = (Ĥ, K̂ = Kn+1, X ×
E,L×E, Π̂, Ŝ = Sn+1, α̂) is constructed as follows: Let Γ : X×E → {0, . . . , p̃−
1}n be an injective function, where p̃ is the smallest prime dividing |X/L|,
and n is sufficiently large enough for Γ to be injective. For

−→
k = (k′, k1, . . . ,

kn) ∈ Kn+1, x ∈ X , and e ∈ E, Ĥ is defined as: Ĥk′,̂k(x, e) := Hk′(x) +
∑n

i=1 γiHki(x), and α̂(k′, k̂) = (α(k′), α(k1), . . . , α(kn)), where (γ1, . . . , γn) =

Γ (x, e). Cramer and Shoup showed that the CS projective hash family Ĥ is
(1/p̃)-universal2. Note that since Hk = φ ∈ Hom(X,Π), the basic projective
hash family H derived from the diverse group system satisfies the homomorphic
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property, namely for all k ∈ K, and x1, x2 ∈ X , we have Hk(x1) + Hk(x2) =
Hk(x1 + x2) ∈ Π . Next, we show that it is in fact a homomorphic transitional
universal projective hash family.

Lemma 2. If an index
−→
k ∈ Kn+1 is divided into k′ ∈ K and k̂ = (k1, . . . ,

kn) ∈ Kn, then the CS projective hash family Ĥ is a homomorphic transitional
(1/p̃, 1/p̃)-universal projective hash family.

Proof: For
−→
k ∈ Kn+1, fix (k1, . . . , kn) ∈ Kn, and consider the probability

space is defined by choosing k′ ∈ K at random. Then, Ĥ still provides the (1/p̃)-
universal1 property, because the projective hash family H is a (1/p̃)-universal1
and the output of Ĥ is “masked” by the output of H. Furthermore, for all
(x1, e1), (x2, e2) ∈ X × E, Hk′,̂k(x1 + x2, e1 + e2) can be efficiently computed

given k̂ = (k1, . . . , kn), (x1, e1, Hk′,̂k(x1, e1)) and (x2, e2, Hk′,̂k(x2, e2)) such that

(1) compute
∑n

i=1 γ
(1)
i Hki(x1) and

∑n
i=1 γ

(2)
i Hki(x2), where (γ

(b)
1 , . . . , γ

(b)
n ) =

Γ (xb, eb) for b = 1, 2, and (2) compute Ĥk′,̂k(x1+x2, e1+ e2)←
(
Ĥk′,̂k(x1, e1)−

∑n
i=1 γ

(1)
i Hki(x1)

)
+
(
Ĥk′,̂k(x2, e2)−

∑n
i=1 γ

(2)
i Hki(x2)

)
+
∑n

i=1 γiHki(x1 + x2),

where (γ1, . . . , γn) = Γ (x1 + x2, e1 + e2). ��
Finally we define the notion of homomorphic transitional universal HPS.

Definition 5 (Homomorphic Transitional Universal HPS). Let M =
{I�}�≥0 be a subset membership problem. We say that a HPS P for M is homo-
morphic transitional (ε, ε′)-universal if for all � > 0 and for all Λ = Λ[X,L,W,R]
∈ [I�], the projective hash family H that P associates with Λ is homomorphic
transitional (ε, ε′)-universal.

4.2 Generic Construction of KH-PKE

Here, we give the proposed construction of a KH-PKE scheme based on a ho-
momorphic transitional universal HPS given in the previous subsection, a homo-
morphic smooth projective HPS, and a universal2 projective HPS. We note that
all of the projective hash families used in our construction can be constructed
from a diverse group system [11]. Therefore, our proposed construction is fairly
generic.

We set E = Π (Π is an abelian group, for which we use additive notation) and
Γ : X ×Π → Πn is an injective function, where n is a natural number which is
sufficiently large so that Γ is injective. Let M = {I�}�≥0 be a subset membership
problem which specifies an instance description Λ = Λ[X,L,W,R] ∈ [I�]. We

will use the following three kinds of projective hash families H, Ĥ and H̃ and
corresponding HPS (for M). Using these building blocks, we construct a KH-
PKE scheme as in Figure 1.

– H = (H,K,X,L,Π, S, α) is a homomorphic smooth and projective hash
family. Let P = (HPS.param,HPS.priv,HPS.pub) be a homomorphic smooth
projective HPS for M which associates the instance Λ with H.
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KeyGen(1�) :
Pick Λ = Λ[X,L,W,R]← [I�].

(k, s)← HPS.param(1�, Λ)

(
−→
k , ŝ)← ĤPS.param(1�, Λ)

Parse
−→
k ∈ ̂K = K ×Kn as (k′,̂k)

s.t. k′ ∈ K and
̂k := (k1, . . . , kn) ∈ Kn

(˜k, s̃)← H̃PS.param(1�, Λ)
pk ← (s, ŝ, s̃)

skd ← (k, (k′,̂k),˜k); skh ← (̂k,˜k)
Return (pk, skd, skh)

Dec(skd, C) :

Parse skd as (k, (k′,̂k),˜k)
Parse C as (x, e, π̂, π̃)

π̂′ ← ĤPS.priv(1�, Λ, (k′,̂k), (x, e))
π̃′ ← H̃PS.priv(1�, Λ,˜k, (x, e))
If π̂ �= π̂′ or π̃ �= π̃′ then return ⊥
π ← HPS.priv(1�, Λ, k, x)
Return M ← e− π

Enc(pk,M) :

Choose x
$← L and its witness ω ∈W

π ← HPS.pub(1�, Λ, s, x, ω); e←M + π

π̂ ← ĤPS.pub(1�, Λ, ŝ, (x, e), ω)

π̃ ← H̃PS.pub(1�, Λ, s̃, (x, e), ω)
Return C ← (x, e, π̂, π̃).

Eval(skh, C1, C2) :

Parse skh as (̂k,˜k) where ̂k = (k1, . . . , kn)
Parse Cb as (xb, eb, π̂b, π̃b) for b = 1, 2

π̃′
b ← H̃PS.priv(1�, Λ,˜k, (xb, eb)) for b = 1, 2

If π̃1 �= π̃′
1 or π̃2 �= π̃′

2 then return ⊥
For b = 1, 2 Do:

(γ
(b)
1 , . . . , γ

(b)
n )← Γ (xb, eb)

Hki(xb)← HPS.priv(1�, Λ, ki, xb)
for all i ∈ [n]

π̂′
b ← π̂b −

∑

i∈[n] γ
(b)
i Hki(xb)

End For
x← x1 + x2; e← e1 + e2
(γ1, . . . , γn)← Γ (x, e)

Hki(x)← HPS.priv(1�, Λ, ki, x)
for all i ∈ [n]

π̂ ← π̂′
1 + π̂′

2 +
∑

i∈[n] γiHki(x)

π̃ ← H̃PS.priv(1�, Λ, ˜k, (x, e))
Return C ← (x, e, π̂, π̃)

Fig. 1. The proposed KH-PKE construction from HPS

– Ĥ = (Ĥ, K̂ = K × Kn, X × Π,L × Π, Π̂, Ŝ = Sn+1, α̂) is the CS (homo-
morphic transitional universal) projective hash family that we showed in

the previous subsection (with the index space K̂ is divided into K1 = K

and K2 = Kn). Let P̂ = (ĤPS.param, ĤPS.priv, ĤPS.pub) be a homomorphic

transitional universal HPS for M which associates Λ with Ĥ.
– H̃ = (H̃, K̃,X × Π,L × Π, Π̃, S̃, α̃) is a universal2 projective hash family.

Let P̃ = (H̃PS.param, H̃PS.priv, H̃PS.pub) be a universal2 HPS for M which

associates Λ with H̃.

One might think that in the contraction, H̃ is redundant, and thus is not neces-
sary. However, this is not true. Namely, if H̃ is removed, then the adversary can
extract meaningful information from the Eval oracle by submitting an invalid ci-
phertexts, and therefore, the resulting scheme becomes insecure. In other words,
with the help of H̃, the Eval oracle can distinguish invalid ciphertexts from valid
ones, and consequently, the above attack is prevented.

To see the correctness for the Eval algorithm, suppose that Eval receives cor-
rectly generated ciphertexts C1 = (x1, e1, π̂1, π̃1) and C2 = (x2, e2, π̂2, π̃2) of
plaintexts M1 and M2, respectively. Let M = M1 + M2. Then, by recalling
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the homomorphic and transitional properties, the following holds: π̂′b = π̂b −
∑n

i=1 γ
(b)
i Hki(xb) = Hk′ (xb) for b = 1, 2, e1 + e2 = (M1 + M2) + (Hk(x1) +

Hk(x2)) = (M1 + M2) + Hk(x1 + x2) = (M1 + M2) + Hk(x), π̂ = π̂′1 +
π̂′2 +

∑n
i=1 γiHki(x) = Hk′(x1) + Hk′(x2) +

∑n
i=1 γiHki(x) = Hk′(x1 + x2) +∑n

i=1 γiHki(x) = Hk′ (x) +
∑n

i=1 γiHki(x) = Ĥk′,̂k(x, e), which means that

C = (x, e, π̂, π̃) is a valid ciphertext of M := M1 +M2.
Since all of the projective hash families used in our construction can be con-

structed from a diverse group system, from the result of [19] (where CPA-secure
homomorphic PKE (with cyclic ciphertext space) implies diverse group systems),
the following corollary is given.

Corollary 1. KH-PKE is implied by CPA-secure homomorphic PKE with cyclic
ciphertext space.

The proof of the following theorem is given in the Appendix.

Theorem 1. Our construction is KH-CCA-secure if M is a hard subset mem-
bership problem, P is a homomorphic smooth projective HPS for M, P̂ is a
homomorphic transitional universal HPS for M, and P̃ is a universal2 HPS
for M.

5 Practical KH-PKE Construction from DDH

In this section, we present an efficient DDH-based KH-PKE construction. This
scheme is not a mere combination of the generic construction of KH-PKE in
Section 4 and the transitional HPS from DDH (which will appear in the full ver-
sion), but introduces additional techniques for enhancing efficiency. Remarkably,
efficiency of our scheme is only slightly lower than the Cramer-Shoup encryption
in spite of its complicated functionality. In particular, ciphertext length of our
scheme is only �-bit larger than that of the Cramer-Shoup scheme, where � is the
security parameter. For example, for 128-bit security, ciphertext overhead of our
scheme is 896-bit while that of the Cramer-Shoup scheme is 768-bit (assuming
that these schemes are implemented over elliptic curves).

5.1 Techniques for Improving Efficiency

Before going into the concrete construction of our DDH-based KH-PKE scheme,
we briefly explain two additional techniques for enhancing efficiency which are
not mentioned in the previous sections. Both these techniques employ target
collision resistant (TCR) hash functions [10], and can also be applicable to other
various (standard) PKE schemes.

The first technique is just the same as the popular method for transforming
hash-free variant of the Cramer-Shoup scheme into the TCR-based one (i.e.,
the standard Cramer-Shoup scheme). Due to it, the size of the public key is
significantly reduced.
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KeyGen(1�) :

g0, g1
$← G

k0, k1, k
′
0, k

′
1,̂k1,0,̂k1,1,˜k0,˜k1,˜k1,0,

˜k1,1
$← Zp;

s← gk0
0 gk1

1 ; s′ ← g
k′
0

0 g
k′
1

1

ŝ← g
̂k1,0

0 g
̂k1,1

1 ; s̃← g
˜k0
0 g

˜k1
1

s̃1 ← g
˜k1,0

0 g
˜k1,1

1

pk ← (g0, g1, s, s
′, ŝ, s̃, s̃1)

skd ← ((k0, k1), (k
′
0, k

′
1,̂k1,0,̂k1,1),

(˜k0,˜k1,˜k1,0,˜k1,1))

skh ← ((̂k1,0,̂k1,1), (˜k0,˜k1,˜k1,0,˜k1,1))
Return (pk, skd, skh)

Dec(skd, C) :
Parse C as (x0, x1, e, π̂, τ )
γ ← TCR1(x0, x1, e)

π̂′ ← x
k′
0+γ̂k1,0

0 x
k′
1+γ̂k1,1

1

π̃′ ← x
˜k0+γ˜k1,0

0 x
˜k1+γ˜k1,1

1

If either π̂ �= π̂′ or τ �= TCR2(π̃
′)

then return ⊥
π ← xk0

0 xk1
1

Return M ← e/π

Enc(pk,M) :

ω
$← Zp; x0 ← gω0 ; x1 ← gω1

π ← sω; e←M · π
γ ← TCR1(x0, x1, e)
π̂ ← (s′ · ŝ γ)ω; π̃ ← (s̃ · s̃ γ

1 )ω

τ ← TCR2(π̃)
Return C ← (x0, x1, e, π̂, τ )

Eval(skh, C1, C2) :
Parse Cb as (xb,0, xb,1, eb, π̂b, τb)

for b = 1, 2
γb ← TCR1(xb,0, xb,1, eb) for b = 1, 2

π̃′
b ← x

˜k0+γb
˜k1,0

b,0 x
˜k1+γb

˜k1,1

b,1 for b = 1, 2

If τ1 �= TCR2(π̃
′
1) or τ2 �= TCR2(π̃

′
2)

then return ⊥
π̂′
b ← π̂b/(x

γb
̂k1,0

b,0 x
γb

̂k1,1

b,1 ) for b = 1, 2

x0 ← x1,0x2,0; x1 ← x1,1x2,1

e← e1e2; γ ← TCR1(x0, x1, e)

π̂ ← π̂′
1π̂

′
2x

γ̂k1,0

0 x
γ̂k1,1

1

π̃ ← x
˜k0+γ˜k1,0

0 x
˜k1+γ˜k1,1

1

τ ← TCR2(π̃)
Return C ← (x0, x1, e, π̂, τ )

Fig. 2. Our DDH-based KH-PKE Scheme

The second technique is to compress the redundant part of the ciphertext by
using a TCR hash function. Interestingly, our security proof still works even if one
of ciphertext components (specifically, a component for validity checking upon
the homomorphic operation) is hashed to be a smaller value. It is a bit surprising
that this technique can be also applied to the original Cramer-Shoup scheme, but
to the best of our knowledge, it has never explicitly been stated in the literatures.
When applying our technique to the Cramer-Shoup scheme, ciphertext length of
the resulting scheme becomes the same as that of the Kurosawa-Desmedt (KD)
scheme [23] which is the best known DDH-based PKE scheme. We should also
note that this technique is not applicable to other similar schemes such as the
Cash-Kiltz-Shoup [7], Hanaoka-Kurosawa [18], and Kiltz schemes [21]. This fact
is primarily due to the structure of HPS-based constructions, and thus, it is
difficult to apply the above technique to PKE schemes from other methodology,
e.g. [5,18,20].

5.2 Practical KH-PKE from DDH

Here, we give a description of our KH-PKE instantiation (using our technique of
reducing the ciphertext size). First, we define the DDH assumption as follows.



46 K. Emura et al.

Table 1. Comparison among the Cramer-Shoup (CS) scheme, the Kurosawa-Desmedt
(KD) scheme, the KD + CS-lite (using the double encryption) scheme, and our DDH-
based KH-PKE scheme, where |C| − |M | denotes ciphertext overhead, |G| denotes the
size of the underlying group element G, and exp denotes exponentiation. We count 1
multi-exp equals as 1.2 regular exp, and the size of MAC and the hashed value of TCR
as 0.5|G|.

|C| − |M | Cost (Enc) Cost (Dec) KH property

CS [9] 3|G| 4.2 exp 2.4 exp No

KD [23] 2.5|G| 3.2 exp 1.2 exp No

KD+CS-lite Double Enc 5.5|G| 7.2 exp 3.6 exp No?

Our DDH-based KH-PKE 3.5|G| 5.4 exp 3.6 exp Yes

Definition 6 (The Decisional Diffie-Hellman (DDH) Assumption). Let
G be a group with prime order p. We say that the DDH assumption holds in G if
the advantage AdvDDH

G,A (1�) := |Pr[A(g0, g1, gr0, gr1) = 0]− Pr[A(g0, g1, gr0, gr
′

1 ) =
0]| is negligible for any PPT algorithm A, where g0 and g1 are randomly chosen
from G, and r and r′ are randomly chosen from Zp.

Our DDH-Based KH-PKE Scheme : Let TCR1 : G×G×G→ Zp and TCR2 :
G → {0, 1}logp/2 be TCR hash functions. We give our DDH-based KH-PKE

scheme in Figure 2. Here, we explain the usage of skh = ((k̂1,0, k̂1,1), (k̃0, k̃1, k̃1,0,

k̃1,1)). π̂
′
1 = π̂1/(x

γ1
̂k1,0

1,0 x
γ1

̂k1,1

1,1 ) = x
k′
0

1,0x
k′
1

1,1 and π̂′2 = π̂2/(x
γ2

̂k1,0

2,0 x
γ2

̂k1,1

2,1 ) = x
k′
0

2,0x
k′
1

2,1

hold using (k̂1,0, k̂1,1). So, π̂ ← π̂′1π̂
′
2x

γ̂k1,0

0 x
γ̂k1,1

1 = x
k′
0+γ̂k1,0

0 x
k′
1+γ̂k1,1

1 holds.

Therefore, the Eval algorithmworks. The other keys (k̃0, k̃1, k̃1,0, k̃1,1) (and TCR2)
are used for computing π̃′1 (resp. π̃′2) to check the validity of C1 (resp. C2).

The following theorem can be proved in the same way as Theorem 1.

Theorem 2. The proposed DDH-based KH-PKE scheme is KH-CCA-secure if
the DDH assumption holds, and TCR1 and TCR2 are TCR hash functions.

In Table 1, we give an efficiency comparison of our DDH-based KH-PKE scheme
with the CS PKE [9], the KD PKE [23], and the naive construction (See Section
1). We note that these three schemes do not yield keyed-homomorphic property
and/or KH-CCA security. As seen in Table 1, our scheme is comparably efficient
to the best known DDH-based (standard) PKE schemes, i.e. the CS and the
KD schemes, in terms of both ciphertext overhead and computational costs.
Especially, ciphertext overhead of our scheme is only �-bit longer than that of
the CS scheme for �-bit security. It is somewhat surprising that it is possible to
realize KH property with only significantly small additional cost. Furthermore,
comparing with the naive construction (from KD and CS(-lite)) which appears
to have KH property (but does not satisfy KH-CCA security), we see that our
scheme is more efficient. This means that our methodology does not only yield
KH property (and KH-CCA security) but also significantly high efficiency.
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Appendix: Proof of Theorem 1

Proof. Let A be an adversary who breaks KH-CCA security. Then, we construct
an algorithm B that can break the hardness ofM. To later calculate the concrete
advantage of A, let ε(�), ε̂(�), and ε̃(�) be negligible functions such that P be

ε(�)-smooth, and P̂ be homomorphic transitional (ε̂(�), ε̂(�))-universal, and P̃ be
ε̃(�)-universal2.

http://eprint.iacr.org/
http://eprint.iacr.org/
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We describe how B simulates the KH-CCA experiment for A. First, B takes
as input 1� along with Λ[X,L,W,R] ∈ [I�] and x∗ ∈ X . B runs (pk, skd, skh)←
KeyGen(1�) as usual using the given value of Λ, where pk = (s, ŝ, s̃), skd =

(k,
−→
k , k̃) = (k, (k′, k̂), k̃), and skh = (k̂, k̃). B sends pk to A.
In find stage, B answers for each query as follows: For a decryption query C,

B runs Dec(skd, C) as usual using skd, and returns the result of the decryption
algorithm. For an evaluation query (C1, C2), B runs Eval(skh, C1, C2) as usual
using skh, and returns the result of the evaluation algorithm. For the reveal
homomorphic key query, B returns skh = (k̂, k̃). In the challenge phase, A sends

(M∗0 ,M
∗
1 ) to B. B chooses β

$← {0, 1}, and computes π∗ ← Hk(x
∗) using the

private evaluation algorithm, e∗ = π∗ +M∗β , and π̂∗ ← Ĥk′,̂k(x
∗, e∗) and π̃∗ ←

H̃
˜k(x
∗, e∗) using the private evaluation algorithm, and sends C∗ = (x∗, e∗, π̂∗, π̃∗)

to A. In addition, B sets a ciphertext dictionary D such that D = {C∗}. In
guess stage, B answers for each query as follows: For a decryption query C,
if C ∈ D, then return ⊥. Otherwise, B runs Dec(skd, C) as usual using skd,
and returns the result of the decryption algorithm. For an evaluation query
(C1, C2), B runs Eval(skh, C1, C2) as usual using skh, and returns the result of the
evaluation algorithm. If either C1 ∈ D or C2 ∈ D, then B updates D ← D∪{C3},
where C3 = Eval(skh, C1, C2). Note that if C3 = ⊥, then B does not update the

dictionary D. For the reveal homomorphic key query, B returns skh = (k̂, k̃).
Finally, A outputs a guessing bit β′. B outputs 1 if β = β′, and 0 otherwise.

Next, we define two experiments according to whether x∗ ∈ L or x∗ ∈ X \ L.
In the first experiment, B is given (Λ, x∗), where Λ[X,L,W,R] ∈ [I�] and x∗ ∈
L. Let T ′� be the event that B outputs 1 in this experiment. In the second
experiment, B is given (Λ, x∗), where Λ[X,L,W,R] ∈ [I�] and x∗ ∈ X \ L.
Let T� be the event that B outputs 1 in this experiment. By definition of the
subset membership problem, the advantage of B is defined as AdvDist(�) :=
|Pr[T�]− Pr[T ′� ]|. Let Qdec(�) be the number of decryption queries and Qeval(�)
be the number of evaluation queries. In the case of x∗ ∈ L, the simulation of
the KH-CCA game for the adversary A is perfect. Thus, we get

∣
∣Pr[T ′�]− 1

2

∣
∣ ≥

AdvKH-CCA
KH-PKE,A(�) In the case of x∗ ∈ X \L, we define the sequences of games. We

denote T
(0)
� , T

(1)
� , and T

(2)
� as the event that B outputs 1 in the game 0, 1, and

2, respectively.

Game 0: The same as the KH-CCA simulation.

Game 1: Recall that in Game 0, the decryption oracle (and the evaluation

oracle also) rejects a query (x, e, π̂, π̃) if either Ĥk′,̂k(x, e) �= π̂ or H̃
˜k(x, e) �= π̃.

In this game, we make these oracles reject a query that contains a ciphertext
(x, e, π̂, π̃) satisfying x �∈ L. Let F2 be the event that these oracles reject a

query (x, e, π̂, π̃) with x �∈ L, but either Ĥk′,̂k(x, e) = π̂ or H̃
˜k(x, e) = π̃ holds.

In the find phase, α̂(k′, k̂) = ŝ and α̃(k̃) = s̃ are fixed. Then, the probability

that Ĥk′,̂k(x, e) = π̂ is at most ε̂(�), since Ĥ is a ε̂-universal2 (or ε̂-universal1
projective, if A has been an insider via the RevHK oracle) hash family, and
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the probability that H̃
˜k(x, e) = π̃ is at most ε̃(�), since H̃ is a ε̃-universal2

hash family. In the challenge phase, π̂∗ = Ĥk′,̂k(x
∗, e∗) and π̃∗ = H̃

˜k(x
∗, e∗)

are fixed. After this, in the guess stage, the probability that Ĥk′,̂k(x, e) = π̂

is at most ε̂(�), since Ĥ is a ε̂-universal2. Note that if A has been an insider,
then A does not issue the decryption query. In addition, the probability that
H̃

˜k(x, e) = π̃ is at most ε̃(�), since H̃ is a ε̃-universal2. To sum up, we get
Pr[F2] ≤ Qdec(�)(ε̂(�)+ ε̃(�))+2Qeval(�)ε̃(�). The term 2Qeval(�) is derived from
the fact that an evaluation query contains two ciphertexts. In addition, from the
fact that Game 0 and Game 1 are identical if the event F2 does not occur, we

get
∣
∣Pr[T

(1)
� ]− Pr[T

(0)
� ]

∣
∣ ≤ Pr[F2] ≤ Qdec(�)(ε̂(�) + ε̃(�)) + 2Qeval(�)ε̃(�).

Game 2: In this game, B chooses π∗ $← Π (instead of computing π∗ = Hk(x
∗))

and computes e∗ = π∗ +M∗β . Since H is an ε(�)-smooth projective hash family

and β is hidden by π∗, we get
∣
∣Pr[T

(2)
� ]− Pr[T

(1)
� ]

∣
∣ ≤ ε(�) and Pr[T

(2)
� ] = 1

2 . By
combining the inequalities, we get AdvKH-CCA

KH-PKE,A(�) ≤ AdvDist(�) +Qdec(�)ε̂(�) +
(Qdec(�) + 2Qeval(�))ε̃(�) + ε(�), which is negligible. ��
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